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Abstract

Obesity can lead to type 2 diabetes and is an epidemic. A major contributor to its adverse effects is 

inflammation of the visceral adipose tissue (VAT). Life-long caloric restriction (CR), in contrast, 

results in extended lifespan, enhanced glucose tolerance/insulin sensitivity, and other favorable 

phenotypes. The effects of CR following obesity are incompletely established, but studies show 

multiple benefits. Many leukocyte types, macrophages predominantly, reside in VAT in 

homeostatic and pathological states. CR following obesity transiently increases VAT macrophage 

content prior to resolution of inflammation and obesity, suggesting that macrophage content and 

phenotype play critical roles. Here, we examined the heterogeneity of VAT leukocytes and the 

effects of obesity and CR. In general, our single-cell RNA-sequencing data demonstrate that 

macrophages are the most abundant and diverse subpopulation of leukocytes in VAT. Obesity 

induced significant transcriptional changes in all 15 leukocyte subpopulations, with many genes 

showing coordinated changes in expression across the leukocyte subpopulations. Additionally, 

obese VAT displayed expansion of one major macrophage subpopulation, which, in silico, was 

enriched in lipid binding and metabolic processes. This subpopulation returned from dominance in 
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obesity to lean proportions after only 2 weeks of CR, although the pattern of gene expression 

overall remained similar. Surprisingly, CR VAT is dominated by a different macrophage 

subpopulation, which is absent in lean conditions. This subpopulation is enriched in genes related 

to phagocytosis and we postulate that its function includes clearance of dead cells, as well as 

excess lipids, contributing to limiting VAT inflammation and restoration of the homeostatic state.
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INTRODUCTION

Adipose tissue (AT) contains diverse leukocyte populations, of which the most predominant 

are macrophages (Møs), which constitute ~5% of cells in the AT of lean mice and humans 

[1]. Other leukocytes previously described in the AT include dendritic cells (DCs), T cells, 

natural killer (NK) cells, innate lymphoid cells (ILCs), eosinophils, etc. (reviewed in [1]). 

Previous work has demonstrated that obesity results in quantitative and qualitative changes 

in the leukocyte compartment. For instance, in the obese AT, Møs increase in abundance to 

account for ~50% [2] of cells and T cell abundance also increases ~3 fold [3].

Although it is well-established that there are quantitative changes in the leukocyte 

composition in obesity, there is considerable ambiguity in the field regarding the qualitative 

changes of the different populations. Some studies suggest that in obesity, several of the 

visceral AT (VAT) leukocyte populations, such as Møs [4,5], T cells [6,7] and DCs [8,9] 

exacerbate the inflammatory response and cause insulin resistance. Other work suggests that 

Møs and DCs are anti-inflammatory in the lean VAT and undergo a phenotypic switch to 

become pro-inflammatory in obesity, via recruitment of CCR2+ monocytes to the VAT and 

differentiation into inflammatory Møs [10] and DCs [9]. Still, other investigations suggest 

that the metabolic state of the VAT itself regulates leukocyte abundance and function. For 

example, the breakdown of lipids (via lipolysis) and secretion of fatty acids by adipocytes 

during fasting, lipodystrophy and pharmacological activation of adrenergic receptors were 

shown to rapidly increase leukocyte content in the VAT [11–13].

In general, obese VAT has more leukocytes than lean VAT. Somewhat counterintuitively, 

weight loss following obesity has also been shown to, at least transiently, elevate AT 

leukocyte counts in both mice [13] and humans [14], due to local proliferation [15] and 

increased migration in response to adipocyte lipolysis [13]. However, it is not yet clear what 

changes occur in leukocyte subtypes in the VAT following weight loss. Caloric restriction 

(CR) of obese mice was shown to induce rapid AT macrophage (ATM) accumulation, 

peaking at 3 days post treatment and gradually decreasing thereafter, up to day 42 [13]. In 

another mouse model of weight loss, it has been shown that feeding mice chow diet 

following diet-induced obesity results in a sustained inflammatory signature of ATMs [15]. 

Similarly, weight loss following bariatric surgery modulates the abundance of different 

leukocyte populations in the subcutaneous adipose tissue, while maintaining the expression 

levels of several pro-inflammatory cytokines, as measured in whole tissue extracts [16].
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Most previous investigations of VAT leukocytes have involved selection of cells according to 

expression of surface markers, resulting in a biased sampling of known cell types [4,17–19]. 

These strategies have primarily allowed for the characterization of 2 major subtypes of 

ATMs, which can be delineated via their surface expression of CD11c. More recently, 8 

mononuclear phagocyte populations were described using cell sorting and bulk RNA 

sequencing (RNA-seq), showing that obesity does not promote a clear inflammatory 

signature [20]. With single-cell RNA-seq (scRNA-seq), it is now possible to explore the 

heterogeneity of cellular populations in an unbiased manner [21]. scRNA-seq of 37 

individual Mø cells isolated from obese VAT was reported recently, showing 2 main Mø 

subtypes that can be delineated via their CD9 expression [17]. However, this study used pre-

selected markers (CD11b+, CD64+, F4/80+ and Ly6c−) to purify Møs, and had very few cells 

(37 Møs), hindering the ability to identify diverse or more rare populations with any degree 

of certainty.

We hypothesized that the heterogeneity of VAT leukocytes in general, and Møs in particular, 

is greater than appreciated previously. To test this hypothesis, we employed scRNA-seq to 

describe mouse VAT leukocyte heterogeneity in obesity and following a brief period of 

weight loss. Our analysis found 15 distinct leukocyte subpopulations, of which 7 are Møs. 

Obesity induced marked alterations in both gene expression and the proportion of VAT 

leukocytes subpopulations, compared with leaness. Following a brief period of CR, cells 

largely maintained the gene expression profile of the obese state, and promoted reversion of 

the cellular abundance of some subpopulations to lean proportions (among them ILC2/Treg 

and Major Møs). However, most strikingly, CR induced the accumulation of a Mø 

subpopulation enriched in genes associated with phagocytosis and endocytosis (thus termed 

Phagocytic Møs). We hypothesize that these Phagocytic Møs are responsible for clearance of 

apoptotic/necrotic cells in the VAT, and we will present evidence from an independent and 

direct examination of VAT in CR mice consistent with this.

MATERIALS AND METHODS

Animal Studies

All animal procedures were approved by the NYU School of Medicine IACUC Committee 

(160725–01, approved 7/21/2016). Six-week old C57BL/6J male mice were purchased from 

Jackson Laboratories and acclimated for 2 weeks in an SPF facility. Mice were maintained 

in a temperature-controlled (25 °C) facility with a 12-h light/dark cycle. Mice were placed 

on a diet containing 60% kcal from fat and 0.3% from cholesterol (Research Diets) and 

injected weekly with 5 mg/kg low-density lipoprotein receptor antisense oligonucleotide for 

24 weeks, as described previously [22]. The antisense oligonucleotide was generously 

provided by Ionis Pharmaceuticals. Mice were given free access to water and food and on 

weeks 21–23 daily food consumption was measured by weighing the food every other day. 

