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A highly efficient magnetically separable copper nanocatalyst has been developed for
decarboxylative cross-coupling reaction for the alkynylation of haloarenes using alkynoic
acid as a reaction partner. The chemical nature, morphology, size, and magnetic
properties of the prepared nanocatalyst were studied by SEM, TEM, EDS, FT-IR, VSM,
and ICP techniques. Remarkably, this catalyst represents the first successful copper
based heterogeneous system for this type of coupling that provides a low-cost, stable, and
environmentally friendly magnetically recoverable entity that can be re-used for seven
consecutive runs without appreciable loss in its catalytic performance.

Keywords: magnetic, copper, nanocatalyst, decarboxylative cross-coupling, heterogeneous catalyst

1 INTRODUCTION

Transition metal catalyzed cross-coupling reactions for the construction of carbon-carbon (C-C)
bond are amongst the most powerful and efficient strategy for synthesizing essential organic
compounds including bioactive compounds, natural products, and polymeric materials
(Sonogashira, 2002; Tykwinski, 2003; Jutand, 2004). For this, various traditional cross-
coupling reactions have been employed, however, these methods utilize organometallic
compounds that bear Mg, Al, Zn, Sn, B, and Si, which create problem of metal
contamination in the product. On comparison with the well-established cross-coupling
reactions, decarboxylative cross-coupling reaction offers several benefits since it involves
readily available carboxylic acid derivatives that do not encounter storage and handling
difficulties and releases less-toxic carbon dioxide as the by-product that reduces the waste
treatment costs. (Moon et al., 2008a; Moon et al., 2008b; Kim and Lee, 2009; Park et al., 2010;
Zhang et al., 2010; Zhao et al., 2010; Li et al., 2011; Pan et al., 2011; Qu et al., 2011; Li et al.,
2012; Tartaggia et al., 2012; Park and Lee, 2013; Reddy et al., 2013; Lee et al., 2016; Maaliki
et al., 2016).

Due to the wide occurrence of alkyne moiety in natural products, pharmaceuticals, and molecular
materials, enormous efforts have been devoted towards the synthesis of arylalkynes and conjugated
enynes.(Brandsma, 2003; Negishi and Anastasia, 2003; Stang and Tykwinski, 2006; Chinchilla and
Nájera, 2007). Of all, the Sonogashira coupling superseded all the traditional methods for
synthesizing internal alkynes from nucleophilic terminal acetylenes. (Nicolaou et al., 2005;
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Stang, 2008). However, the formation of homo-coupled by-
product and volatile liquid nature of terminal alkynes, are the
major drawbacks which limit their utility in industrial
applications. (Kolarovic et al., 2011). Therefore, the
straightforward synthesis of arylalkynes with some other
readily available substrates remained a practical challenge for
many years. In recent times, decarboxylative cross-coupling of
alkynoic acids with haloarenes emerged as an attractive and
practical solution. (Siemsen et al., 2000; Das et al., 2005; Feng
and Loh, 2010; Jia and Jiao, 2010; Park et al., 2011).

To date, a number of homogeneous catalytic systems using
palladium, copper and nickel catalysts have been developed for
the decarboxylative coupling of alkynoic acids with haloarenes.
(Edwin Raja et al., 2016). However, most of them employ toxic
phosphine ligands, and costly additives that are also air and
moisture sensitive.

Despite tremendous success in the development of this
methodology, till now, only few Pd-based heterogeneous
catalysts have been reported for this reaction. (Pyo et al., 2013;
Reddy et al., 2016). Moreover, these protocols have common
problems associated with the palladium based catalysts, such as
their high cost that limit their industrial applications.
Nonetheless, exploring cost-effective methods to prepare
highly stable, efficient, and recyclable heterogeneous catalysts
still remain a challenging task in this field.

Therefore, employment of an economic and greener first row
transition metal heterogenized catalyst is highly desirable. In this
respect, copper-catalyzed systems have gained tremendous
progress due to their economic attractiveness and good
functional group tolerance (Ley and Thomas, 2003; Evano
et al., 2008; Monnier and Taillefer, 2009). However, copper
mediated synthesis of internal alkynes via decarboxylative
coupling reaction is still less explored (Shang et al., 2009).

In line with current challenges arising from the demands of
industrial and fine chemistry, an ideal catalyst should not only
possess high activity and selectivity towards the targeted products
but should be stable, environmental friendly, recyclable, andmust
be easy to recover from the reaction mixture. In view of these
requirements, silica coated magnetic nanoparticles (SMNPs)
appear to be an ideal solution as solid supports due to their

chemical inertness, robustness, easy magnetic recovery,
recyclability, and environmentally benign nature (Rossi et al.,
2014; Wang and Astruc, 2014; Sharma et al., 2016b).

