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Abstract

All organisms have evolved pathways to respond to different forms of cellular stress. The

Gcn2 kinase is best known as a regulator of translation initiation in response to starvation for

amino acids. Work in budding yeast has showed that the molecular mechanism of GCN2

activation involves the binding of uncharged tRNAs, which results in a conformational

change and GCN2 activation. This pathway requires GCN1, which ensures delivery of the

uncharged tRNA onto GCN2. However, Gcn2 is activated by a number of other stresses

which do not obviously involve accumulation of uncharged tRNAs, raising the question how

Gcn2 is activated under these conditions. Here we investigate the requirement for ongoing

translation and tRNA binding for Gcn2 activation after different stresses in fission yeast. We

find that mutating the tRNA-binding site on Gcn2 or deleting Gcn1 abolishes Gcn2 activation

under all the investigated conditions. These results suggest that tRNA binding to Gcn2 is

required for Gcn2 activation not only in response to starvation but also after UV irradiation

and oxidative stress.

Introduction

All cells and organisms are surrounded by a changing and often stressful environment and

have developed various signaling pathways to adapt to these changes. An important require-

ment for maintaining cell homeostasis during stress conditions is the correct regulation of

translation. Translational regulation in response to different types of stress involves phosphor-

ylation of serine51 (Ser 52 in S. pombe) of the eukaryotic translation initiation factor 2α
(eIF2α) [1]. This phosphorylation is thought to lead to a general downregulation of translation,

accompanied by an enhanced translation of specific stress-response mRNAs [2–4]. One of the

eIF2α kinases performing this phosphorylation is Gcn2. Gcn2 was first described in budding

yeast as a regulator of eIF2α phosphorylation in response to amino-acid starvation. This role is

conserved from yeast to human cells and the extent of conservation is such that the human

Gcn2 can functionally replace the budding yeast Gcn2 [5]. Fission yeast has several eIF2α
kinases and it is GCN2 that is activated in response to nutrient deprivation [6–9].

The mechanism of GCN2 activation in response to amino-acid starvation has been exten-

sively studied through the years, mainly in budding yeast. Under starvation conditions,
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uncharged tRNAs accumulate and bind a histidyl-tRNA synthetase-like domain (HisRS) in

Gcn2. This, in turn, leads to a conformational change and activates the kinase. This model is

supported by the findings that (i) mutations leading to amino-acid substitutions close to the

predicted active site of the HisRS domain affect Gcn2 activation, either by leading to constitu-

tive activation or abolishing kinase activation [10–12]; (ii) activating mutations that mimic

tRNA binding have been identified [13] and (iii) Gcn2 was shown to be associated with the

translating ribosome [14], the very site where the absence of charged tRNA-s is most likely to

have an effect.

In budding yeast, the association of GCN2 with the ribosome depends on its interaction

with GCN1, a cofactor required for Gcn2 activation upon amino-acid starvation. GCN1 binds

the ribosome at or near the A site and is thus perfectly placed to ensure the transfer of the

uncharged tRNA onto GCN2 [15–19].

In addition to amino-acid starvation various other types of stress can activate Gcn2, includ-

ing ultraviolet light (UVC), MMS, H2O2, proteasome inhibition, viral infections and serum

starvation [20,21]. However, it is not immediately obvious how all these different forms of

stress might lead to an accumulation of uncharged tRNAs. Furthermore, accumulation of

uncharged tRNAs during starvation is a slow process, whereas the response to for example UV

and H2O2 is very fast. Therefore we reasoned that Gcn2 might be activated by other

mechanisms.

Here we investigated the mechanism of Gcn2 activation in response to different types of

stress. We found that Gcn1 is required for Gcn2 activation after amino-acid starvation also in

fission yeast. We show that ongoing translation is not required for UVC-induced activation of

Gcn2. However, mutating the tRNA-binding site on Gcn2 or deleting Gcn1 abolishes Gcn2

activation not only in response to starvation but also after UVC irradiation and oxidative

stress. These results strongly suggest that tRNA binding is required for Gcn2 activation in

response to all these types of stress.