On week 24 the obese group was harvested and the calorically restricted mice were given 

daily 70% of their ad libitum consumption of the same high-fat diet.

Burl et al. generated single cell suspension from 8 week old male mice and used all stromal 

vascular cells for single cell RNA-seq (without prior cell sorting) using the 10× Genomics 
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platform [23]. For the purposes of this study, 2268 cells with detectable expression of CD45 

were selected for further analysis.

Adipose Tissue Isolation and Digestion

Mice were euthanized and perfused with 10 mL saline solution to remove peripheral blood 

and ensure that leukocyte populations found are those residing in the adipose tissue. 

Perigonadal VAT was isolated and washed with ice-cold PBS. VAT was then minced to 2–3 

mm pieces, added 4 mL of enzymatic digestion mix and transferred to gentleMACS C-tubes 

(130-096-334; Miltenyi Biotec, Bergisch Gladbach, Germany). Tissue was then dissociated 

using the gentleMACS Octo Dissociator (130-095-937; Miltenyi Biotec, Bergisch Gladbach, 

Germany), program name: mr_adipose_01, ran 3 times. Suspensions were subsequently 

filtered with a 100 μm cell strainer, washed with ice-cold PBS and stained for cell-sorting. 

Adipose enzymatic digestion mix contained 1 mg/mL bovine-serum albumin, 0.77 mg/mL 

Liberase (0541151001; Roche, Indianapolis, USA), 15.8 mU Hyaluronidase (H3506; Sigma-

Aldrich, St. Louis, USA), 25 mU DNAse1 (DN25; Sigma-Aldrich, St. Louis, USA) and 1.5 

μM Ca2+ in Hanks’ Balanced Salt solution.

Immunohistochemistry

White adipose tissue was excised, fixed in formalin for 48 h, embedded in paraffin and 5 μm 

sections were generated. Sections were stained as previously described [24], using anti-

F4/80 antibody (1:250, 70076; Cell Signaling Technology, Danvers, USA). The 

immunofluorescence analyses of multinucleated cells was performed using ImageJ (NIH, 

Bathesda, MD, USA).

Flow Cytometry Sorting and Analysis

Single-cell suspensions were added a live/dead cell staining with blue reactive dye (1:250, 

L23105; Invitrogen (Thermo Fisher Scientific, Carlsbad, USA) and Brilliant Violet 510 anti-

CD45 antibody (1:100, 103137; Biolegend, San Diego, USA) and isolated using the BD 

FACS Aria Iiu (BD Biosciences, San Jose, USA). During cell sorting, cellular debris were 

excluded with FSC and SSC gating and dead cells excluded with UVB channel negative 

selection. CD45+ cells were then positively selected and purified and processed for single-

cell RNA sequencing as described in [25]. Flow-cytometric analysis was performed using 

the BD LSRII HTS (BD Biosciences, San Jose, USA). In addition to the live/dead and CD45 

staining, Brilliant Violet 785 anti-Fcgr4 (1:100, 149535; Biolegend, San Diego, USA) and 

PE/Dazzle 594 anti-CD31 (1:100, 102429; Biolegend, San Diego, USA) antibodies were 

used. Data was analyzed using Flowjo version 10.4.2.

Single-Cell RNA Sequencing

The sorted cells were then loaded onto a 10× Genomics Chromium instrument (10× 

Genomics, Pleasanton, USA), generating single-cell gel beads in emulsion (GEMs), 200,000 

live CD45+ cells per experiment, and processed as described previously to sequence the 3’ 

end of transcripts [25].
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Read Alignment, Barcode de-Convolution, and UMI Counting

We used the Cell Ranger Single Cell Software Suite v. 2.2 to de-multiplex individual cells, 

process UMIs, and count UMIs per gene, following the standard pipeline and default 

parameters described at https://support.10xgenomics.com/single-cell-gene-expression/

software/pipelines/latest/what-is-cell-ranger. Briefly, using cellranger mkfastq and cellranger 
count, FASTQ files were generated and aligned to the mm10 genome, sequencing reads 

were filtered by base-calling quality scores, and then cell barcodes and UMIs were assigned 

to each read in the FASTQ files. The mean read count was 79,505 reads per cell in the obese 

and 106,584 reads per cell in the CR sample. The filtered gene expression matrices were 

then used for downstream analyses for both obese and caloric restriction samples.

Filtering of Cells

To identify low-quality cells and doublets, we looked at the distribution of the percent of 

mitochondrial genes expressed, the number of UMI in each cell, and the number of genes 

expressed in each cell. High outliers for the percent of mitochondrial genes expressed were 

removed, as high mitochondrial expression often indicates cells undergoing apoptosis. High 

outliers for the number of UMI per cell were also removed as possibly containing doublets, 

or multiple cells captured in a single GEM.

Alignment of Datasets Using Canonical Correlation Analysis

After filtering the obese and caloric restriction scRNA-seq datasets that we generated, we 

merged these data with the Burl et al. [23] or Sharma et al. data, following the method 

outlined in Butler et al. [26]. Briefly, we identified the top 1000 variable genes in each 

dataset, used the intersection of the variable genes to perform canonical correlation analysis 

(CCA), and then aligned the canonical correlation vectors (CCs) using the R package Seurat 

[27]. In our analysis, we chose to align the first 25 CCs after examining the shared 

correlation strength as a function of the number of CCs for both sample (the Seurat function 

MetageneBicorPlot). We used the aligned CCs for downstream dimensionality reduction and 

clustering analyses.

t-Stochastic Neighbor Embedding (t-SNE), Clustering Analysis, and Definition of Marker 
Genes

We used the first 25 aligned CCs to run t-SNE [28] dimensionality reduction and find 

Louvain clusters, using the default resolution of 0.6, using the R package Seurat [27]. For 

each cluster, we then defined marker genes, using cells from all 3 experiments to identify the 

top differentially expressed genes, requiring that marker genes for each cluster were 

expressed in at least 25% of cells in the cluster, and showed higher expression in that cluster 

than in the other cell populations.

Data Filtering

Cells from all 3 conditions were merged using the RunMultiCCA function of Seurat [27], as 

described in Butler et al. [26]. The t-SNE procedure [28] was used to reduce the correlation 

vectors of all 3 samples to a 2-dimensional space, followed by unsupervised clustering. 

Three clusters present in obese and CR samples (comprising 2.5% and 18.6%, respectively, 
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of all cells) were excluded from further analysis, since these were of non-hematopoietic 

origin and did not show expression of CD45 in the scRNA-seq data (data not shown). 