Thus, in continuation of our ongoing research work on the
development of nanocatalysts, and their applications in various
organic transformations, (Sharma et al., 2015a; Sharma et al.,
2015b; Sharma et al., 2016a; Sharma et al., 2016c; Arora et al.,
2017; Gupta et al., 2017; Sharma et al., 2018), we herein describe
the fabrication of a novel copper nanocatalyst with modified silica
magnetic core-shell support for efficiently catalyzing
decarboxylative coupling of alkynoic acid with haloarenes.

2 MATERIALS AND METHODS

3-aminopropyltriethoxysilane (APTES), tetraethoxyorthosilicate
(TEOS), and 4, 5-diazafluoren-9-one were procured from Sigma
Aldrich. Ferric sulphate hydrate and ferrous sulphate
heptahydrate were obtained from Sisco Research Laboratory
(SRL). copper(I) iodide, Cs2CO3, and toluene were purchased
from Merck.

The prepared nanocatalyst was characterized using several
techniques. X-ray diffraction (XRD) patterns were obtained from
a D8 Discover Bruker AXS (Karlsruhe, Bundesland, Germany)
diffractometer in the 2θ range of 10–80. For uniformity and
morphology HR-TEM, FEI TECNAIF 30 transmission electron
microscope with HAADF detector was used and operated at
300 kV. In order to study the chemical composition of the
catalyst, X-ray energy dispersive spectroscopy (EDS) was
carried out using Ametek EDAX system. Carl Zeiss India
scanning electron microscope was used to investigate for
analyzing the structural properties of prepared
nanocomposites. EV-9, Microsense, ADE vibrating sample
magnetometer was used to conduct magnetization
measurements. The Fourier transform infrared spectra (FT-IR)
of NPs were collected at every stage of synthesis using Perkin-
Elmer Spectrum 2000. For the estimation of amount of copper in
the catalyst and in the supernatant inductively coupled plasma
(ICP) of PerkinElmer Optima 2100 DV was used. The products
were confirmed by making use of Agilent gas chromatography-

GRAPHICAL ABSTRACT | Magnetic Silica core-shell copper nanocatalyst in the decarboxylative coupling for the synthesis of alkynes.
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mass spectrometer with a HP-5MS 5% phenyl methyl siloxane
capillary column (30.0 m × 0.25 mm × 0.25 μm) using helium as a
carrier gas.

2.1 Synthesis of Cu-DF@ASMNPs
Firstly, MNPs were synthesized by co-precipitation technique.
(Polshettiwar and Varma, 2009). For this, ferric sulphate (6.0 g)
and ferrous sulphate (4.2 g) were dissolved in 250 ml distilled water
and stirred at 60 C. To the obtained orange solution, 25% of
NH4OH (15 ml) was added dropwise and the solution was
stirred vigorously for 30 min. The obtained black precipitates of
MNPs were separated with external magnet and thoroughly
washed with water and ethanol and finally dried under vacuum.

On to this, silica coating was performed via sol-gel approach to
form SMNPs, (Zhang et al., 2011), which was further
functionalized with the NH2 linker, APTES. For silica coating,
0.5 g of MNPs were dissolved in 2.2 ml of 0.1 MHCl and dispersed
in 200 ml ethanol and 50ml water under sonication. Further, 5 ml
NH4OH was added followed by addition of 1 ml of TEOS under
constant stirring at 60 C for 6 h to give SMNPs. These SMNPswere
washed with ethanol and water. The functionalization with NH2

linker was performed by adding 0.5 ml of APTES to the dispersed
solution of 0.1 g of SMNPs in 100 ml of ethanol under constant
stirring at 50 C for 6 h. 1 g of resulting APTES functionalized
SMNPs (ASMNPs) were further reacted with a 0.75 mmol of
bidentate ligand, 4, 5-diazafluoren-9-one (DF) in acetone at

SCHEME 1 | Scheme for the fabricating Cu-DF@ASMNPs core-shell nano-catalyst.

FIGURE 1 | FT-IR spectra of (A) MNPs, (B) SMNPs, (C) ASMNPs, (D)
DF@ASMNPs, and (E) Cu-DF@ASMNPs.