Materials and methods

Strains and media

All strains used are derived from the Schizosaccharomyces pombe L972h- strain, and are listed

in Table 1. The growth conditions and media were as described in [22]. The cells were grown

in liquid Edinburgh minimal medium (EMM) containing the required supplements, or yeast

extract medium (YES) at 25˚C, to a cell density of 3–5 X 106 cells/ml (OD595 0,15–0,3).

Leucine starvation

Leucine-auxotroph cells were grown in the presence of leucine in EMM medium and washed

by filtering with three volumes of EMM lacking leucine. The cells were then resuspended in

EMM lacking leucine and samples were collected at different timepoints after leucine removal.

Table 1. Strains used in this study.

Strain number Genotype Source

38 ura4-D18 leu1-32 h+ Paul Nurse

1136 gcn2::ura4+ leu1-32 ura4-D18h- Ronald Wek

2079 gcn2-F1066A R1067L leu-32 ura4-D18 h- This work

2095 gcn1::kanMX6 ura4-D18 leu1-32 h+ This work

2120 gcn1::kanMX6 cdc10-M17 mcm2:GFP:kanR ura4-D18 leu1-32 This work

https://doi.org/10.1371/journal.pone.0182143.t001
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Oxidative stress

Cells grown in EMM to a density of 4X 106/ml were treated with H2O2 at the indicated con-

centrations, and samples were collected at different timepoints after addition of the oxidative

agent.

UVC-irradiation

Cells were grown in EMM medium to early log phase (OD = 0.15 Fission yeast cells suspended

in a thin layer (3 mm) of rapidly stirred liquid EMM medium were irradiated with 254-nm

UVC light. The dose was measured with a radiometer (Ultraviolet Products, San Gabriel,

CA, USA), and a dose of 1100 J/m2 was given at an incident dose rate of approximately

250 J/m2/min [23]. This dose gives a survival>90%.

Pre-RC loading assay

In situ chromatin binding assay was performed as described previously [23,24].

Immunoblots

Samples for immunoblotting were made by the trichloroacetic acid (TCA) protein extraction

method [25]. A total of 50–100 μg protein extracts were run on 10% SDS-PAGE, transferred to

a PVDF membrane (Immobilon, EMD Millipore Corporation, Billerica, MA, USA) and

probed with the following antibodies: anti-phosphorylated eIF2α (Cat. # 44–728G, Life Tech-

nologies, Carlsbad, California, USA) 1:3000; anti-α-tubulin (Cat. # T-5168 Sigma) 1:30 000,

anti eIF2α (Cat. # sc-11386, Santa Cruz).

Translation assay

Cells were pulse-labelled with the methionine analogue L-Homopropargylglycine (HPG; Life

Technologies) at a concentration of 50 μM for 10 minutes. Samples were taken at the indicated

timepoints after treatment and fixed in ice-cold 70% ethanol. Newly synthesized proteins were

detected by chemoselective fluorescence tagging by means of “click chemistry” [26] using the

Click-iT Cell reaction buffer kit (Life Technologies) according to the manufacturer’s protocol.

The Alexa Fluor 647- specific fluorescence signal was measured by flow cytometry to detect

median fluorescence intensity from 10 000 fission yeast cells. Samples without HPG were used

as negative controls.

Gcn2 kinase assays

Gcn2 was immunoprecipitated from exponentially growing unirradiated (“C”) and UV-irradi-

ated “UV” cells, using IP buffer (50 mM Hepes, pH7.5;1 mM EDTA; 20 mM Na-β-glycerol-

phosphate; 0.1 mM Na3VO4; 50 mM NaF; 75 mM NaCl; 0,1 mM PMSF; 1mM DTT; 0.3%

Np40; Roche protease inhibitor cocktail; 1% triton). The immunoprecipiates were resus-

pended in kinase buffer Tris-HCl pH 7,5; 5 mMMgCl2; 75 mM NaCl DTT 1mM; 0,5% Triton;

Protease inhibitor from Roche; 0,1 mM PMSF; 100 μM Na3VO4; 100 μM ATP and mixed

with extracts made from an unirradiated culture of gcn2Δ cells. After 30 min incubation EDTA

was added to 20 mM, Laemmli sample buffer to 1X and the reaction mix was boiled for 5 min

before loading on a gel and immunoblotting for eIF2α-P.