Although these cells likely arose from contamination during the cell-sorting procedure, they 

also may be non-hematopoietic cells that have surface CD45 expression, or possibly 

hematopoietic cells that transdifferentiated.

Annotating Clusters Using Immgen

To assign clusters and individual cells to main cell types, we used the R package SingleR 

[29] and default parameters, using Immgen as the reference dataset and the parameter 

do.main.types = T. This resulted in the most likely main cell type being assigned to either 

each cluster, based on the average expression profile of the cluster, or each individual cell, 

using the expression profile of the cell.

Differential Expression Analysis by Sample

We used Seurat [27] to identify differentially expressed genes by sample for each cluster, 

using the Wilcoxon test to generate p-values. To calculate log fold-change (logFC) values 

and p-values for all variable genes for each cluster, we used the following parameters: 

logfc.threshold = −Inf, min.pct = 0, min.cells.gene = 0, min.cells.group = 0, genes.use = 

my.seurat@var.genes. This allowed us to interrogate logFC values for clusters that did not 

have sufficient cell numbers to achieve statistical significance, but which showed significant 

differential expression in another cluster.

Pseudotime Analysis and Branched Gene Expression Analysis

We used the R package Monocle [30] to reconstruct the divergence of cell lineages/

trajectories in the cells identified as macrophages in our analysis. Briefly, we first used 

Monocle to estimate size factors, dispersion, and differential gene expression of the subset of 

macrophage cells, and then used the top 1000 most differentially expressed genes between 

the macrophage clusters to order cells in pseudotime. We then defined the branch with the 

largest proportion of monocytes as the root state of the tree, and plotted the trajectory of 

each sample (lean, obese, and CR) along the same pseudotime trajectory.

We used the BEAM feature of Monocle to define genes that show significant divergent 

expression across each branch point in the pseudotime analysis, using default parameters. 

We then used the top 100 significantly branching genes to interrogate divergent expression 

patterns across each branch point, and clustering the expression patterns into 4 main types 

for each branch point.

GO and KEGG Enrichment Analysis

We used the R package ClusterProfiler [31] to look for enriched functions in the marker 

genes for each cluster, as well as differentially expressed genes by sample. Specifically, we 

used the enrichGO and enrichKEGG functions to look for terms that were enriched in 

particular clusters, and the compareClusters function to look for terms that showed 

differential enrichment across clusters.
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Additionally, we used the online tool Gorilla [32] to cross-validate and further investigate 

enrichment of GO terms for specific clusters and differential expression analyses. We ran 

GOrilla using the “Target vs Background” option, using all genes with detectable expression 

in our dataset as the background dataset.

Statistical Analyses

Data are expressed as mean ± SEM. When testing 3 groups, 1-way ANOVA with Tukey 

multiple comparisons testing was used, and 2-way ANOVA with Sidak multiple 

comparisons testing was used when comparing 2 parameters across multiple groups. P ≤ 

0.05 was considered significant. Data was analyzed using GraphPad Prism 7.05.

RESULTS AND DISCUSSION

Single-Cell RNA Sequencing of Lean, Obese and Calorically Restricted VAT Reveals 
Distinct Subpopulations of Immune cells

Obese individuals have increased cardiovascular risk, and for the majority of them, this is 

the context of concurrent hyperlipidemia [33]. To identify immune cell (i.e., leukocyte) 

populations in the VAT in different metabolic states, in a human relevant model, obesity and 

dyslipidemia were established for 24 weeks, after which VAT explants were obtained. To 

examine dynamic alterations of the adipose immune cell compartment induced by weight 

loss, an additional group of mice was calorically restricted following the HFD feeding, 

adapting a protocol originally reported in [13]. The daily food intake was measured on 

weeks 21–23 of the HFD feeding and the CR mice were then supplied daily with 70% of the 

same HFD for additional 2 weeks. Mice undergoing CR lost approximately 12% of their 

body weight (Supplementary Figure S1A), with ~25% decrease in VAT mass 

(Supplementary Figure S1B). As previously reported [13], CR promoted an increase in the 

crown-like structures in the VAT (Supplementary Figure S1C).

Viable CD45+ leukocytes were sorted from the VAT, and transcripts of individual cells were 

sequenced, using the 10× Genomics platform, following the method described in [25]. These 

data were merged with scRNA-seq data of lean VAT, published recently by Burl et al. [23] 

(Figure 1A). The numbers of cells that passed the quality control filtering were 2268 from 

lean, 5232 from obese, and 2458 from CR VAT (see Methods). Recent advances in scRNA-

seq analysis allows for the parallel study of multiple datasets, obtained from separate 

models, treatments and even species [26].

After merging the 3 datasets (see Methods), we find that we can describe 15 distinct 

leukocyte populations (Figure 1B), of which the biggest cluster contained 27% of the total 

leukocytes in the VAT of the merged data (Figure 1C). Single cells from all 3 groups 

clustered together and showed a high degree of overlap (Figure 1D), indicating that our data 

merging strategy was successful. Nevertheless, one caveat of this study is that the lean group 

data were obtained using a different isolation protocol, using younger, normolipidemic mice. 

To investigate whether age or dyslipidemia significantly influences gene expression on a 

single-cell level, these data from lean and obese conditions were compared with age-

matched lean and obese WT mice obtained from [34]. Results show substantial overlap in 
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gene expression between the samples, according to the mice obesity state (Supplementary 

Figure S1D,E). Further study will be necessary to fully characterize the additional changes 

induced by hyperlipidemia, but the overall landscape of immune cells seems highly similar 

between the two conditions.

Characterization of Leukocyte Heterogeneity in Cell Types and Their Putative Functions in 
the Visceral Adipose Tissue

To characterize the main cell types of origin for the clusters, we used SingleR, which 

leverages the Immgen database to characterize cells by their closest match in an 

unsupervised manner [29] (Figure 2A). SingleR can run in multiple modes, the main 

distinction being whether the expression profile of each individual cell is compared to 

datasets available through Immgen, or whether the average expression profile of a cluster of 

cells is compared to Immgen. The comparison of average expression profile is equivalent to 

using expression data obtained by bulk RNA-seq and allows the identification of dominant, 

relatively large effects on a cluster. However, comparison of individual cell transcriptome 

can reveal intra-cluster heterogeneity. As a first pass at annotating our merged dataset, we 

used SingleR to identify the main cell type of each cluster by comparing the average 

expression profile of individual clusters. As expected, the majority of leukocytes in the VAT 

are MØs (51%, Figure 2B). Other leukocytes identified with this analysis are dendritic cells 

(DCs), T cells, NK cells, monocytes and B cells, comprising 14, 11, 9, 8 and 6% of the 

leukocytes in the VAT, respectively (Figure 2B). Of the 15 leukocyte subpopulations, 

SingleR assigned multiple clusters to several cell types, including 7 MØ clusters, 3 DC 

clusters, and 2 T cell clusters. NK cells, monocytes and B cells were each represented by a 

single cluster. These data suggest that mononuclear phagocytes are not only the most 

abundant, but also the most diverse in the VAT.

