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Infectious and sterile inflammation is induced by activation of innate immune cells. 
Triggering of toll-like receptors by pathogen-associated molecular pattern or dam-
age-associated molecular pattern (PAMP or DAMP) molecules generates reactive 
oxygen species that in turn induce production and activation of pro-inflammatory 
cytokines such as IL-1β. Recent evidence indicates that cell stress due to common 
events, like starvation, enhanced metabolic demand, cold or heat, not only potenti-
ates inflammation but may also directly trigger it in the absence of PAMPs or DAMPs. 
Stress-mediated inflammation is also a common feature of many hereditary disorders, 
due to the proteotoxic effects of mutant proteins. We propose that harmful mutant 
proteins can induce dysregulated IL-1β production and inflammation through differ-
ent pathways depending on the cell type involved. When expressed in professional 
inflammatory cells, stress induced by the mutant protein activates in a cell-autonomous 
way the onset of inflammation and mediates its aberrant development, resulting in 
the explosive responses that hallmark autoinflammatory diseases. When expressed 
in non-immune cells, the mutant protein may cause the release of transcellular stress 
signals that trigger and propagate inflammation.

Keywords: autoinflammatory syndromes, endoplasmic reticulum stress, iL-1β, inflammation, monocytes, NLrP3 
inflammasome, oxidative stress, toll-like receptor

iNtrODUctiON

The term “autoinflammation” (1) groups syndromes with different etiologies characterized by sys-
temic inflammation in the absence of detectable infections and/or autoimmunity. Autoinflammatory 
diseases are disorders of the innate immune system, sharing recurrent episodes of fever, rash, 
joint pain, neutrophilia, and increased inflammatory markers. Most of them are monogenic, and 
the causative gene relates to the innate immune system. Examples are MEFV/pyrin in familial 
Mediterranean fever (FMF), TNFRSF1A/TNF receptor type 1 in TNF receptor-associated periodic 
syndrome (TRAPS), and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-
containing 3 (NLRP3) in cryopyrin-associated periodic syndromes (CAPS) (2).

Abbreviations: CAPS, cryopyrin-associated periodic syndromes; DAMPs, damage-associated molecular patterns; ER, 
endoplasmic reticulum; IL, interleukin; NLRP3, nucleotide-binding domain, leucine-rich-containing family, pyrin domain-
containing 3; NOX, NADPH oxidases; PAMPs, pathogen-associated molecular patterns; ROS, reactive oxygen species; TLRs, 
toll-like receptors; TRAPS, TNFRSF1A/TNF receptor type 1 in TNF receptor-associated periodic syndrome; UPR, unfolded 
protein response.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2017.00345&domain=pdf&date_stamp=2017-04-04
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2017.00345
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:anna.rubartelli@hsanmartino.it
https://doi.org/10.3389/fimmu.2017.00345
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00345/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00345/abstract
http://www.frontiersin.org/Journal/10.3389/fimmu.2017.00345/abstract
http://loop.frontiersin.org/people/94457
http://loop.frontiersin.org/people/411057
http://loop.frontiersin.org/people/411008
http://loop.frontiersin.org/people/22709


2

Carta et al. Stress in Autoinflammatory Disorders

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 345

The reversal of clinical symptoms in CAPS patients upon 
treatment with recombinant IL-1 receptor antagonist (Anakinra) 
or with IL-1β blocking agents (e.g., Canakinumab, a neutralizing 
antibody) provided compelling ex adjuvantibus evidence for the 
key role of IL-1β (3). The efficacy of anti-IL-1 drugs suggested 
that “gain-of-function” mutations in NLRP3, a central compo-
nent of the inflammasome, cause uncontrolled IL-1β production, 
in turn responsible for the severe inflammatory symptoms (4, 5). 
Less expectedly, the same drugs displayed strong therapeutic 
effects also in autoinflammatory diseases, where the causative 
gene is not directly involved in IL-1β production and regulation 
(2, 3). A representative case is TRAPS, a disease characterized 
by recurrent episodes of long-lasting fever, pain, and fasciitis. 
Despite TRAPS is caused by mutations in p55 TNF receptor type 
I, patients showed no or modest response to TNFα inhibition 
(6), whereas IL-1β-blocking agents have high efficacy (7). These 
observations suggest that the presence of a mutated protein in 
inflammatory cells, independently from its function, activates 
mechanisms converging on dysregulated IL-1β secretion.

