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Abstract: Wild rabbits (Oryctolagus cuniculus) can be important sentinel species for the presence of
zoonotic pathogens. Therefore, we collected blood samples from wild rabbits harvested by hunters
during the hunting season 2019–2020 on the island of Lemnos, to determine exposure of wild rabbits
to the zoonotic pathogens Leishmania infantum, Toxoplasma gondii, Anaplasma phagocytophilum and
Babesia caballi, as well as aqueous humor to assess its diagnostic performance in terms of sensitivity,
specificity, positive and negative likelihood ratios. Antibodies against these pathogens were detected
by Indirect Immunofluorescence Antibody (IFA) assay. Out of the 72 wild rabbits included in the
study, 4.2%, 5.5%, 18% and 9.7% were seropositive to L. infantum, T. gondii, A. phagocytophilum
and B. caballi, respectively. Although less frequently, antibodies were also detected in aqueous
humor of wild rabbits. The antibody detection in aqueous humor presented 100% specificity but
decreased sensitivity compared to serum suggesting that aqueous humor could be successfully used
in epidemiological studies to confirm exposure at the population level but has little diagnostic value
at the individual level. This is the first report on the seropositivity of wild rabbits to A. phagocytophilum
and B. caballi and the detection of antibodies against A. phagocytopylum, L. infantum, T. gondii and
B. caballi in the aqueous humor.

Keywords: aqueous humor; A. phagocytophilum; B. caballi; L. infantum; T. gondii; antibodies; Indirect
Immunofluorescence Antibody Assay; serology; wild rabbits

1. Introduction

Oryctolagus cuniculus is one of the most widespread lagomorph species occupying a
huge variety of ecosystems. Their intermediate size and great abundance allows them to
support a community of small to medium-sized predators such as foxes, cats and civets
with which they share the same habitats. This species occurs in both wild and domestic
forms. Its domestic counterpart is raised globally for meat, wool and fur, and it is also an
increasingly popular pet [1]. Besides, they are considered to be a useful sentinel species
for the level of environmental contamination and the circulation of pathogens in their
habitat [2,3].

Leishmaniosis caused by the protozoan Leishmania infantum is a severe vector-borne
zoonotic disease that is endemic in the Mediterranean basin [4]. Transmission occurs via
the bite of female sand flies of the subfamily Phlebotominae. L. infantum is the causative
agent of zoonotic visceral (VL) and cutaneous leishmaniosis (CL) in humans, and of canine
leishmaniosis in dogs, the main reservoir host of the parasite [5]. The existence of a
sylvatic L. infantum transmission cycle in wildlife that overlaps with the domestic cycle
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maintained by dogs has been well documented as one of the main factors limiting disease
control [6,7]. The outbreak of human leishmaniosis in southern Madrid involving Iberian
hares (Lepus granatensis) and wild rabbits (O. cuniculus) [7,8] as well as the following studies
in Lepus europaeus in different European countries including Greece [9–11] showed how
anthropogenic interventions in ecosystems that lead to high density of some wild species,
and increased contact with domestic animals and humans, could dramatically affect the
epidemiology of a disease [12,13]. Importantly, rabbit infectiousness to P. perniciosus sand
flies has been demonstrated by xenodiagnosis suggesting the competence of this species as
a host reservoir [8].

Toxoplasma gondii, a protozoan parasite with global distribution, can infect virtually
every warm-blooded animal, including humans and livestock which act as intermediate
hosts. Domestic and wild felids are the definitive hosts, being able to excrete oocysts to
the environment. Humans commonly get infected through consumption of undercooked
or raw meat containing tissue cysts [14]. However, ingestion of oocysts directly from the
environment, indirectly via contaminated food or drinking water or while field dressing
game by hunters, can also lead to infection [14,15]. As for the lagomorphs, they are
mainly infected with T. gondii via the ingestion of water and plants contaminated with
oocysts excreted by felids with which they share the same habitats [16]. Thereafter, infected
lagomorphs can act as a potential source of T. gondii for other animals, especially for their
predators, but also for humans [16,17].