To examine the possible function of each unique subpopulation, we investigated gene 

ontology (GO) [35] and KEGG pathway [36] enrichment of the differentially expressed 

marker genes of each individual cluster (Figure 2C and Supplementary Figure S2A). Our 

data show that by and large, most leukocyte subpopulations have functions that are distinct 

from each other, but some pathways seem to be shared across multiple subpopulations. For 

instance, all mononuclear phagocytes had an enrichment in genes related to the phagosome, 

while the T cell clusters showed enrichment in Th17 differentiation (Figure 2C). In general, 

the data suggest that there is little functional overlap between the clusters, indicating that 

each subpopulation has a unique function.

To further interrogate the heterogeneity of cell types and functions within clusters, which 

may contain within them distinct subtypes of cells (as described in [29]), we again used 

SingleR, but this time annotated the main cell type of individual cells within each cluster, as 

opposed to the average expression of the entire cluster (Figure 2D). This analysis suggests 

that many clusters are not comprised of a single cell type, so that there is heterogeneity even 

within a given cluster. For instance, cluster 7, which was identified as NK cells when the 

expression of all cells was averaged, is comprised mainly (65%) of ILCs and only a minority 

(25%) of NK cells. This type of analysis may also indicate the origins of the different 

mononuclear phagocyte subpopulations. Of the 15 AT leukocyte subpopulations, 11 were 
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identified as mononuclear phagocyte, of which clusters 5, 10, 13, 14 and 15 had no cells that 

were defined as monocytes, indicating they might not be monocyte-derived.

To further characterize the mononuclear phagocyte subpopulations, we examined gene 

expression of these clusters by identifying marker genes for each cluster, which can be 

defined as genes with the highest differential expression for a given cluster as compared to 

all other cells in the dataset. For instance, marker genes for MØs in cluster 10 include 

Lyve1, Folr2, Klf2, and Gas6 (Figure 2E, Supplementary Table S1), which were all recently 

shown to be expressed in tissue-resident MØ from the heart [37], aorta [25] and AT [20]. 

This suggests that cluster 10 contains the resident MØ subpopulation, possibly explaining 

the absence of monocytes in that cluster. Accordingly, we postulate that clusters 3 and 6 are 

monocyte-derived, since a large proportion (>30%) of cells in those clusters are classified as 

monocytes by SingleR, whereas clusters 5, 10, 13, 14 and 15 are of non-monocytic origin. 

Interestingly, clusters 1, 8, and 11 have a small percent (<15%) of cells that are classified as 

monocytes. We postulate that cells in these clusters are of both monocyte-derived and of 

non-monocytic origin. Otherwise, it is plausible that these clusters are of monocytic origin, 

with cells in these subpopulations more rapidly differentiating or longer-lived in the adipose 

tissue. Another particularly interesting leukocyte subpopulation is cluster 15. When 

averaged gene expression was used to define the main cell type (Figure 2A,B), this 

subpopulation was assigned as MØs; however, when comparing the expression profiles of 

individual cells to the ImmGen database, it is apparent that most of the cells in cluster 15 are 

B cells. It was recently shown [38] that B cells can acquire MØ phenotype homeostatically 

and during inflammation, and it is possible that cluster 15 contains such MØ-like B cells. 

With that said, cluster 15 is the smallest of the clusters and therefore difficult to define 

marker genes with high statistical power, so in future studies we will analyze more cells to 

confirm the present findings.

Taking into consideration the information about cell type distribution in each cluster, as well 

as the differentially expressed genes and pathway analysis, we have assigned names to the 

different leukocyte subpopulations in our dataset (Figure 2E). Notably, we were unable to 

identify any eosinophil cluster, although this cell type was reported to be abundant (~5% of 

the stromal vascular fraction) in the lean VAT [39]. Hence, we searched for cells expressing 

the eosinophil marker SiglecF [39] (Supplementary Figure S2D) and found that cells 

expressing it are dispersed in different clusters and the abundance of the cells with 

detectable expression is generally low (a total of 0.64% of cells across all conditions). The 

absence of an eosinophil cluster might be due to a loss of AT eosinophils during obesity, a 

phenomenon that was previously described [20,39]. Another possibility is that in our 

conditions the eosinophil transcriptome was not unique enough to identify it as a separate 

cluster. It is also possible that there is a bias in the capture efficiency of different cell types 

with the scRNA-seq platform [40]. For example, some leukocyte subpopulations may be 

more sensitive to perturbations at certain steps of the VAT digestion/FACS/10× Genomics 

procedures than others, and do not survive. Nonetheless, our unique dataset allows the 

characterization of the leukocyte subpopulations that were captured in different metabolic 

conditions and subjected to identical procedures.

Weinstock et al. Page 9

Immunometabolism. Author manuscript; available in PMC 2019 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MØ Heterogeneity in the VAT Show 7 Subpopulations with Distinct Inflammatory and 
Metabolic Functions

Single-cell analysis showed that ATMs are both the most abundant and the most 

heterogeneous population, with 7 of 15 clusters (Major, Phagocytic, Activated, Resident, 

Stem-like, Heme and MØ-like B cells) identified as MØs and another monocytic cluster 

(cluster number 4). We therefore decided to focus our next set of analyses on the ATM 

subpopulations.

VAT MØs were previously shown to participate in metabolic processes in (e.g., recycling the 

lipids secreted by adipocytes [41], producing Igf1 to regulate fat mass [42], and promoting 

thermogenesis [11]). Indeed, the KEGG and GO analysis of our data show that VAT MØs 

were enriched in many pathways related to metabolic processes, especially of lipids, such as 

oxidative phosphorylation, glycerolipid metabolism, and arachidonic acid metabolism 

(Supplementary Figure S2B, C). Similar to the non-MØ subpopulations in our dataset, the 

MØ clusters seemed to have mainly non-overlapping functions, demonstrated by uniquely 

enriched KEGG pathways (Supplementary Figure S2B) and GO terms (Supplementary 

Figure S2C).

Taken together, these data suggest that different MØ clusters have distinct metabolic 

functions in the VAT. Another interesting observation is that several clusters found in our 

VAT scRNA-seq dataset share transcriptional profiles with MØs that we recently described 

from atherosclerotic lesions [25]. Specifically, Trem2hi, RetnlahiEar2hi, Folr2hi, IFN 

signaturehi and EbfhiCD79ahi populations previously described by our group share many 

genes with the Major MØ, Activated MØ, Resident MØ, Monocytes and B cell clusters, 

respectively (data not shown). These observations require further investigation to interrogate 

the similarities and differences in leukocyte subpopulations between atherosclerotic plaques 

and VAT.