Activation of Gcn2
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Results

Ongoing translation is not required for the UVC-induced activation of

Gcn2

Under starvation conditions uncharged tRNAs accumulate as the existing pool of charged

tRNAs is gradually exhausted during protein synthesis. If Gcn2 activation occurs through a

similar mechanism of tRNA accumulation also after UV irradiation, one would expect that

ongoing translation is also required for activation. To address this, we inhibited translation

prior to UVC-irradiation and measured eIF2α phosphorylation to assess Gcn2 activation. To

inhibit translation we treated the cells with 100 μg/ml cycloheximide for 10 minutes, under

which conditions no further translation could be detected as measured by incorporation of

HPG, a methionine analogue (Fig 1A and 1C). To verify that our experimental design can be

used to explore the requirement for ongoing translation, we starved fission yeast cells for leu-

cine by withdrawing it from the medium of leucine-auxotroph cells in the presence and

absence of cycloheximide. The translation rate was reduced by >80% already after 30 minutes

of leucine starvation and comparable to that after cycloheximide treatment (Fig 1A). Notably,

the leucine-starvation-induced eIF2α phosphorylation was completely abolished in the pres-

ence of cycloheximide (Fig 1B), demonstrating that the approach is suitable to detect a require-

ment for ongoing translation. In contrast, the phosphorylation of eIF2α after UVC-irradiation

was not affected by blocking translation by cycloheximide prior to UVC irradiation (Fig 1C

and 1D), suggesting that ongoing translation is not required for Gcn2 activation after UVC

irradiation. The amount of total eIF2α did not change in response to UVC irradiation or cyclo-

heximide treatment (S1 Fig).

It cannot be excluded that an eIF2α phosphatase is inactivated upon UVC irradiation in the

presence of of cycloheximide and the increased eIF2α phosphorylation we observe is not due

to increased Gcn2 activity but rather to reduced phosphatase activity. However, we think this

explanation is most unlikely. Frist, we have performed in vitro kinase assays with GCN2

immunoprecipitated from unirradiated control and from UV-irradiated cells. A considerable

increase in kinase activity can be clearly observed when GCN2 is immunoprecipitated from

irradiated cells (Fig 1E). While this does not exclude a phosphatase being regulated, it demon-

strates that the induction of GCN2 kinase activity is a major contributor to the increased

eIF2α phosphorylation and supports our conclusion above that Gcn2 activation after UV irra-

diation does not require ongoing translation. Second, cycloheximide does not induce eIF2α
phosphorylation in unirradiated control cells (Fig 1B and 1D), nor is eIF2α phosphorylation

increased in cycloheximide-treated and UVC-irradiated gcn2Δ cells (S1 Fig). Interestingly,

there is more phosphorylated eIF2α after UV irradiation in the presence of cycloheximide

than in the absence (S1 Fig) suggesting that (i) a phosphatase does contribute to the regulation

of eIF2α phosphorylation after UV irradiation and (ii) the regulation of the phosphatase

involves translational regulation and appears to be dependent on eIF2α phosphorylation. In

mammalian cells the inducible eIF2α phosphatase-targeting protein GADD34 (PPP1R15A) is

expressed upon eIF2α phosphorylation and limits eIF2α phosphorylation in a negative feed-

back loop [27]. Although there is no obvious homologue to GADD34 in fission yeast, the

increased eIF2α phosphorylation upon cycloheximide treatment after UV irradiation indicates

the existence of a similar mechanism in fission yeast.

Cycloheximide was added to 100 μg/ml to inhibit translation for 10 minutes. Half the cul-

ture was irradiated with 1100 J/m2 as described [28] and samples were taken at the indicated

times after irradiation. Note that c0 and UV0 were taken at the same time after irradiation.

