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Patients and their surgeons face a complex and evolving set of choices in the process of shared
decision making. The plan of care must be tailored to individual patient risk factors and values,
though objective estimates of risk can be elusive, and these risk factors are often modifiable and
can alter the plan of care. Machine learning can perform real-time predictions of outcomes,
though these technologies are limited by usability and interpretability. Gamification, or the use
of game elements in non-game contexts, may be able to incorporate machine learning
technology to help patients optimize their pre-operative risks, reduce in-hospital complications,
and hasten recovery. This article proposes a theoretical mobile application to help guide
decision making and provide evidence-based, tangible goals for patients and surgeons with the
goal of achieving the best possible operative outcome that aligns with patient values.
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INTRODUCTION

Interactions between patient, surgeon, and healthcare systems converge on a set of choices: when
to cut, how to cut, or even if to cut, and how those choices intersect with patient values. These
interactions are constantly evolving and must drive informed decision making between patients
and surgeons. However, objective estimates of risk can be difficult to make. Machine learning
can perform accurate, real-time assessments of surgical outcomes, but these technologies are
often hindered by lack of usability and interpretability. Gamification may offer a solution. This
article will examine available and potential applications that enhance patient buy-in, encourage
pre-operative optimization, drive evidence-based decision making, and improve post-operative
recovery.

Defined as the use of game elements in non-game contexts, gamification is primarily a tool of
persuasion (1, 2). Elements can include points, rewards, badges, challenges, competitions,
leaderboards, leveling-up, and avatars (3, 4). Similar concepts to gamification include serious
games—a game whose primary objective is not for entertainment but for skill acquisition—and
simulations—virtual representations of real-life events (5). The distinctions between these
concepts are often blurred. The goal of gamification is to target individuals with limited
motivation for change and—by providing extrinsic rewards—builds intrinsic motivation (3, 4).
These strategies involve goal setting, feedback, reinforcement, and social connectivity (1, 3, 5).

Gamification was initially used in business to increase consumer engagement with
advertisements, but the health care industry was quick to follow. There is now almost
ubiquitous representation of gamification in weight loss, medication compliance, and fitness
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FIGURE 1 | A summary of the potential application features.
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mobile applications (5, 6). However, few studies focus on the use
of applications in the perioperative period. PubMed contains 49
articles using the search terms “gamification” and “surgery”,
with focus largely on either surgical education or recovery
from orthopedic procedures. Adding “machine learning” or
“artificial intelligence” to the search terms yields no results.
Nevertheless, there is interest in developing such tools.
Michard reviewed potential uses of similar mobile applications
in different perioperative settings, acknowledging that their
full potential has yet to be reached (7). Similarly, Davaris et al.
called for more digital games in improving the health literacy
of surgical patients (8).

Research into conventional shared decision-making activities
has revealed limited efficacy. A Cochrane review of forty studies
showed that various combinations of personal and technological
interventions may slightly improve mental health-related quality
of life outcomes but had no difference in physical health-related
quality of life outcomes or in regret to undergo an operation (9).
These interventions were found to have both low retention and
poor usability by both patients and providers. However, as
health care decisions involve greater complexity, we need tools
to help patients become “co-producers, co-designers, and co-
producers” in their surgical plan (10).
Frontiers in Surgery | www.frontiersin.org 2
In this paper, we will use a theoretical application to illustrate
how machine learning can integrate with gamification for
improved outcomes in elective operations. A summary of the
potential application features are given in Figure 1.

The Patient Avatar
In elective surgery, the initial preoperative encounter between
patient and surgeon is in a controlled setting. At that
moment, the patient can be represented as a set of baseline
variables of laboratory values, imaging, and medical and
surgical history. In games, an avatar is a character that
represents the player, in this case the patient. In our
theoretical application, this avatar will initially be assigned
fixed variables that can be used to predict operative outcomes
and represent the start of the narrative as the patient and
their avatar navigate through pre- and post-operative challenges.

Various prediction models already exist to estimate a
patient’s baseline risk for post-operative outcomes. Linear
prediction models are well known to most surgeons and
include the American Society of Anesthesiologists Physical
Classification System (ASA), the National Surgical Quality
Improvement Program (NSQIP) Surgical Risk Calculator, and
Surgical Outcome Risk Tool (SORT). These models have good
2022 | Volume 9 | Article 896351
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accuracy for select postoperative complications and mortality
(11). However, patient variables and outcomes are not
independent, and the presence of multiple variables together
are often greater than the sum of their individual
contributions. Machine learning can account for this. Optimal
Classification Trees are one such technology that allow for
interpretable predictions. The Predictive Optimization Trees in
Emergency Surgery Risk (POTTER) calculator outperforms
ASA in predicting morbidity and mortality and is already
available in application form (12). MySureryRisk can pull data
from the Electronic Health Record, having evolved from a
generalized additive model to a one using deep learning to
provide real-time decision support (13, 14).

These techniques can be used to build an individualized
avatar with assigned values to post-operative risks, such as
wound complications, pulmonary issues, or cardiac events. A
patient will then be able to directly see where they stand prior
to a surgical intervention. This can be shown to a patient in
clinic to start the conversation of operative risk and tailor
decision-making to patient values and surgical options.