Identification of the Major MØ Cluster and Its Expansion in Obesity

Of the ATM clusters, the most predominant is the Major MØ, accounting for almost half of 

the ATMs in our merged single-cell dataset (Figure 2F). We speculate that this 

subpopulation is mostly tissue-resident, of embryonic origin, and partially monocyte 

derived, since this cluster contains 5% monocytes, as assigned by SingleR (Figure 2D). 

Furthermore, gene expression of this cluster follows similar patterns as the Resident MØ 

cluster (Supplementary Table S1), with increased expression of markers associated with 

resident cells, such as Folr2 and Gas6 [37]. However, the Resident MØ cluster expresses 

these genes more robustly, while the Major MØs show higher expression of genes that are 

associated with lipid metabolism, such as Apoe and Sepp1, as well as genes associated with 

MHCII-related antigen presentation, for instance H2-Eb1, H2-Aa and CD74 (Supplementary 

Table S1).

It has been established in many previous studies that ATMs expand and dominate the obese 

VAT (reviewed in [1]); however, the specific characteristics of these MØs remain 

incomplete. To understand how obesity influences the VAT leukocyte population, and MØs 

specifically, we first examined the proportion of each cluster in lean versus obese conditions. 
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Indeed, our data confirm the long-standing notion [1] that MØ abundance increases in the 

obese VAT (Figure 3A). Strikingly, the obese adipose tissue shows a dramatic increase in the 

Major MØ subpopulation (16% in lean vs 38% in obese, Figure 3A). Another noticeable 

difference is the acquisition of a MØ subpopulation in the obese state that is absent in lean 

VAT (Figure 3A). Investigation of KEGG pathways enriched in marker genes for this 

particular MØ subtype was not insightful; thus, in order to identify the possible function of 

this subpopulation, we used Gorilla [32], another program for GO terms identification. This 

program calculates GO term enrichments from a gene list, compared to a background list 

provided by the user, increasing the specificity of the search [32].

In our analysis, we compared the marker genes for this MØ subpopulation in obese VAT, but 

absent in lean VAT, to a baseline gene list that contained genes with detectable expression in 

our dataset that were not differentially expressed in any of the MØ subpopulations. Results 

of this analysis included GO terms involved in phagocytosis (“regulation of phagocytosis”, 

GO:0050764, p-value = 3.84 × 10−10) and endocytosis (“regulation of endocytosis”, GO:

0030100, p-value = 4.53 × 10−10), hence we named this subpopulation Phagocytic MØs 

(Supplementary Table S2). Genes expressed by this MØ subpopulation involved in 

phagocytosis/endocytosis include Fcgr4, Pecam1, Axl, Pycard, Fcer1g (for more, please see 

Supplementary Table S3).

Interestingly, most other MØ subpopulations remained proportionally similar when 

comparing the lean and obese VAT, while the majority of the other leukocyte subtypes 

diminished. We speculate that there is an interaction between the different MØ subtypes that 

governs their abundances in VAT and that the expansion of the Major and Phagocytic MØs 

results in a proportional decrease in other leukocyte subtypes, such as ILC2/Treg, NK and 

DCs. Another possibility is that the absolute numbers of non-MØ subpopulations do not 

change, but the increase in MØ abundance results in their proportional decrease. From the 

single-cell RNA data alone, we cannot determine whether the absolute number of these 

leukocytes was different between the lean and obese state, since the total cell number 

captured in the 10× Genomics platform and passing quality control differs between 

experiments, and is assumed to be largely stochastic. Hence, all single-cell RNA sequencing 

experiments inherently result in estimates of proportion of cell type rather than estimates of 

absolute number of cells.

We also noted that obesity drives extensive transcriptional changes in VAT leukocytes 

(Figure 3B,C and Supplementary Figure S2A). To investigate whether obesity affects the 

same genes across multiple clusters, we investigated genes that showed at least a 1.5 fold 

increase or decrease in expression in any of the leukocyte subtypes in obesity relative to lean 

VAT. We then calculated log fold-change values for these genes in all of the leukocyte 

subtypes, and used hierarchical clustering to identify patterns of expression changes across 

cell types. Generally, leukocyte subpopulations showed significant overlap in the pathways 

transcriptionally modulated during obesity (Figure 3C and Supplementary Figure S2A). 

Heatmaps for the MØ (Figure 3C) and non-MØ (Supplementary Figure S2A) 

subpopulations show that genes that show the greatest change in expression in obese as 

compared to lean mice are shared across most or all clusters. However, genes with more 

moderate changes in obesity tend to differ in just a few clusters, but retain similar trends of 
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expression across clusters. For example, in the MØ subpopulations, genes that are highly 

upregulated during obesity are associated with cytoplasmic protein translation (Figure 3C), 

which is similar to non-MØ clusters (Supplementary Figure S2A). Other genes upregulated 

during obesity in the non-MØ subpopulations are associated with response to interferon-ɣ 
(IFNγ) and antigen processing and presentation. IFNγ was previously implicated in 

worsening of obesity-related AT inflammation [43–45]. However, since our results show that 

many clusters upregulate IFNγ response genes it is important to investigate IFNγ effects on 

specific VAT leukocytes, to understand the contribution of this pathway per cell type. This 

analysis did not include the Phagocytic MØ subpopulation, which was absent in the lean 

VAT.

Genes that were downregulated in obese ATMs are associated with positive regulation of 

cell migration. This is consistent with previous studies [46,47], showing that obesity 

enhances the retention of MØs in the VAT. Finally, by performing scRNA-seq analysis in 

obese VAT leukocytes we hoped to distinguish between subpopulations that alter the 

metabolic phenotype versus those that influence the inflammatory phenotype. However, our 

data suggest that in a given single-cell subpopulation, genes related to both inflammation 

and metabolism are altered, indicating that many molecular pathways respond to obesity in 

each subpopulation of cells. Thus, we hypothesize that the dysregulation in the proportion of 

different leukocyte subpopulations in obesity could play a major role in both the 

inflammatory and metabolic responses.

Short Term Caloric Restriction Following Obesity Induces Partial Recovery of Leukocyte 
Population Proportions to Those in the Lean State

After investigating the gene expression response to obesity on a single-cell level, we next 

interrogated the influence of CR-induced weight loss on VAT leukocyte subpopulations. As 

described previously [13], after the establishment of diet-induced obesity, a group of mice 

were calorie restricted by providing them daily (for a total of 2 weeks) with 70% of their ad-
libitum HFD consumption. Importantly, the diet composition itself was unaltered, to ensure 

that any changes observed are due to the CR and not other factors, such as dietary fat content 

or other macro or micro-nutrients.