Concerning the Anaplasma species, obligate rickettsial pathogens, that are mainly trans-
mitted by different species of hard ticks and proliferate inside red blood cells, cause clinical
and subclinical infections in a variety of vertebrate hosts. To the authors’ knowledge, there
are no data available in the literature on the Anaplasma spp infection/exposure status of O.
cuniculi. However, there is increasing evidence of A. phagocytophilum infection/exposure in
several wild rabbit species including Le. europaeus in Italy [18], cottontail rabbits (Sylvilagus
floridanus) in Massachusetts [19,20], Lepus sinensis in China [21] and riparian brush rabbits
(Sylvilagus bachmani riparius) in California [22].

Babesiosis is a vector-borne disease caused by erythrocytic protozoal parasites of the
genus Babesia. These piroplasms are of medical and veterinary importance worldwide and
can cause severe disease in humans, domestic animals and wildlife [23,24]. Transmission
of Babesia spp. mainly occurs through the bite of infected ixodid ticks [25]. In Europe, B.
divergens remains the most frequent cause of human babesiosis, while in North America, B.
microti is the most reported species associated with human disease. Other zoonotic species
that have been reported are B. duncani and B. venatorum [26,27]. B. caballi is the aetiological
agent of equine piroplasmosis, a tick-borne disease, which is characterized by persistent
infection and carriers act as sources of infection for ticks [28,29].

Blood sampling can be challenging in the context of seroepidemiological studies in
wild animals [30]. Regarding carcasses, blood collection through right heart puncture
may not be successful due to post mortem blood clotting. In recently deceased animals
whose blood has not yet clot, further handling is needed after blood is drawn. Blood
samples should be centrifuged or left undisturbed for approximately 30 min to encourage
clot formation [31,32]. Besides, it has been suggested that after death, blood rapidly
deteriorates due to post mortem blood clotting, contamination by bacteria, release of
intracellular chemicals and metabolism of serum compounds [32]. Thus, the collection
of samples alternative to blood and serum, like blood on filter papers or aqueous humor,
have been evaluated in terms of their diagnostic accuracy in different animal species and
for several pathogens [30,33–39].

Aqueous humor is an eye-specific sample, easy to obtain, with good stability and
minimally invasive compared to other types of eye specimens [40–42]. Recently, it has
gained attention as an alternative biological sample that could assist in the diagnosis of
several infectious and neoplastic ocular diseases in human and animal medicine. Thus, a
number of studies used serologic, molecular and immunocytochemical assays as well as
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cytologic examination to define the diagnostic efficiency of aqueous humor in dogs, cats
and rabbits [37,43–45].

The diagnostic utility of aqueous humor for the detection of antibodies in rabbits has
been previously investigated only for anti- Toxocara canis and anti- T. gondii IgG following
experimental infection [33,38]. To the authors’ knowledge, there are no data available
coming from field studies in naturally infected rabbits. Moreover, data on the exposure
rate of wild rabbits in Greece to pathogens with zoonotic potential, is limited to one study
concerning L. infantum infection [46]. This is especially important for the wild rabbit
population in the island of Lemnos, northern part of the Aegean Sea, Greece, where since
1995, wild rabbits, due to overpopulation, have significantly disrupted the ecosystem,
causing huge losses and extensive damage to crops. Significant effort has been made
by the state authorities for the management of rabbit population in the island [47–49].
Thus, the objectives of this study were (a) to provide evidence on the occurrence of wild
rabbit exposure to L. infantum, T. gondii, A. phagocytopylum and B. caballi in the island of
Lemnos, northern part of the Aegean Sea, Greece (b) to assess the diagnostic utility of
aqueous humor for the detection and quantification of IgG antibody levels against the
above-mentioned pathogens compared to serum samples in naturally infected wild rabbits.