Leucine-starved auxotroph cells were grown in medium lacking leucine for the indicated

times. At each timepoint a sample was taken to pulse label with HPG for 10 min to measure
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Fig 1. Inhibition of translation does not prevent Gcn2 activation after UV irradiation in fission yeast.

https://doi.org/10.1371/journal.pone.0182143.g001
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translation rates (A, C) and a sample was taken to extract proteins and measure eIF2α phos-

phorylation by immunoblotting (B, D). “log” refers to a sample of exponentially growing cells.

On the graphs showing translation rates median fluorescence intensity from 10 000 fission

yeast cells and standard deviations are shown. α-tubulin levels are shown to check even load-

ing. E GCN2 was immunoprecipitated from from UV-irradiated “UV” and unirradiated con-

trol “C” cells, and incubated with extracts prepared from unirradiated gcn2Δ cells in kinase

buffer. eIF2α phosphorylation was measured by immunoblotting. α-tubulin levels are shown

to demonstrate that equal amounts of extracts from unirradiated gcn2Δ cells were used as sub-

strate in the kinase assays.

Mutating the tRNA-binding sites of Gcn2 abolishes activation in

response to UVC irradiation

Gcn2p contains a C-terminal domain related to histidyl-tRNA synthetases (HisRS) [29]. This

domain includes residues related to the conserved motif 2 sequences that interact with the

acceptor stem of the cognate tRNA in authentic class II synthetases [30]. The HisRS-like

domain can bind uncharged tRNA in vitro, and mutations in the motif 2 sequence impair

tRNA binding and abolish GCN2 activity in budding yeast [31]. The Y1119L R1120L motif 2

mutations rendering GCN2 inactive in budding yeast correspond to F1066A R1067L in fission

yeast (Fig 2A). We introduced these two mutations in the genome of fission yeast cells and

investigated whether Gcn2 can be activated by starvation. Leucine-auxotroph wild-type,

gcn2Δ, and gcn2-FARL cells were starved for leucine and samples were collected at different

timepoints. Phosphorylation of eIF2α was measured by immunoblotting. As expected, eIF2α
was not phosphorylated after leucine starvation (Fig 2B, “-L”). eIF2 levels were not affected by

either starvation or UVC irradiation in any of the strains (S2 Fig). To test whether the muta-

tions affect Gcn2 activation after UV irradiation, we irradiated the mutant strains with UVC

Fig 2. Mutating the tRNA-binding sites of Gcn2 abolishes activation in response to UVC irradiation. A Alignment of the HisRS-like

domain of budding yeast and fission yeast Gcn2. B The indicated strains were irradiated with 1100 J/m2 and samples were taken at the

indicated times after irradiation. eIF2α phosphorylation was detected by immunoblotting, α-tubulin levels are shown to check even loading.

https://doi.org/10.1371/journal.pone.0182143.g002
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and monitored eIF2α phosphorylation. No induction of eFI2α phosphorylation was observed

(Fig 2B, UV), suggesting that the ability of the HisRS domain to bind tRNAs is required for

Gcn2 activation also after UV irradiation.

Gcn1 is required for Gcn2 activation upon amino acid starvation in

fission yeast

In budding yeast, two proteins have been shown to be involved in GCN2 activation after

amino acid starvation, GCN1 and its cofactor GCN20. Both proteins are required to recruit

GCN2 to the translating ribosome and transfer uncharged tRNAs to the HisRS domain of

GCN2 [15,16,19]. To investigate whether Gcn1 is required for Gcn2 activation also in fission

yeast, we deleted the putative GCN1 homologue and investigated whether Gcn2 can be acti-

vated in gcn1Δ cells. Leucine was withdrawn from the medium of leucine-auxotroph wild-

type, gcn2Δ, and gcn1Δ cells and samples were collected at different timepoints. Phosphoryla-

tion of eIF2α was measured by immunoblotting. In wild-type cells, phosphorylation of eIF2α
occurred at 30 min after the withdrawal of leucine and persisted for at least one hour (Fig 3A).