The most striking difference in the CR VAT is the accumulation of the Phagocytic MØ 

subtype. This subpopulation, which is absent in the lean condition, is the largest immune 

subpopulation in CR VAT, comprising 30% of CR leukocytes, versus only 7% in the obese 

VAT (Figure 4A). As in other clusters, Phagocytic MØs show transcriptional changes 

between the obese and CR treatments (Supplementary Figure S4A). It has been previously 

reported that upon CR there is an initial increase in ATMs, followed by a gradual decrease, 

until the VAT MØ content resembles lean proportions [13]. Our study now shows that in 

addition to alteration in abundances, there is a change in the “flavors” of CR ATMs. It will, 

thus, be interesting to investigate dynamic changes in the leukocyte subpopulations over 

longer periods of time post-CR, to determine whether there are remnants of obesity or CR. 

In humans, an increase in subcutaneous ATM content was reported following extreme 

hypocaloric diet [14]. It will be interesting, then, to interrogate whether the Phagocytic MØs 

described herein are similar to the ones that accumulate in human AT.
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Notably, examination of the proportions of the different VAT leukocyte subtypes post-CR 

revealed that 3 subpopulations (Major MØs, Stem-like MØs and ILC2/Treg) reverted back 

to lean VAT frequencies (Figure 4A). Diminished VAT Treg was reported to associate with 

obesity and enhanced VAT inflammation [48], however, the effects of CR following obesity 

on Tregs have remained unclear in the literature. Our data suggest that CR restores VAT 

Tregs to lean proportions and we postulate that these cells are important for resolution of 

obesity-related inflammation. Interestingly, leukocyte subpopulations that decreased in 

obese VAT (Monocytes, MHCII-presenting DCs, Replicating DCs and NK/ILC) did not 

revert to lean proportions with CR. A third group of VAT leukocyte subtypes (Phagocytic 

MØs, Activated MØs, B cells and Resident MØs) showed unique proportions after CR that 

did not resemble lean or obese conditions.

Gene Expression Following CR Primarily Remains Similar to the Obese State than the 
Lean State, with Genes That Are Recovered Involved in Antigen Presentation and 
Phagosome Pathways

Next, in addition to comparing leukocyte heterogeneity across the different groups, we 

questioned whether gene expression following CR was similar to obese VAT, or whether 

there was a recovery to lean conditions. To do so, we looked at the subset of 783 genes that 

showed statistically significant differential expression between at least one pairwise 

comparison of the samples (obese vs lean, CR vs lean, or CR vs obese) in at least one 

cluster.

We then characterized each gene in each cluster as either “recovered” from obesity (gene 

expression in CR is closer to lean than to obese), “not recovered” (gene expression in CR is 

closer to obese than lean), or “different” (gene expression in CR is more than 10% different 

from both obese and lean, and not intermediate to obese and lean, Figure 4B). This analysis 

does not include the Phagocytic MØ subpopulation, since it was absent in lean conditions. 

Our results show that across clusters, 16.1–25.9% of genes that were differentially expressed 

in obese VAT have recovered following CR and are expressed similarly in the CR condition 

to the lean condition (Figure 4B). Interestingly, the proportion of recovered genes is largely 

similar across all leukocyte subtypes. Accordingly, the largest proportion of genes in most 

clusters did not recover with CR and their expression is similar to that of the obese. This was 

to be expected, since CR was performed for only 2 weeks. Notably, a large proportion of 

genes in each cluster has a unique expression pattern in the CR condition that is not similar 

to either the obese or lean states (“Different”, Figure 4B).

We further investigated the genes that fall into the categories of “Recovery”, “No Recovery” 

and “Different”. To understand whether these genes change in a coordinated fashion, we first 

looked into the overlaps across clusters of genes in each of the categories (e.g., “Recovery”, 

“No Recovery” and “Different”). Our data show that most genes that did recover and 

reverted back to the lean state following CR did so in only one or a handful of clusters 

(Figure 4C). Conversely, for non-recovered genes (those that remained similar to the obese 

state), there was a nearly-normal distribution in the number of clusters in which a given gene 

remained similar to that of the obese state, showing that many of the non-recovered genes 

are shared among many clusters (Figure 4C). Finally, genes that show an expression level 
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unique to the CR state (“Different”) showed a nearly bimodal pattern in cluster overlap, with 

most genes categorized as “Different” in just a few clusters, but an excess of genes that were 

categorized as “Different” in all or most clusters (most of which were ribosomal genes, 

Supplementary Figure S4B).

When investigating the pathways enriched in the “Recovery”, “No Recovery” and 

“Different” groups in each cluster, it was apparent that pathways were shared across many 

clusters (Figure 4D). Moreover, there were many overlapping pathways between the 

“Recovery”, “No Recovery” and “Different” gene sets (Figure 4D), with significant 

variation in the number of differentially expressed genes in each pathway (depicted in Figure 

4D as the dot size). For instance, genes that recovered, did not recover, or showed divergent 

expression with CR, were all enriched for the “Antigen processing and presentation” and 

“Phagosome” pathways. However, the proportion of genes related to these pathways was 

largest in the “Recovery” and smallest in the “Different” group. The fact that the pathways 

are mostly shared between the “Recovery”, “No Recovery” and “Different” gene sets and 

across clusters suggest that these pathways are most sensitive to the metabolic alterations 

introduced by obesity and subsequent CR. Moreover, it has been previously reported that 

MØ phagocytosis is impaired in obesity [49]. Our data show that many phagosome related 

genes are recovering during CR, implying a restoration of this pathway toward normal 

capacity. Some other pathways in this analysis seemed to be more exclusive to the “No 

Recovery” group, such as the MAPK signaling and C-type lectin receptor signaling 

pathways, which may indicate that these pathways are less sensitive to CR.

After establishing that the pathways altered in CR are shared among clusters, we again 

examined whether individual gene expression changes are coordinated between clusters. 

Like the response to obesity, our data show that gene expression is altered similarly across 

multiple clusters (Supplementary Figure S4C). Genes that are downregulated in CR relative 

to obesity are associated with response to IFNγ and antigen processing and presentation. As 

noted above, these pathways were enriched in leukocytes in the obese state, and it seems that 

CR specifically reverts these changes, which goes together with processes of inflammation 

resolution. Additionally, relative to obesity, CR had enhanced expression of genes associated 

with lipid homeostasis and reverse cholesterol transport, which may point to an effort to 

clear excess lipids.

Pseudotime Analysis Shows Distinct Trajectory for Major and Phagocytic MØs in Obesity 
and Following CR

So far, we have described that lean, obese and CR VAT are composed of similar leukocytic 

subtypes, with the exception of the Phagocytic MØs. The next question we wanted to 

address was whether obesity or CR influences VAT MØ fate or state. For that, pseudotime 

analysis was performed on our merged scRNA-seq dataset. This analysis treats scRNA-seq 

data as a snapshot of unsynchronized cells and arranges them on a virtual timeline, to 

understand their trajectory. Since many cells in our data were defined as monocytes by 

SingleR (Figure 2D), and these are the precursors for some of the VAT MØs, we defined the 

monocytes as the root population (depicted as 1 in Figure 5A).
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Arranging the cells in psuedotemporal order revealed 2 major bifurcations in the lean state. 