Pre-Operative Training
Rare is the perfect operative candidate. At initial consultation, a
surgeon will likely encourage their patients to reduce their risk
factors by exercising, eating well, quitting smoking, or taking
their medications.

A range of gamified health applications already exist to
improve specific conditions with demonstrated efficacy. This
has been improved with introduction of wearable technologies.
In the BE FIT trial, Patel et al. randomized patients to
wearable device that counted steps and gave feedback based
on performance (15). A substantial number of patients in the
intervention arm increased both the number of steps and
percentage of days above step goal. Improved rates of smoking
cessation and diabetes control have been demonstrated with
the use of wearables (15, 16). Similarly, artificial intelligence-
guided nutrition recommendations are being rapidly
integrated into smart phone applications (17).

Data uploaded from wearables, or manually entered into
smart phones, can be analyzed using machine learning
techniques. These can be used to upgrade the patient’s avatar,
or “level up” prior to surgery. Various challenges can be
placed, which include step goals, medication adherence,
weight loss targets, or incentive spirometry volumes. Post-
operative risks can be visibly downgraded, providing positive
feedback to the user. These goals can be forwarded to the
surgeon or family members, providing social support.

Hospital Course
Any operation is an injury inflicted onto a patient, decreasing
physiologic reserve. From a game perspective, the patient’s
avatar will have sustained a decrease in function from baseline
and it is up to the patient and their care team to navigate
them safely toward a full recovery.

From skin incision to leaving the hospital, our ability to
monitor patients has increased exponentially over the last
decade. First, machine learning is rapidly integrating itself
Frontiers in Surgery | www.frontiersin.org 3
into the operating room itself. Subtle changes in vitals
or laboratory values can suggest need for more intensive
monitoring after surgery or alert surgeons and anesthesio-
logists to potential hazards (18). While still in development,
the OR Black Box system (Surgical Safety Technologies,
Toronto, Canada) is working towards capturing audiovisual
and physiologic data to identify root-causes of complications
and near miss events post-operatively (19, 20). Moreover,
computer vision is now capable of tracking the motion of
laparoscopic or robotic instruments and may one day note
where surgeons have had to deviate from the standard
procedure (20–22). These technologies may soon be
available intra-operatively to identify risk for post-operative
complications.

Similarly, in intensive care units and wards, we can
continuously track not only vitals and labs, but also
movements, facial expressions, and behaviors (23, 24). This
allows for early identification of post-operatively complications
such as bleeding, anastomotic leak, cardiac events, delirium,
and failure to thrive (25, 26). This is particularly important in
preventing failure to rescue—the inability to prevent a death
secondary to a post-operative complication—and improving
postoperative triage decisions (18, 27).

Our theoretical application could provide feedback to both
the patient and the provider. Once a patient engages with
their avatar, they will see the steps they can take to increase
their odds of safe discharge. A mobile application could
provide reminders to complete pulmonary exercises, walk a
certain distance, or sleep during appropriate hours. At Cedar-
Sinai hospital, wearable activity monitors were used to
improve assessment of ambulation and were associated with
length of stay after eight commonly performed operations
(28). It could also track pain scores. Technology is already
available to track facial expressions for pain and delirium and
could work their way onto smart phone cameras (24).

These variables can be fed into their avatar to visualize
associated changes in risks of post-operative complication and
give patients a greater sense of agency in their immediate
post-operative recovery and update clinicians on where they
stand.

Post-Discharge Care
Post-operative outcomes are largely tracked to the 30- or 90-day
post-operative mark and long-term follow up is not necessarily
the specialty of the surgeon. However, patients can often face
chronic disability or changes in quality of life following their
procedure. How can machine-learning guided gamification be
used in this context? What does it mean to win the game?

Ideally, a patient will at least attain their pre-operative
baseline. Gamified apps can continue to the track the fitness
and medication compliance of their users but also track
quality of life outcomes (29–32). Goals for improved physical,
mental, social, and functional health can be set by the patient
and physician. Progress towards these goals may be tracked
remotely overtime. In a review of available telehealth
technologies, including gamified applications, Berton et al.
found that remote, virtual rehabilitation was not inferior to
2022 | Volume 9 | Article 896351
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in-person visits for clinical outcomes in orthopedic patients
(30). Smartphone accelerometer data has likewise already been
studied in post-surgical recovery monitoring (33). Incremental
progress towards recovery goals can be met with rewards,
whereas failure to achieve these goals can prompt referrals to
appropriate mental and physical therapists. Within the
immediate post-operative window, wearable technologies can
alert the patient of the need to return to the hospital.