FIGURE 2 | XRD patterns of (A) MNPs and (B) SMNPs.
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70°C for 3 h. The resulting DF@ASMNPs were washed with
ethanol and dried under vacuum. To 1 g of DF@ASMNPs,
1.5 mmol of copper iodide was added and the solution was
stirred for 3 h using acetone as solvent. The resulting
nanocatalyst was magnetically recovered and thoroughly washed
with deionized water and dried under vacuum to obtain the final
catalyst Cu-DF@ASMNPs. (Scheme 1).

2.2 Cu-DF@ASMNPs Catalyzed Internal
Alkynes Synthesis
For this, 10 ml of round bottom flask was flushed with nitrogen
and to this, haloarene (0.5 mmol), alkynoic acid (0.6 mmol), Cu-
DF@ASMNPs (25 mg), and Cs2CO3 (1.0 mmol) were added.
Again, nitrogen was flushed, and toluene (2 ml) was added at
room temperature. The temperature was raised to 100°C with
continuous stirring for 12 h. On bringing to room temperature,
the mixture was extracted with ethyl acetate. The reaction was
monitored and analyzed by GC-MS.

3 RESULTS AND DISCUSSION

3.1 Characterization of Catalyst
3.1.1 FT-IR Spectroscopy
In order to analyze parent nanocomposite and its further
functionalization, FT-IR spectroscopy was employed. A band
was observed at 585 cm−1 in the IR-spectrum of MNPs depicting
the Fe-O stretching absorption (Figure 1A). (Zhu et al., 2011)
The intensity of this band reduced on silica-coating with the
appearance of three new sharp bands in the region of 806, 957
and 1,099 cm−1, corresponding to the symmetric Si-O-Si,

symmetric Si-O(H) and asymmetric Si-O-Si stretching
vibrations respectively (Figure 1B) (Kooti and Afshari, 2012)
Further functionalization of SMNPs with APTES resulted in
absorption at 2,924 cm−1 and 1,644 cm−1, which corresponds to
CH2 and NH2 from aminopropyl moiety of APTES (Figure 1C)
(Yamaura et al., 2004) The immobilization of ligand DF onto
ASMNPs was confirmed by the band at 1,662 cm−1 accredited to
C�N stretching frequency (Figure 1D) and to this, metal was
immobilized using CuI which shifted the prominent band at
1,662 cm−1 to a lower wavenumber indicating strong metal-
ligand interaction (Figure 1E). (Masteri-Farahani and Tayyebi,
2011; Esmaeilpour et al., 2012).

3.1.2 XRD Studies
To assess the crystalline nature of synthesized MNPs and SMNPs,
powder X-Ray diffraction measurements were carried out. For
MNPs (Figure 2A), six characteristic peaks were observed at 2θ:
30.366o, 35.663o, 43.024o, 53.6o, 57.299o, and 62.865o

corresponding to the (220), (311), (400), (422), (511) and
(440) crystallographic faces of magnetite (Abu-Reziq and
Alper, 2012). These peaks were in accordance with the
standard XRD data provided by the Joint Committee on
Powder Diffraction Standards (JCPDS) card number 19–0,629
and is ascribed to inverse cubic spinel Fe3O4 crystal (Abu-Reziq
et al., 2006). The average crystallite size of the MNPs was
calculated by the Scherrer equation {Dhkl � Kλ/(/(βhklcosθ)},
where Dhkl represents the size of the axis parallel to the (hkl)
plane, k is a constant with a common value of 0.89 for spherical
particles, λ is the wavelength of radiation, βhkl is the full-width at
half-maximum (FWHM) in radians, and θ is the diffraction
angle. The mean crystallite size was found to be ∼10.6 nm for
the (311) reflection. Besides these six diffraction peaks, a weak

FIGURE 3 | SEM images of (A) MNPs, (B) SMNPs, (C) Fresh Cu-DF@ASMNPs and (D) Recovered Cu-DF@ASMNPs.
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FIGURE 4 | TEM images of the nanoparticles obtained at different stages of synthesis: (A) MNPs, (B) SAED pattern of MNPs, (C) HR-TEM image of MNPs, (D)
SMNPs, (E) Fresh Cu-DF@ASMNPs, and (F) Recovered Cu-DF@ASMNPs.

FIGURE 5 | EDS pattern of Cu-DF@ASMNPs.
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broad hump at 2θ � 20–24o is observed in the XRD pattern of
SMNPs showed in Figure 2B, which is attributed to amorphous
silica (Zhang et al., 2012).