The percentage of monocytes/MØ (from the total MØ per treatment), as well as the 

distribution of different MØ clusters in each branch are shown in Figure 5A. Our results 

show that in the lean state, but not the obese and CR, most of the cells (65.3%) were at the 

root (top), and many MØ subtypes constituted the root population, occupying similar 

pseudotime space, indicating comparable trajectory to monocytes. In the lean state there was 

only one other major trajectory, which consists of all the Resident MØs and most of the 

Major MØs. Genes associated with these 2 trajectories are shown in Supplementary Table 

S4.

As mentioned above, the Major MØs are possibly of mixed origin (embryonic and 

monocyte-derived) and we hypothesize that the seed population at the top consists of 

monocyte-derived cells, with the other trajectory being tissue-resident MØs. Interestingly, in 

the obese and CR states, the pseudotime trajectory was more complex, with 2 additional 

major branches (branches 4 and 5, Figure 5A). In contrast to lean VAT, in the obese and CR 

states most of the cells were further in pseudotime space from the root population. 

Notwithstanding, both obese and CR had similar trajectories, with varying cell distribution 

in the 2 branches missing in the lean VAT. The differences in cell distribution between obese 

and CR probably reflects the dominance of the Major and Phagocytic MØ subpopulations, 

respectively, in the two conditions. Furthermore, pseudotime analysis shows that the Major 

and Phagocytic MØ have distinct trajectories in both obese and CR conditions, and that the 

Resident MØs in obese and CR conditions show a pseudotemporal trajectory more similar to 

the Major MØs that is distinct from their trajectory in the lean condition.

To further examine the drivers of the distinct trajectories in obese versus CR MØ, we 

examined the genes and pathways that show branch-dependent expression across branch 

point B (Figure 5B, Supplementary Table S4). This analysis shows that among the pathways 

associated with the Metabolic MØ trajectory are lysosome, antigen-processing and 

presentation, and cholesterol metabolism, while the pathways associated with Phagocytic 

MØs are immunoglobulin binding and Regulation of lipolysis in adipocytes. It is, thus, 

possible that the Phagocytic MØ subpopulation is the one described by Kosteli et al. [13] as 

MØs that have enhanced lipolytic capacity in response to CR. Moreover, Kosteli et al. 
described a transient increase followed by a gradual decrease in VAT MØ content upon CR 

[13]. We speculate that these observed kinetic changes mainly reflect the recruitment of 

monocytes that become the Phagocytic MØs and disappearance of the Major MØs, and 

future studies will examine the dynamics of the different MØ subpopulations described here.

Histological and Bioinformatic Validation of the Enrichment of Phagocytic MØs during CR

Although our data for the obese and CR VAT were merged successfully with the lean sample 

from Burl et al. [23], we were concerned about the absence of lean-derived cells in the 

Phagocytic MØ cluster. Furthermore, since the aforementioned cluster seems to be central in 

CR condition, we wanted to validate its existence. For that, we first sought evidence of 

enhanced phagocytosis by CR ATMs. Hence, VAT explants were sectioned, stained with the 

MØ marker F4/80 and quantified for the appearance of multi-nucleated cells. Multi-

nucleated MØs may reflect that a MØ had engulfed other cell(s), however, MØ fusion was 
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also shown to occur, to form multinucleated giant cells (MGC). The latter were shown to 

have increased abilities to phagocytose large particles [50]. In either case, the appearance of 

multinucleated cells would suggest an increase in phagocytosis. Images of VAT MØs clearly 

demonstrated the presence of multinucleated cells in CR and obesity (Figure 6A). 

Quantification of the multinucleated cells (Figure 6B) showed their accumulation in obese 

VAT and an even greater increase in CR. In contrast, lean adipose tissue had very few 

multinucleated cells.

To further validate the Phagocytic MØ subpopulation, we used the scRNA-seq dataset to 

define unique markers for this subpopulation. The most highly upregulated gene in this 

subpopulation was Fcgr4, which was also enriched in cells expressing Pecam1 (CD31). 

Violin plots of these 2 genes (Figure 6C) indicate that they are candidate markers for the 

Phagocytic MØ subpopulation, with high expression of Fcgr4 being a more specific marker 

of this cluster. Thus, we next examined the surface expression of Fcgr4 and CD31 in lean, 

obese and CR VAT leukocytes using flow-cytometry (Figure 6D,E). Our results show that 

lean VAT lacks the Fcgr4hi population, but that it increases in obesity and it is largest in VAT 

from mice that were calorie-restricted following obesity (Figure 6D,E). Furthermore, the 

Fcgr4hi population had enrichment of CD31 expressing cells, in comparison to other VAT 

leukocytes (Figure 6F).

Notably, the proportion of this subpopulation from all CD45+ cells identified using flow-

cytometry is 2.8% in the obese group and 5.8% in CR group, which are also similar when 

gating from all MØs (Figure 6F). These proportions are markedly different from the ones 

seen in the scRNA-seq dataset, where this Phagocytic MØ subpopulation constitutes 7% of 

leukocytes in the obese condition and nearly 30% of leukocytes in the CR condition (Figures 

3A and 4A). Flow-cytometry analysis of non-circular cells, which presumably also includes 

multinucleated cells, showed frequencies of Fcgr4hi CD31+ MØs that resemble more those 

of the scRNA-seq than the proportions observed from the circular, single nucleus, events 

(1% in lean, 4.4% in obese and 16.8% in CR, Supplementary Figure S5A,B); however, still 

with substantial difference from the scRNA-seq data. This discrepancy may arise from the 

fact that not all the cells that have high Fcgr4 transcripts also show high surface expression. 

Additionally, many of the cells in this cluster had high expression of Fcgr4, but not all, and 

the flow-cytometry analysis only captures the highly expressing cells. It is also possible that 

a bias in the capture efficiency of the scRNA-seq platform eliminates some populations from 

the single-cell analysis, thus enriching for populations that are captured. Partial validation of 

this point was obtained through flow-cytometry analysis of VAT MØ proportions in the lean, 

obese and CR conditions. Flow-cytometry data show somewhat decreased MØs, as 

compared with the proportions obtained from the scRNA-seq (Supplementary Figure S5C). 

Nonetheless, we find significant differences in the abundance of the Phagocytic MØ 

subpopulation between lean, obese and CR mice.