Semi-supervised machine learning is being used in Physical
Medicine and Rehabilitation science where data from
accelerometers can be used to track gait, upper body motion,
and falls and predict recovery or decline (34–36). These may
track subtle movements or changes in physicality over time
that may not be appreciated by a patient undergoing slow
progress and may act as a motivating force. Wearable
technologies and smart phone applications can also alert
clinicians to risk of readmission. Kane et al. found that failure
to achieve baseline step counts was associated with risk of
readmission in colorectal surgery patients (37). A meta-
analysis of studies in mobile health applications used by
postoperative patients demonstrated reduced emergency
department visits and hospital admissions (38). Meanwhile,
deep learning has been trained to recognize skin lesions at a
degree comparable to board-certified dermatologists (39). In
surgery, applications for wound tracking are in various stages
of development, and one application, mPOWEr, is already
available for download (40, 41). Through pictures of their
surgical wound, patients can alert themselves and clinicians to
early identification of surgical site infections and wound
complications.

Finally, some patients may have a new physiologic baseline.
Several applications exist to assist with rehabilitation in this
setting. SCI Hard is a serious game designed by Michigan
Medicine for adolescents following spinal cord operations and
injury (42). The platform is built around arm impairment and
spasticity and teaches healthy behavioral strategies for these
patients. Integration with EEG and MRI studies can also
identify patterns of neuromuscular recovery (23, 34).

Having a mobile application with regular, postoperative patient
engagement could aid in patient recovery and reduce readmissions.

Surgery, Games, and the Metaverse
While perhaps decades away, the integration of healthcare into
the notion of an extended reality is highly likely. The concept of
the metaverse is modeled off of ideas in literature and the
massive multiplayer online games currently enjoyed by
millions of users (43, 44). As avatars in the virtual world
become ever more accurate representations of us, so too does
the possibly of charting the different paths these avatars can
take when subjected to a physiologic insult. These “digital
twins” will be essential for guiding both physician and patient
decisions (45). In addition, telemonitoring of our patients,
both in the hospital and outside, will become a regular part of
healthcare, expanding access to care, and ideally optimizing
brick and mortar resources. However, these concepts are still
in their infancy and deserve both further imagination and
dedicated study in the coming years.
Frontiers in Surgery | www.frontiersin.org 4
Limits of Gamification for Surgical Patients
There are several limitations to the use of gaming concepts in
healthcare. First, the notion of using game-strategies in
possibly life-threatening illness may risk trivializing the patient
experience. Design strategies must create an appropriate
format to avoid alienating the user. Similarly, in patients who
are extremely debilitated, games may be demotivating when
they see that, no matter their actions, risks for complications
after surgery remain high. It will be important to calibrate
points and rewards based on incremental improvements.

Gamification can often appeal to those who need it least.
Fitness applications are generally used by those who are
already healthy. These applications must be designed to be
engaging and result in both perceived and tangible rewards. A
meta-analysis by the Edwards et al. used application rating as
a proxy for health benefits and were not able to identify a
relationship between specific game strategies and rating,
though the users gave high ratings overall (46). In a systemic
review, Looyestyn et al. showed that 40% of gamified
approaches failed to improve motivation and engagement
(47). This may be a result of personal preferences. While
some may be motivated by leaderboards, others will prefer
simple point systems. Still more will not engage well with
technology at all. Researchers are currently working on
personalized games that can adjust the framework of the game
based on user preferences and game-design principles (48).
These too can be guided by semi-supervised machine learning
strategies. An ideal application would adapt to the user as
they succeed or fail to meet certain goals.

Finally, there are ethical considerations. There is a danger in
constantly collecting data on our behaviors, which may be used
to adjust insurance policies or patient billing. Operating room
Black Box systems have clear medicolegal implications if they
were made available outside of Morbidity and Mortality
conferences (20). Many of these applications are poorly
regulated. In the UK, the National Health Service (NHS)
Health Apps Library was initially launched in 2013 to provide
lists of trusted applications but faltered when these
applications were found to be sharing health information with
developers (49). Relaunched in 2017, it continued to have
difficulties with assessing application safety, privacy,
interoperability, and useability; it was again decommissioned
in 2021 (50). Without extensive review and testing of these
applications by surgeons and perioperative care providers, we
may inadvertently cause harm.

Gamification is just one strategy in a larger armamentarium
for improving patient-surgeon decision making and outcomes.
CONCLUSIONS

Gamification may render the technologies of machine learning
more transparent to patients and their providers. In our
theoretical application, a patient is assigned an avatar with a
baseline risk profile for a specific operation. This avatar may
“level up” as it progresses, along with its human counterpart,
through various challenges of improved exercise, diet, and
2022 | Volume 9 | Article 896351
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medication compliance. The avatar, like the patient, will
undergo a decline physiologic reserve following an operation.
Through machine-learning enabled interpretation of vitals,
laboratory values, telemetry, movements, and behaviors, the
avatar’s risk profile for post-operative complications can be
visibly changed through patient actions, giving tangible
feedback. After discharge, prompts for rehabilitation exercises
and wound monitoring may lead to appropriate use of
readmission, early clinic visits, or continued observation. With
integration into the electronic health record, these applications
may alert patients and physicians of impending complications
Frontiers in Surgery | www.frontiersin.org 5
before the patient is fully aware of a problem. Gamification
through mobile applications is a promising strategy to bring
machine learning into routine clinical practice.
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