3.1.3 SEM Analysis
To investigate the topography of the synthesized nanoparticles,
scanning electron microscopic (SEM) analysis was performed
and it was found that the smooth surface of MNP (Figure 3A)
turns spongy on silica coating (Figure 3B). The spherical
morphology of the final Cu-DF@ASMNPs catalyst was seen
with slight agglomeration and appears the same as that of

SMNP (Figure 3C). This suggested that the surface
modification methods did not alter the morphology of the
nanocatalyst. Besides this, the SEM image of the recovered
catalyst (Figure 3D) also indicates that the reaction did not
affect the morphology of the catalyst.

3.1.4 TEM Analysis
TEM studies were performed to study themorphological changes of
the synthesized nanomaterials, Figure 4A depicts that MNPs are
polydisperse in nature and display slight agglomeration (Wang
et al., 2010; Wang et al., 2013). An array of bright diffraction rings
was observed in the selected area electron diffraction pattern
(SAED) (Figure 4B) which confirmed the crystalline nature of
these nanocomposites and also in accordance with the resultant
XRD pattern. The average interplanar distance of the MNPs was
measured from a high-resolution transmission electron microscopy
(HR-TEM) image and was found to be ∼0.20 nm, which correlates
with the (311) plane of inverse spinel Fe3O4 structure (Figure 4C).
A dark core-shell of MNP, with an almost uniform silica coat of
4–5 nm thickness, was observed in the TEM image of SMNP
(Figure 4D). TEM images of final catalyst and recovered catalyst
are shown in Figure 4E and Figure 4F respectively, which further
confirm that the structural morphology remain unchanged after the
coupling reaction. In order to find the average particle size ofMNPs,
52 colloidal aggregates were analyzed and it was found to be in the
range of 10–11 nm (Supplementary Figure S1) which is in well
accordance with the XRD results.

3.1.5 EDS Analysis and Metal Content Determination
Energy dispersive X-ray analysis was performed to detect the
composition of the synthesized nanocomposites, and the EDS

FIGURE 6 | Magnetization curves for (A) MNPs, (B) SMNPs, (C)
ASMNPs, (D) Cu-DF@ASMNPs and (E) inset: enlarged image near the
coercive field.

FIGURE 7 | Effect of base and solvent on synthesis of internal alkynes [Reaction conditions: iodobenzene (0.5 mmol), phenylpropiolic acid (0.6 mmol), Cu-DF@
ASMNPs (25 mg), base (1.0 mmol), solvent (2 ml), 100°C, 12 h, under N2].
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TABLE 1 | Scope of catalytic performance of the Cu-DF@ASMNP for synthesizing internal alkynesa.

Entry Haloarenes Product Yieldb (%) TONc

1

3a

92 115

2

3b

90 113

3d

3c

88/82e 110

4

3d

94/90e 118

5

3e

95 119

6

3f

89/85e 111

7

3a

84 105

8

3b

86 108

9

3c

80 100

(Continued on following page)
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spectrum displayed well-defined peaks of copper, silicon and iron
(Figure 5) that substantiate the effective grafting of copper on the
Cu-DF@ASMNPs. Moreover, to determine the amount of copper
present in the final catalyst, ICP analysis was conducted and the
metal loading was found to be 0.3217 mmolg−1.

3.1.6 VSM Analysis
The field-dependent magnetization measurement of synthesized
nanocomposites is provided in Figure 6. The superparamagnetic
behaviour of these nanoparticles was confirmed by their
magnetization curves which display no hysteresis at room
temperature. This was further corroborated by the inset in
Figure 6 where both coercivity and remanence were negligible
in the absence of an externally applied magnetic field. The
saturation magnetization value of MNPs, SMNPs, ASMNPs,
and Cu-DF@ASMNPs were found to be 59 emu g−1,
40 emu g−1, 29 emu g−1, and 19 emu g−1 respectively. This
decrease in the Ms value is due to the non-magnetic nature of
the functionalizing groups. (Hu et al., 2005; Digigow et al., 2014).
Despite of lower value of magnetization, the net magnetism of
Cu-DF@ASMNPs was high enough for its effortless removal via
an external magnet.