In a gcn2Δmutant, eIF2α phosphorylation did not occur, showing that Gcn2 is the sole kinase

responsible for the phosphorylation response after leucine starvation. In the leucine-auxotroph

gcn1Δ strain the starvation-induced eIF2α phosphorylation was abolished (Fig 3A), demon-

strating that the role of Gcn1 in the activation of Gcn2 after amino-acid starvation is conserved

between budding and fission yeast.

Gcn1 is required for Gcn2 activation after UV irradiation

If the binding of uncharged tRNAs is involved in activation of Gcn2 after other forms of stress

one would expect that Gcn1 was also required. We explored whether Gcn1 is involved in the

UVC-induced activation of Gcn2. Exponentially growing wild-type, gcn2Δ, gcn1Δ cells were

irradiated with UVC light and samples were collected at the indicated timepoints after irradia-

tion. UVC-irradiation-induced phosphorylation of eIF2α was clearly observed in wild-type

cells and was abolished in the absence of Gcn2 (Fig 3B) consistent with previous results [23].

In the absence of Gcn1 phosphorylation of eIF2α was abolished (Fig 3B, S2 Fig), demonstrat-

ing that Gcn1 is required for the UVC-induced activation of Gcn2.

UVC-irradiation in G1 phase delays the formation of the pre-Replicative Complex (preRC)

in a Gcn2-dependent manner [23] and thus delays entry into S phase. The G1 delay correlates

with and possibly is caused by the phosphorylation of eIF2α [32,33]. To investigate whether

Gcn1 is required for the UVC-induced G1 delay, gcn1Δ cells carrying a GFP-tagged Mcm2

were arrested in G1 using a cdc10 temperature-sensitive mutation, released from the block and

irradiated with UVC. Samples were taken at the indicated timepoints and the loading of the

MCM complex was assessed using an in situ chromatin binding assay [23,24]. The preRC-

loading delay was abolished in the irradiated gcn1Δ cells (Fig 3C), as previously described for

gcn2Δ cells [23], suggesting that Gcn1 is required both for the cell-cycle delay and for Gcn2

activation after UVC-irradiation.

Supplementing the medium with all amino acids does not prevent Gcn2

activation after UVC irradiation

The above data suggest that tRNA binding is necessary for GCN2 activation also after UVC

irradiation. One plausible mechanism for the accumulation of uncharged tRNA-s is depletion

of one (or a few) specific amino-acyl- tRNA due to, for example, a chemical modification or

conversion. To test whether such a mechanism might be responsible for the activation of
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Fig 3. Gcn1 is required for Gcn2 activation after UVC irradiation. A The indicated strains were starved for leucine as described in

Materials and Methods. eIF2α phosphorylation was detected by immunoblotting, α-tubulin levels are shown to check even loading. B eIF2α
phosphorylation after UVC-irradiation in wild-type, gcn2Δ and gcn1Δ cells. Exponentially growing cells of the indicated strains were irradiated

as described in Materials and methods and [23]. eIF2α phosphorylation was detected by immunoblotting, α-tubulin levels are shown to check

even loading. C preRC loading in gcn1Δ cells. Cells carrying a cdc10-M17 mutation and GFP-tagged Mcm2 were grown in EMM medium,

arrested in G1 by shifting them to 36˚C for 4 h, released from the G1 block and irradiated with 1100 J/m2 UVC. The percentage of cells

containing chromatin-bound Mcm2:GFP was determined. The delay was calculated as the time difference between irradiated and

unirradiated cells at reaching 70% of maximal preRC loading. D Prototroph wild-type cells were grown to mid-log phase in EMM medium.