2. Materials and Methods
2.1. Animals

The samples included in this study were collected from 72 wild rabbits from the
island of Lemnos (Longitude: 25◦11′45.38′ ′ E, Latitude: 39◦56′35.77′ ′ N) which were hunter
harvested during the hunting season 2019–2020 according to the prerequisites of the Greek
Legislation (Hellenic Government Gazette 3137/6-8-2019, issue B) [50]. The island of
Lemnos is located in the northern part of the Aegean Sea covers an area of 477.583 square
kilometers, has Mediterranean climate and strong winds. The authors declare that no
animals were killed for the purpose of this study and that all procedures contributing to
this work met the ethical standards of the relevant national and European regulations on
the care and use of animals (Directive 2010/63/EC).

2.2. Sampling

Paired blood and aqueous humor samples were collected within three hours from
the death of animals. More specifically, blood samples were collected from the heart,
transferred into sterilized containers and an average of 0.3 mL of aqueous humor was col-
lected with gently aspiration from both eyes using a syringe with a 21G needle, which was
inserted horizontally just under the cornea into the anterior chamber. The aqueous humor
and blood samples were transferred to the laboratory. Blood samples were centrifuged at
400× g for 10 min for serum recovery. All samples were stored at −20 ◦C pending analysis.

2.3. Indirect Immunofluorescence Antibody (IFA) Assay

All the serum and aqueous humor samples were tested, by indirect fluorescence
antibody test (IFAT), for the presence of the antibodies against L. infantum, T. gondii, A.
phagocytophilum and B. caballi using different commercial agent specific slides (Fluoleish,
Biovetotest Diagnostic Veterinaire, France, Fuller Laboratories Fullerton, California, USA,
MegaFLUO® ANAPLASMA ph. Horbranz, Austria and Agrolabo, Scarmagno, Italy, for
L. infantum, T. gondii, A. phagocytophilum and B. caballi, respectively). For all IFATs, a
fluorescein isothiocyanate conjugated anti-rabbit IgG (Sigma-Aldrich, St Luis, MO, USA)
was used.

For the detection of antibodies, in both serum and aqueous humor, against L. infantum,
T. gondii and A. phagocytophilum, a dilution of 1:25 was used as cut off value, while the
threshold value for the detection of antibodies against Babesia spp. was 1:50, as previously
reported [22,51–53]. Moreover, a cut off value of 1:10 was used in aqueous humor, for the
detection of antibodies against all the above-mentioned microorganisms. A Nikon Eclipse
E-400 fluorescence microscope was used for the observation (objective × 100).
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2.4. Data Analysis

For the statistical analysis of the data, MedCalc Statistical Software v.14.8.1 (MedCalc
Software bvba, Ostend, Belgium; http://www.medcalc.org; 2014, accessed on 10 November
2021) was used in order to calculate the sensitivity, the specificity, Positive likelihood ratio
(PLR) and Negative likelihood ratio (NLR). PLR values >10 and NLR values <0.1 are
indicative of good test performance [54]. Moreover, the agreement between the results of
the tests performed in the two different biological samples was measured using the Cohen’s
Kappa (κ) value. A value of 0 indicates fair agreement, while a value of 1 indicates a perfect
agreement [55,56]. A value of p ≤ 0.05 was considered significant in all comparisons.

3. Results

Out of the 72 serum samples tested, three (4.2%) were positive against L. infantum,
four (5.5%) against T. gondii, 13 (18%) against A. phagocytophilum and seven (9.7%) against
B. caballi (Figure 1). Employing the same cut off values in aqueous humor examination,
resulted in fewer positive samples; one (1.3%) for the detection of antibodies against L.
infantum and T. gondii, four (5.5%) and two (2.7%) against A. phagocytophilum and B. caballi,
respectively. When the cut off value of 1:10 was selected, equal number of positive samples
was obtained for L. infantum and T. gondii and higher for the other two microorganisms (6
and 3, respectively) (Table 1).
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Figure 1. Image of Indirect Immunofluorescence Antibody (IFA) assay observed by a Nikon Eclipse 
fluorescence microscope (objective × 100). (a) L. infantum positive IgG antibody reaction, serum titer 
1:25; (b) T. gondii positive IgG antibody reaction, serum titer 1:25, (c) A. phagocytophilum positive 
IgG antibody reaction, serum titer 1:25 and (d) B. caballi positive IgG antibody reaction, serum titer 
1:50. 