3.2 Catalytic Studies
3.2.1 Optimization of the Reaction Conditions
In order to test the efficacy of the prepared nano-catalyst, Cu-
DF@ASMNPs and to discover the optimal reaction conditions,
phenylpropiolic acid (0.6 mmol) and iodobenzene (0.5 mmol)
were selected as the coupling partners. For the optimization of
decarboxylative cross-coupling reaction, reaction parameters like
solvent, base and catalytic amount were assessed. Figure 7
represent several combinations of base and solvent, and out of
them highest yield was obtained when the base was Cs2CO3

(1 mmol), and toluene (2 ml) was the solvent. For the
determination of the optimal catalytic amount, a blank test
was carried out, where no significant yield was obtained.
Although, the reaction gave product with 10 mg of catalyst
and on increasing the amount of catalyst, significant increase
in yield of the product was noticed. However, no noticeable
increase in the product yield was found when 30 mg of
catalyst was used and the best yield was achieved with
25 mg of catalyst (Supplementary Table S1). Also, the
reaction was performed under diverse range of
temperatures while keeping other parameters constant and
100 C was found to be the optimum temperature to carry out
the coupling with 25 mg of synthesized catalyst
(Supplementary Figure S2). Therefore, all the reactions
were performed using toluene as the reaction solvent,
Cs2CO3 as the base for 12 h at 100 C in the presence of
25 mg of Cu-DF@ASMNPs under N2 atmosphere.

3.2.2 Catalytic Activity of Cu-DF@ASMNPsCatalyst for
Decarboxylative Cross-Coupling of Alkynoic Acids
With Haloarenes
To demonstrate the efficiency of this method, various
haloarenes including iodo and bromo derivatives were
coupled with phenylpropiolic acid using the optimized
reaction conditions (Table 1). To check the scope of this
reaction, we initially examined a variety of iodoarenes
possessing both activating and deactivating groups
including methoxy, methyl, naphthyl, nitro, and chloro. It
was observed that the reaction went smoothly for both
electron donating and withdrawing groups on the

FIGURE 8 | Catalyst recycling test for the synthesis of internal alkynes.

TABLE 1 | (Continued) Scope of catalytic performance of the Cu-DF@ASMNP for synthesizing internal alkynesa.

Entry Haloarenes Product Yieldb (%) TONc

10

3e

88/80e 110

11

3g

68 85

aReaction conditions: Haloarene (0.5 mmol), alkynoic acid (0.6 mmol), Cu-DF@ASMNP (25 mg), Cs2CO3 (1.0 mmol), toluene (2 ml), 100°C, 12 h, under N2.
bGC-MS, yield.
cTON , Calculated using the 0.3217 mmolg−1, copper.
eIsolated yield.
dReaction was performed on large scale; Haloarene (5 mmol), alkynoic acid (6 mmol), Cu-DF@ASMNP (0.25 g), Cs2CO3 (10.0 mmol), toluene (10 ml), 100°C, 12 h, under N2.
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FIGURE 9 | Proposed reaction mechanism.

TABLE 2 | A comparison of the obtained results with previous published work for the synthesis of internal alkynes.

S.No Acid Coupling partner Catalyst Conditions Yield
(%)

Ref

1 Pd2dba3 (5 mol%) dppf (10 mol%), TBAF (6.0 equiv), NMP,
90°C, 1 h

88 Moon et al.
(2008b)

2 Pd2dba3 (2 mol%) PPh3 (16 mol%), Ag2O (1–3 equiv), LiI (3–6
equiv), DMF

64 Kim and Lee,
(2009)

3 Pd (OAc)2 XPhos, Cs2CO3, THF, 80°C 70–95 Zhang et al.
(2010)

4 Palladacycle (1 mol%) Xphos (4 mol%), K2CO3 (2 equiv), xylene/
H2O 120°C, 3 h

94 Li et al. (2013)

5 Pd (PPh3)2Cl2 (1 mol%) 2 mol% of dppb, DMSO, 110°C, 2 h 96 Moon et al.
(2008a)

6 [PdCl (allyl)]2 (2.5 mol%) SPhos (7.5 mol%), TBAF (3.0 equiv), NMP/
H2O, 80°C, 14 h

84 Tartaggia et al.
(2012)

(Continued on following page)
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iodoarene and excellent yields were obtained for various
internal alkynes. For p-iodotoluene and p-iodoanisole the
yield was similar, 90 and 88% respectively (entries 2 and 3).
However, slight increase in yield was obtained when
haloarene bearing electron withdrawing substituent was
employed (entry 5).

To gauge the efficacy of reaction, more practical coupling
partner aryl bromides were used. To our delight they also worked
very well for this coupling reaction and both electron
withdrawing as well as electron donating aryl bromides were
efficiently converted into corresponding internal alkynes in
excellent yields. To further assess the potential of the catalyst,

an aliphatic alkynoic acid, 2-butynoic acid (entry 11) was tested
for this reaction but this afforded slightly lower yield. Isolated
yields were obtained for few selected reactions consisting of
haloarene bearing electron donating group (entry 3), neutral
group (entry 4), a halogen substituent (entry 6) to check for
any kind of interference, and electron withdrawing group
(entry 10).