Finally, because of the potential biological significance of the Phagocytic MØ cluster, which 

may have a particularly important role in the remodeling of AT as it expands or rapidly 

contracts and the number of apoptotic cells that need to be cleared increase, we sought to 

confirm the identification of this cluster in an independent study. Recently, one of us 

described the heterogeneity of mononuclear phagocytes in mouse VAT, using surface 
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markers to FACS-purify distinct populations and bulk RNA-seq of these populations was 

obtained (Silva et al. [20]). This paper mainly focused on resident MØs, which are tightly 

associated with the adipose vasculature; however, data were obtained for several 

subpopulations. Overall, RNA-seq data of 7 mononuclear phagocyte subpopulations defined 

by surface marker expression were acquired, some in both lean and obese states (after 20 

weeks of HFD feeding). We, thus, used this bulk RNA-seq data and compared each cell from 

our dataset to the 7 purified populations, using SingleR [29]. Our results show that most 

cells from the Phagocytic MØ cluster were highly correlated with the HFD-derived double-

positive (DPs) population from Silva et al. (Figure 6G). In their studies, Silva et al. found 

that the DPs are a monocyte-derived population (identified by high levels of CD11b, CD11c, 

CD64, and MHCII and intermediate levels of CD206), which was highly enriched post HFD 

feeding, corresponding well with our findings. In addition, replication of most leukocyte 

clusters identified in obese VAT was apparent in the dataset in [34], as shown in 

Supplementary Figure S5. In their study, Sharma et al. describe the effects of the loss of MØ 

netrin-1 on adipose tissue inflammation. They compared WT and myeloid-specific deletion 

of netrin-1 and showed with scRNA-seq that netrin-1 deficiency caused a 50% attrition of 

ATMs in HFD-fed mice (20 weeks), particularly of the resident MØ subset [34]. The overlap 

between the data described here and in Sharma et al. was substantial, with 91.1% of the lean 

and 90.1% of the obese cells significantly matching to our data.

CONCLUDING REMARKS

It has been of great interest to determine the heterogeneity of the leukocyte populations in 

AT and their alterations at the molecular level in response to changes in their metabolic state, 

e.g., by HFD feeding or CR. In this report, we demonstrate the power of scRNA-seq to 

address these unresolved issues in AT biology. Our data show that there are 11 distinct 

mononuclear phagocyte clusters and an additional 4 lymphocyte clusters in VAT. Though 

further work will be needed to fully understand the specific contribution of each 

subpopulation to lean and obese VAT, it is clear that obesity promotes both inflammatory 

and metabolic alterations in a coordinated fashion in individual clusters and across leukocyte 

subtypes. Additionally, we found a novel specialized phagocytic MØ subpopulation, which 

is highly enriched following CR. We hypothesize that this subpopulation is responsible for 

clearing dead adipocytes and leukocytes, as well as lipid clearance, all contributing to 

limiting VAT inflammation and restoring a homeostatic state.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Single cell transcriptome analysis of mouse visceral adipose tissue leukocytes identifies 
15 distinct subpopulations.
(A) Diagram of experimental design. (B) t-Stochastic neighbor embedding (t-SNE) plot of 

9958 VAT leukocytes from lean (reference [22]), obese and CR conditions, separated into 15 

distinct clusters. (C) Overall proportion of leukocyte clusters in the VAT. (D) Representation 

of the t-SNE plot showing treatment of origin.
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Figure 2. VAT leukocytes show functional and inter-cluster heterogeneity.
(A) t-SNE representation and (B) proportion of the main VAT leukocyte cell types, assigned 

by SingleR, using average gene expression per cluster. (C) KEGG pathways of differentially 

expressed genes of different clusters. (D) Cell type distribution in each cluster, assigned by 

SingleR, using the expression profiles of individual cells. (E) Heatmap of the 5 most 

differentially expressed genes per cluster. (F) Proportion of monocytes/MØ in the VAT.
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Figure 3. Obesity drastically alters both proportions and gene expression of VAT MØs.
(A) Proportion of VAT leukocyte subtypes in lean (right) and obese (left) conditions. (B) 

Volcano plot of differentially expressed genes in MØs from obese versus lean VAT (p-

adjusted < 0.05). (C) Heatmap of genes that are significantly differentially expressed per 

cluster between obese and lean conditions, including GO terms for gene groups that show 

the largest differential expression. The Phagocytic MØ subpopulation is absent in lean 

conditions and thus not included in this analysis.
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Figure 4. Short caloric restriction reverts some leukocyte subpopulations back to lean 
proportions, while gene expression remains similar to the obese state.
(A) Distribution of VAT leukocyte subtypes in lean (red), obese (green), and CR (blue) 

conditions. (B) Stratification of genes whose expression was recovered (red) or not 

recovered (green) to the lean expression pattern following CR, or showed an expression 

pattern that is >10% different from either lean or obese (blue). The Phagocytic MØ 

subpopulation is absent in lean conditions and thus not included in this analysis. Schematic 

of the stratification strategy (top). (C) Distribution of the number of clusters that share the 

expression pattern of differentially expressed genes in each of the recovery gene groups. (D) 

KEGG pathways significantly enriched in each of the gene recovery states.
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Figure 5. Pseudotime analysis shows distinct trajectories of the Major and Phagocytic MØs in 
obesity and caloric restriction.
(A) Pseudotime analysis was performed using Monocle of the lean, obese and CR merged 

dataset for all monocytes/MØs. Monocytes were defined as the root population. Pie charts 

indicate the proportion of cells from each cluster that are assigned to each branch of the 

pseudotime trajectory. Percentages indicate the proportion of all monocytes/MØs that are 

assigned to each branch. (B) Top 100 genes that distinguish cells in branch point B of the 

pseudotime, with their related KEGG and GO terms.
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Figure 6. Validation of the presence of a specialized phagocytic MØ cluster.
(A) Representative images of VAT stained with the MØ marker F4/80 (green) and a nuclear 

stain (DAPI, blue). Scale bar: 50 μm. (B) Quantification of multi-nucleated MØ (n = 3–4). 

(C) Violin plots showing increased expression of Fcgr4 and Pecam1 (CD31) in the 

Phagocytic MØ cluster. (D) Representative flow-cytometry counterplots of CD31 and 

Fcgr4hi cells gated from single, live, CD45+ cells. (E,F) Quantification of the proportion of 

Fcgrhi from (E) CD45+ or (F) CD11b + F4/80+ MØs in lean, obese and CR VAT (n = 6–9). 

(G) Proportion of CD31+ from either Fcgrhi or all other leukocytes in the VAT. (H) 

Distribution of cells from the Phagocytic MØ cluster that significantly (p < 0.1) matched 

with populations from Silva HM et al. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, 

using 1-way ANOVA with Tukey multiple comparisons testing (B,E,F) or 2-way ANOVA 

with Sidak multiple comparisons testing (G).
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