The results of antibody detection against L. infantum, T. gondii, A. phagocytophilum 
and B. caballi in wild rabbits, in serum and in aqueous humor at individual level using 
different cut-off points are presented in the Supplementary Table S1. 

The agreement between the serum and the aqueous humor samples examination, as 
it is shown by the Cohen’s Kappa (κ) values, was low when the same cut off value was 
used (1:25 or 1:50) for both types of samples. However, in the case of A. phagocytophilum 
and B. caballi, a better agreement was achieved when a cut off value of 1:10 was used for 
the aqueous humor (Table 2). This improvement in κ values was probably evident only 
for these two pathogens due to the higher number of positive samples detected. 

  

Figure 1. Image of Indirect Immunofluorescence Antibody (IFA) assay observed by a Nikon Eclipse
fluorescence microscope (objective × 100). (a) L. infantum positive IgG antibody reaction, serum titer
1:25; (b) T. gondii positive IgG antibody reaction, serum titer 1:25, (c) A. phagocytophilum positive IgG
antibody reaction, serum titer 1:25 and (d) B. caballi positive IgG antibody reaction, serum titer 1:50.
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Table 1. Number and percentage of positive samples for antibodies against L. infantum, T. gondii, A. phagocytophilum and
B. caballi in wild rabbits, in serum and in aqueous humor, with the same cut off value (1:25 or 1:50) and with a lower cut off
value (1:10) in aqueous humor.

Serum Aqueous Humor

Cut Off Value
Positive

Cut Off Value
Positive

N % N %

L. infantum 1:25 3 4.2
1:25 1 1.3
1:10 1 1.3

T. gondii 1:25 4 5.5
1:25 1 1.3
1:10 1 1.3

A. phagocytophilum 1:25 13 18
1:25 4 5.5
1:10 6 8.3

B. caballi 1:50 7 9.7
1:50 2 2.7
1:10 3 4.2

N: number of positive samples, %: % positive samples.

The results of antibody detection against L. infantum, T. gondii, A. phagocytophilum and
B. caballi in wild rabbits, in serum and in aqueous humor at individual level using different
cut-off points are presented in the Supplementary Table S1.

The agreement between the serum and the aqueous humor samples examination, as
it is shown by the Cohen’s Kappa (κ) values, was low when the same cut off value was
used (1:25 or 1:50) for both types of samples. However, in the case of A. phagocytophilum
and B. caballi, a better agreement was achieved when a cut off value of 1:10 was used for
the aqueous humor (Table 2). This improvement in κ values was probably evident only for
these two pathogens due to the higher number of positive samples detected.

Table 2. Agreement between serum and aqueous humor of wild rabbits for the detection of antibodies
against L. infantum, T. gondii, A. phagocytophilum and B. caballi.

S-AH1 S-AH2

L. infantum 0.489 0.489
T. gondii 0.386 0.386

A. phagocytophilum 0.421 0.584
B. caballi 0.419 0.575

S: serum, AH1: aqueous humor with the same cut off value with the serum, AH2: aqueous humor with a cut off
value of 1:10.

As for the diagnostic accuracy of antibody detection in aqueous humor compared to
serum, which was used as the reference standard, the sensitivity, specificity, positive and
negative likelihood ratios were calculated and they are presented in Tables 3 and 4, for the
same with serum and the 1:10 cut off values, respectively. More specifically, the highest
sensitivity was observed for anti-L.infantum antibodies when the cut-off value applied was
1:10 (60%). The specificity was almost perfect in all cases regardless of the cut-off value
used. PLR values showed good performance in all cases while the best NLR value (lower)
was observed for anti-L.infantum antibodies when the cut-off value applied was 1:10.
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Table 3. Sensitivity, specificity and negative likelihood ratio (NLR) of aqueous humor, when cut off values are the same
with those that used for the serum.