Supplements were added to 80 mg/l for 30 min before UV irradiation. Samples were taken immediately after irradiation. eIF2α
phosphorylation was detected by immunoblotting, α-tubulin levels are shown to check even loading.

https://doi.org/10.1371/journal.pone.0182143.g003
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Gcn2, we supplemented the medium with all amino acids as well as adenine and uracil prior to

UV irradiation. A prototroph strain was grown in EMM medium and supplements were

added 30 min before irradiation. We used concentrations of supplements that were sufficient

to allow growth of auxotrophic mutants. The cells were irradiated with UVC and samples were

taken for immunoblotting immediately after irradiation. Providing supplements in excess in

the medium did not prevent or reduce eIF2α phosphorylation (Fig 3D). These results argue

against a model that Gcn2 activation after UVC irradiation is due to a specific amino-acyl-

tRNA being depleted.

Gcn1 is required for Gcn2 activation after H2O2- treatment

Oxidative stress has also been shown to activate Gcn2 [32,34] and again, it is not obvious how

this treatment should lead to an accumulation of uncharged tRNAs. To investigate whether

Gcn1 is required for the H2O2-induced activation of Gcn2, wild-type, gcn2Δ and gcn1Δ cells

were grown in minimal medium, H2O2 was added to the concentrations shown and samples

were collected 15 minutes after the addition of H2O2. In agreement with previous reports,

phosphorylation of eIF2α was observed in response to H2O2 in wild-type cells. It should be

noted that prolonged oxidative stress or high concentration of H2O2 activates another eIF2α
kinase, Hri2, but the initial eIF2α phosphorylation is due to Gcn2 [34 and our unpublished

results]. To study the requirement for Gcn1, we used conditions where eIF2α phosphorylation

was clearly dependent on Gcn2 (Fig 4). To ensure that the cells of the different strains were

exposed to the same level of oxidative stress, both the concentration of H2O2 and cell density

were carefully controlled. Interestingly, eIF2α phosphorylation was abolished in the absence of

Gcn1. Gcn2 protein levels were not reduced in the gcn1Δmutant (S3 Fig), thus these results

suggest that Gcn1 is required for Gcn2 activation also in response to oxidative stress (Fig 4).

Discussion

The Gcn2 kinase and its regulation attract more and more attention in the field as its role in

human diseases such as cancer and neurodegenerative diseases is revealed. Here we investigate

mechanisms that activate Gcn2 in response to different stresses.

The molecular mechanism of GCN2 activation was first described in budding yeast after

starvation. Under these circumstances GCN2 activation involves binding of uncharged tRNAs

and requires the cofactor GCN1. Our findings suggest that also after UV irradiation and oxida-

tive stress tRNA binding is required for Gcn2 activation. It should be noted that the motif 2

mutations in Gcn2 affect not only tRNA binding but also intramolecular interactions between

the CTD domain and the HisRS domain, which in turn is required for activation [12]. Thus

Fig 4. Gcn1 is required for Gcn2 activation after H2O2- treatment. eIF2α phosphorylation after H2O2

treatment in wild-type, gcn2Δ and gcn1Δ cells. The indicated strains were grown in EMM medium and treated

with H2O2 at the concentrations shown, for 15 minutes. eIF2α phosphorylation was detected by

immunoblotting, α-tubulin levels are shown to check even loading.

https://doi.org/10.1371/journal.pone.0182143.g004
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the finding that the motif 2 mutations abolish Gcn2 activation does not necessarily imply that

tRNA binding is required. However, the involvement of Gcn1, thought to transfer uncharged

tRNAs to the HisRS domain of GCN2 [15,16,19], strongly suggests that tRNA binding is neces-

sary for Gcn2 activation.

Accumulation of uncharged tRNAs due to starvation is a well-described mechanism that

leads to activation of Gcn2. Under these conditions it is obvious that charged tRNAs are

depleted and uncharged tRNAs accumulate, but it is not clear how and why the level of

charged tRNAs would be reduced in response to stresses like UVC-irradiation or oxidative

stress. In fact, both of these treatments are known to reduce overall translation rates

[23,35,36], making it even less likely that charged tRNAs would be depleted. Furthermore, we

have shown here that ongoing translation is not required for Gcn2 activation after UV irradia-

tion, arguing against a model that tRNA pools are depleted.