3.2.3 Catalytic Stability and Reusability
To test the reusability of catalyst, after each experiment
(conducted under optimized conditions), the catalyst was
magnetically separated, washed with ethyl acetate and ethanol

TABLE 2 | (Continued) A comparison of the obtained results with previous published work for the synthesis of internal alkynes.

S.No Acid Coupling partner Catalyst Conditions Yield
(%)

Ref

7 CuI (10 mol%) 1,10-Phen (10 mol%), Cs2CO3 (1.5 equiv),
DMF, 130°C, 24 h

99 Zhao et al. (2010)

8 CuI (2 mol%) PPh3 (4 mol%), K2CO3 (3 equiv), DMSO/
H2O 100°C, 24 h, under argon

97 Li et al. (2012)

9 CuI (0.5 mol%)/Fe
(acac)3) (1 equiv)

K3PO4 (2 equiv), DMSO (2 ml), 140°C,
24–48 h, under argon

98 Li et al. (2011)

10 CuSO4·5H2O (10 mol%) L (10 mol%), K2CO3(2 equiv), DMF, 130°C 90 Wang et al.
(2016)

11 Ni (acac)2 (10 mol%) 1,10-Phen (10 mol%), CsF(1 equiv), CuF2(1
Equiv)

90 Edwin Raja et al.
(2016)

12a Pd-CNT (5 mol%) DBU (2 equiv.), DMSO, 90°C, 12 h 95 Pyo et al. (2013)

13a Pd@PS (3 mol%) DBU (3 equiv), DMF, 110°C, 12 h 66 Reddy et al.
(2016)

14a Cu-DF@ ASMNP Cs2CO3, toluene, 100°C, 12 h 92 This work

aHeterogeneous catalyst.
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and dried under vacuum. This was then used to perform
subsequent reactions. It was observed that the catalyst was
active up to seven runs without any notable decrease in its
performance (Figure 8). SEM and TEM images further
confirmed the unaltered structure and morphology of the
recovered catalyst (Figure 3D and Figure 4F).

3.2.4 Heterogeneity Test
In order to estimate the leaching rate and heterogeneous
nature of the catalyst, two sets of corresponding experiments
were conducted. A standard reaction was conducted for the
first set where the catalyst was magnetically removed after
completion of reaction, and filtrate was analyzed under ICP,
which showed no leaching. A split test was performed with
the second set, in which the standard reaction was
conducted with catalyst for 2 hours, which roughly
corresponds to 20% conversion by GC-MS. Afterwards, the
nanocatalyst was magentically separated from the reaction
mixture and the reaction was further pursued. No coupling
product in the reaction mixture was observed up to 10 hours
under the same reaction conditions, which authenticate the
truly heterogeneous nature of the nanocatalyst.

3.2.5 Plausible Mechanism
Figure 9 depicts the proposed mechanism that has been derived
from earlier reports. (Okuro et al., 1993; Ray et al., 2008; Gonda
et al., 2010; Lauterbach et al., 2010). The reaction between Cu-
DF@ASMNPs A and alkynoic acid produces intermediate B,
which undergoes decarboxylation to yield C, an alkynyl copper
intermediate. Further addition of haloarene results in the
formation of another intermediate D, which then undergoes
reductive elimination, to give the product while regenerating
the catalyst A.

Finally, in order to show the superiority of the synthesized
catalyst, we compared our obtained results with the previously
reported work (Table 2) and found that our catalyst was far more
efficient in terms of reaction conditions, reaction time and
catalytic recovery. Also, it is the first copper based
heterogeneous system for synthesis of internal alkynes.

In summary, a highly effective palladium-free Cu-DF@
ASMNPs nanocatalyst was fabricated successfully and applied

towards the synthesis of internal alkynes via decarboxylative
cross-coupling reaction. These nanocomposites endowed low
metal loading, high stability, and good functional group
tolerance with excellent yields and high turn-over numbers. It
is noteworthy that this catalytic system is the first report of copper
based magnetic nanocatalyst that represents a practical and low-
cost route to prepare internal alkynes. In addition, the effortless
magnetic recovery and reusability of the catalyst for at least seven
runs without any marked loss in its performance makes it an
efficient protocol to produce a wide variety of unsymmetrical
alkynes.
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