L. infantum T. gondii A. phagocytophilum B. caballi

Sensitivity (%) 33.33 25.00 30.77 28.57
95% CI 0.84–90.57 0.63–80.59 9.09–61.43 3.67–70.96

Specificity (%) 100.00 100.00 100.00 100.00
95% CI 94.79–100.00 94.72–100.00 93.94–100.00 94.48–100.00

PLR - - - -
95% CI - - - -

NLR 0.67 0.75 0.69 0.71
95% CI 0.30–1.48 0.43–1.32 0.48–0.99 0.45–1.14

PLR: positive likelihood ratio, NLR: negative likelihood ratio, CI: confidence interval.

Table 4. Sensitivity, specificity, positive likelihood ratio (PLR) and negative likelihood ratio (NLR) of aqueous humor, when
cut off value is 1:10.

L. infantum T. gondii A. phagocytophilum B. caballi

Sensitivity (%) 60.00 25.00 38.46 28.57
95% CI 14.66–94.73 0.63–80.59 13.86–68.42 3.67–70.96

Specificity (%) 100.00 100.00 98.31 98.46
95% CI 94.79–100.00 94.72–100.00 90.91–99.96 91.72–99.96

PLR - - 22.69 18.57
95% CI - - 2.89–178.29 1.92–179.82

NLR 0.40 0.75 0.63 0.73
95% CI 0.14–1.17 0.43–1.32 0.41–0.96 0.45–1.16

PLR: positive likelihood ratio, NLR: negative likelihood ratio, CI: confidence interval.

4. Discussion

Wild rabbits are important small game animals extensively hunted in many countries.
Rabbit meat is considered one of the most nutritional white meats and the demand for
human consumption of rabbit meat is increasing. Apart from its economic significance,
domestic rabbits are also scientifically important as key laboratory animals in medical re-
search. On the other hand, rabbits are pests of national significance in several geographical
areas [1,57]. These aspects together with the abundance of wild rabbits and their close
proximity to humans and domestic animals have resulted in increasing scientific interest
and research, including the occurrence of pathogens with zoonotic potential in rabbit
populations globally.

In the present study, wild rabbit samples were screened for the presence of anti-
bodies against L. infantum, a zoonotic disease steadily endemic in canine population in
Greece [58,59]. Serological data in wild rabbits in Greece come from a previous study con-
ducted in a wild rabbit population in the island of Lemnos and domestic rabbits from three
Regional Units of Central Macedonia (Thessaloniki, Chalkidiki, Serres). This study showed
an overall seroprevalence of 7.6% in domestic and wild rabbits [46]. A low percentage
of seropositivity was observed in the wild rabbit population however, in agreement to
the results of the present study. Similarly, serological studies in wild rabbits showed a
variance of 0–75.4% leading to controversial conclusions on the possible role of rabbits in
the epidemiology of leishmaniosis [46,51,60–62]. A recent study confirmed that natural
Leishmania infection in wild rabbits is not associated to gross pathology and only minimal
histopathological lesions were observed while L. infantum antigens were most frequently
detected in skin [51,63]. Previous studies showed that L. infantum is widely spread in wild
rabbit populations with infection prevalence ranging from 0% to 100% [2,46,51,60,61,64–66].
Highly heterogeneous prevalence values were recently reported even in different munici-
palities in Spain, suggesting that apart from the intrinsic restrictions of the methods applied
and the samples selected for examination, Leishmania infection is clustering in space and
time in local scale [2]. When optimal circumstances exist in terms of co-existence and close
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proximity of competent host reservoirs and vectors in a geographical area, the sylvatic and
domestic transmission cycle of L. infantum may overlap [6].

Different species of warm-blooded mammals, birds, as well as human [14,67] comprise
the wide range of hosts that have been found exposed to T.gondii. Several studies have
shown the occurrence of antibodies against T.gondii in rabbits, mainly the European rabbit
(O. cuniculus) with seroprevalences ranging from 0.9% to 37.5% [17,68,69]. In wild rabbits,
low seroprevalences of 3.3% in Scotland [70] and 2.8% in Portugal [71] were reported while
a study in Australia showed that the mean seroprevalence was 9.9% [3] and in Spain a
seroprevalence as high as 53.8% was previously recorded [52]. Compared to the above-
mentioned studies, the seropositivity of 5.5% detected in the present study, is considered
as quite low. High prevalence of infection has been reported in Portugal (67.9%) [72] and
Mexico (68.4%) [73]. Infections in rabbits are mainly subclinical [16,70]. However, viable T.
gondii could still be present in the tissues of seropositive lagomorphs posing a threat for
hunters while handling apparently healthy individuals in the field [70].