However, alternative mechanisms could be activated that would change the balance

between charged and uncharged tRNAs and thus lead to Gcn2 activation. In mammalian cells

after UVB irradiation nitric oxide is synthesized from Arg, leading to Arg depletion and a star-

vation response [37]. There is no obvious homologue to nitric oxide synthase in fission yeast,

and we have shown here that supplementing the medium with all amino acids does not pre-

vent activation of Gcn2 after UVC irradiation. Thus, it is unlikely that depletion of a specific

amino acid is the reason for the UVC-induced activation of Gcn2. The activity of RNA poly-

merase III is inhibited in response to a number of stresses [38–40], thus it is unlikely that

increased transcription of tRNAs would contribute to an increase in uncharged tRNA-s.

Recent discoveries have revealed an unexpected complexity of tRNA biogenesis, as well as the

role of tRNA-modifications and cleavage fragments in signaling pathways [41,42]. It is plausi-

ble that modified tRNAs or even tRNA-derived fragments are responsible for the activation of

Gcn2 after UVC.

Alternatively, additional factors might be required for Gcn2 activation after stresses other

than starvation. Indeed, some studies reported that Gcn2 activity can be regulated by upstream

kinases. In S. cerevisiae a link between the TOR pathway and activation of Gcn2 has been

shown [43]. Treating budding yeast with rapamycin, an inhibitor of the TOR kinases, leads to

removal of an inhibitory phosphorylation on serine 577 of Gcn2, thought to reduce the thresh-

old of uncharged tRNAs required for activation. However, this phosphorylation site is not con-

served in fission yeast or in mammalian cells and even though inhibiting the Tor pathway can

lead to increased Gcn2 activity also in fission yeast [9,44], the crosstalk between the two path-

ways depends on the particular stress applied [9]. In particular, Tor2 does not regulate eIF2α
phosphorylation under a number of conditions, including UVC-irradiation and oxidative

stress in fission yeast. Furthermore, under leucine starvation the phosphorylation of eIF2α is

in fact dependent on maintained TORC1 activity rather than on TORC1 inactivation [9]. Thus

it is unlikely that the Tor pathway is the master regulator of Gcn2 after UVC irradiation and

oxidative stress.

Another study reported that in response to UVB-irradiation of mammalian cells Gcn2 is

activated in a DNA-PK-dependent manner [45]. Thus, Gcn2 activation in human cells might

be linked to DNA damage through the activity of DNA-PK, at least in response to some

stresses.

It was previously reported that Gcn1 is required for Gcn2 activation after different stresses

in mouse embryonic fibroblasts [46]. This conclusion is fully consistent with our results pre-

sented here. It should be noted that our experimental design is very different from that of

Cambiaghi et al; here we have used loss-of function mutants in fission yeast, while they

exploited dominant negative effects of overexpressing either IMPACT, a protein known to

interact with Gcn1 and compete with Gcn2 for Gcn1 binding, or a portion of Gcn1mouse that
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corresponds to the region necessary and sufficient to bind Gcn2 in budding yeast. Collectively,

the two studies suggest that the requirement for tRNA binding and for Gcn1 in Gcn2 activa-

tion is a conserved feature.

In summary, it appears most likely that Gcn2 is activated by a mechanism(s) involving

tRNA binding assisted by Gcn1 in response to stresses other than starvation. However, identi-

fication of the mechanisms that alter the balance between charged and uncharged tRNAs and

the possible involvement of other upstream regulators requires further studies.

Supporting information

S1 Fig. UV irradiation in the presence of cycloheximide induces eIF2α phosphorylation.

Wild-type and gcn2Δ cells were treated with 100 μg/ml cycloheximide for 10 min as indicated

and UV irradiated.

(TIF)

S2 Fig. eIF2α levels are not changed by the treatments. The same samples as shown in (A)

Fig 2B and (B) Fig 3B were analyzed by immunoblotting using an antibody against total eIF2α.

(TIF)
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