This is the first report, to the authors’ best knowledge, regarding the presence of anti-
bodies against A. phagocytophilum and B. caballi in wild rabbits, although, antibodies against
these tick-borne pathogens have been identified in other hosts. As for A. phagocytophilum,
the pathogen has been found in humans [74] and in certain animal species [75,76], in
Greece. However, recently in a laboratory study aiming to assess the vector competence of
Rhipicephalus sanguineus for Anaplasma platys, previously naïve New Zealand white rabbits,
which are not known to be susceptible to A. platys infection, produced IgG antibodies
detectable in IFAT [77]. Moreover, increasing evidence of Anaplasma infection in lago-
morphs exists, with A. phagocytophilum being the most frequently reported in other wild
rabbit species with seroprevalence ranging from 0.9% in Le. europaeus in Italy [18] to 66%
in cottontail rabbits (Sylvilagus floridanus) in Massachusetts [19,20] and DNA prevalence
ranging from 1.86% in Le. sinensis in China [21] to 29% in riparian brush rabbits (Sylvilagus
bachmani riparius) in California [22]. No evidence of obvious infection has been recorded so
far while it has been suggested that wild rabbits may act as maintenance hosts. However,
this hypothesis needs further elucidation. Public health concern is raised in this case due to
the occurrence of infected wild rabbits in close proximity to humans and on the propensity
of the involved ticks to attach and feed on humans and other vertebrate hosts [78].

To the authors’ best knowledge, there is no evidence of Babesia spp. infection in
O.cuniculus in the literature. In this study, anti-B. caballi antibodies have been detected
in 9.7% of O.cuniculus using IFAT in serum samples. B. caballi, the causative agent of
equine piroplasmosis has never been reported in rabbits. However, as it has been shown in
previous studies, cross reaction between different Babesia spp., including B. caballi, cannot
be excluded [28,29]. Zoonotic Babesia spp have been detected in other wild rabbit species.
Interestingly, B. divergens DNA was detected in 16% of the Eastern cottontail rabbits (S.
floridanus) sampled in Massachusetts [79]. B. divergens is vectored by Ixodes dentatus, a
rabbit and bird feeding tick that may also feed on human. Molecular evidence indicated
that the same Babesia spp. was identified in human cases in Missouri and Kentucky [79],
suggesting that this species may be a reservoir hosts for the parasite. A single eastern
cottontail rabbit was molecularly positive for Babesia sp. MO1 in Tennessee, while in the
same study, 25% of the rabbits were found seropositive for B. odocoilei, 38% for Babesia sp.
MO1 and 25% for both B. odocoilei and Babesia sp. MO1, suggesting possible cross-reaction
or, potentially, co-infection [80]. In Greece, Babesia spp. has been serologically, cytologically
and/or molecularly identified in horses [81], ruminants [82,83] and dogs [75].

The presence of antibodies in the aqueous humor can be attributed to either an in-
creased permeability of the blood aqueous barrier or to the local antibody production,
especially caused by microorganisms involved in the pathogenesis of uveitis [84,85]. More-
over, the correlation between the protein concentration of aqueous fluid and plasma
depends on the molecular weight of the protein and it is reported to be stronger for small
proteins [86].
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In the present study, we report for the first time the detection of antibodies against
L. infantum, T. gondii, A. phagocytophilum and B. caballi in the aqueous humor of naturally
infected wild rabbits. The presence of T. gondii antibodies in aqueous humor of rabbits was
shown previously in an experimental study conducted to investigate the local production
of IgG in ocular toxoplasmosis using a rabbit model of the disease. This study suggested
that specific antibodies were detectable and persistent in aqueous humor and serum for
at least 100 days [38]. Another study in rabbits experimentally infected with Toxocara
canis, showed that anti-T. canis IgG levels in the aqueous humor were well correlated
with the severity of intraocular inflammation. The authors suggested that the discordance
between serum IgG and aqueous humor IgG levels cannot be explained solely by the
diffusion of parasite-specific antibodies through a leaky blood–aqueous barrier but also by
the local antibody production in the eye [33]. Concerning the anti-Leishmania IgG detection
in aqueous humor, previous studies showed the presence of higher IgG levels in ocular
sampled of dogs with uveitis despite the level of antibody in the serum or even in the
absence of anti-Leishmania IgG in the serum [37,87]. In the latter study, positive results were
obtained from the aqueous humor and plasma samples in 72% of the dogs and a C value
greater than one was observed in 56% of the studied animals. The authors suggested that
the anti-Leishmania antibody levels in plasma were superior to those found in the aqueous
humor [87]. In the present study, lower IgG levels were found in the aqueous humor of
naturally infected rabbits compared to serum, for all the pathogens examined, especially
when the same cut off value was used in both biological samples.

Despite the uncertainty of the origin of the antibodies in the present study, as well as
in previous studies, the assessment of the diagnostic utility of the ocular fluid revealed
that the detection of antibodies in aqueous humor presents high specificity (100%) but low
sensitivity compared to the antibody detection in serum suggesting that aqueous humor
could be successfully used in epidemiological studies to confirm exposure at population
level but has little diagnostic value at the individual level. In the present study, the
diagnostic utility of the ocular fluid was assessed by sensitivity and specificity while
the positive and negative predictive value were not reported, since they depend on the
prevalence of the disease which for the pathogens tested in this study, was unknown [54].
To the contrary, both PLR and NLR were calculated which are independent of disease
prevalence and invariable among different populations or settings. The PLR, however,
could be calculated only when antibodies against A. phagocytophilum and B. caballi were
detected in the ocular fluid with a cut off value of 1:10, whereas in all other cases, this was
not possible because the 100% specificity resulted in the denominator of the equation to
be zero. Based on the PLR value, which in all cases was indicative of good performance,
antibodies are likely to be detected in the ocular fluid for a seropositive animal. To the
contrary, the NLR values are indicative of poor performance, while the lowest (best) NLR
value was calculated for the detection of antibodies against L. infantum using a cut off
value 1:10.

Moreover, the agreement between the results of antibodies in both fluids were fair to
moderate and it was improved when the 1:10 cut off value was used in the aqueous humor.
However, further studies in a larger number of samples are needed for the establishment of
the optimal cut-off value to assure the best combination of specificity and sensitivity values
in aqueous humor. Additional studies are also required to determine the real prevalence
of these pathogens and the role of wild rabbits in their epidemiology such as molecular
studies for the detection of the pathogens in organ/meat samples.

5. Conclusions

Exposure of wild rabbits to L. infantum, T. gondii, A. phagocytophilum and B. caballi
in Greece was evidenced by the detection of antibodies against all the above-mentioned
pathogens in serum as well as in aqueous humor. The lower IgG levels in ocular fluid for all
the pathogens included in the study compared to serum, is suggestive of employing a low
cut off value to increase sensitivity of the antibody detection in the aqueous humor. This
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study showed that negative results in the ocular fluid do not preclude the possibility of the
presence of antibodies in the serum samples of wild rabbits. On the other hand, antibody
detection against L. infantum, T. gondii, A. phagocytophilum and B. caballi in the ocular
fluid almost certainly indicate the presence of antibodies against each pathogen in serum
suggesting that aqueous humor could be successfully used in epidemiological studies to
confirm exposure at population level but has little diagnostic value at the individual level.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/microorganisms9122616/s1, Table S1: Results of antibody detection against L. infantum, T.
gondii, A. phagocytophilum and B. caballi in wild rabbits, in serum and in aqueous humor at individual
level using different cut-off points.
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