In this perspective article, we propose a pro-inflammatory 
role for cell stress and the responses it elicits in some hereditary 
diseases, and suggest that stress is a central player in the patho-
physiology of autoinflammatory disorders, due to its presence in 
innate immune cells.

stress AND iNFLAMMAtiON

Inflammation is traditionally defined as a reaction to infectious 
or sterile injuries, aimed at recruiting molecules and cells of the 
immune system to the tissue where the damage is taking place 
and restoring homeostasis. Inflammation is initiated by activa-
tion of pattern recognition receptors on inflammatory cells, by 
two subclasses of ligands responsible for infectious and sterile 
inflammation, respectively (8, 9): pathogen-associated molecular 
patterns and damage-associated molecular patterns (PAMPs and 
DAMPs). The former are part of pathogens, while the latter are 
components of cells or extracellular matrix released or degraded 
upon cell and tissue damage. Additional factors concur in 
determining the onset, duration, and intensity of inflammatory 
responses. Among these, particularly important is cell stress due 
to starvation, enhanced metabolic demand, cold or heat, altered 
proteostasis. The most common and well studied cell stresses are 
endoplasmic reticulum (ER) stress and oxidative stress that are 
counteracted by highly conserved responses. These responses 
share common traits, for example, eIF2α phosphorylation, with 
transient translational inhibition and transcriptional activation of 
chaperones and antioxidants (10). This integrated stress response 
prevents the toxicity caused by misfolded proteins [named “pro-
teotoxicity” (10)] and limits reactive oxygen species (ROS)-based 
vicious circles. If excessive or prolonged, however, virtually all 
stress responses become maladaptive and induce inflammation 
due to activation of chemokine genes or, in case of cell damage, 
release of DAMPs that recruit inflammatory cells (11).

Oxidative stress is due to excessive production and/or defi-
cient detoxification of ROS. These can be abundantly generated 
by mitochondria during oxidative phosphorylation (12) and by 
flavoenzymes like NADPH oxidases (NOX) (13). In cells of the 

innate immune system, phagocytosis and toll-like receptor (TLR) 
triggering activate NOX to produce abundant H2O2 (14). H2O2 is 
released into phagosomes to clear microorganisms and induces 
pro-inflammatory cytokines and inflammation: however, it may 
generate oxidative stress (13, 14). ROS are also produced in the 
ER as a by-product of oxidative protein folding, particularly in 
conditions of ER stress, which elicit the unfolded protein response 
(UPR) (15, 16). ER stress occurs when misfolded proteins accu-
mulate in the secretory pathway, and also during infections, lipid 
unbalance, and other metabolic defects (15). UPR, a complex 
set of intracellular signaling pathways, has evolved to respond 
to protein misfolding and restore ER homeostasis. In addition, 
UPR signaling has a recognized role in immunity and inflam-
mation (16). Oxidative and ER stresses are intimately linked: the 
former can induce misfolding of secretory proteins impacting 
disulfide bond formation. On the other hand, ER stress leads to 
ROS production (17). In concert with ROS, a prolonged UPR 
can induce NF-κB-mediated chemokine production and recruit 
inflammatory cells. In turn, PAMP or DAMP can potentiate the 
UPR (16).

These vicious circuits are evident in many chronic disorders 
such as type 2 diabetes (18), obesity (19), lung respiratory disease 
(20), inflammatory bowel disease (21), non-alcoholic fatty liver 
disease (22), and cancer (23).

Also in many hereditary diseases, the mutant protein may alter 
proteostasis: if this occurs, stress and inflammation are induced. 
For example, in cystic fibrosis, different mechanisms contribute 
to the inflammatory lung disease that is the major cause of 
morbidity and mortality in patients affected by this disease. 
Firstly, the mutated cystic fibrosis transmembrane conductance 
regulator (CFTR) protein cannot fold properly into the ER lumen, 
causing accumulation of misfolded CFTR aggregates, ER stress, 
and UPR. In turn, UPR activates NF-κB inducing production of 
chemokines, such as IL-8, that recruit polymorphonuclear leu-
kocytes (PMN). PMN increase the oxidative burden in the lung, 
with generation of ROS that amplify the production of IL-8 thus 
locally increasing PMNs (24). Moreover, upregulation of ROS 
inhibits autophagy with consequent accumulation of protein 
aggregates and lung inflammation (25). Finally, the mutant CFTR 
transporter is unable to channel antioxidants into the airways: 
oxidative stress is worsened and concurs to the hyperinflamma-
tory phenotype (24).

In Duchenne muscle dystrophy, due to the defect of dystro-
phin, oxidative stress and UPR-activated NF-κB interactively 
promote fiber necrosis. Recruited macrophages generate 
inflammatory cytokines and ROS, thereby triggering vicious 
inflammatory waves (26, 27).

Differently from autoinflammatory disorders, in these cases, 
the mutant protein, being synthesized by epithelia or muscle, 
determines the release of stress signals that recruit leukocytes 
ultimately causing inflammation. These signals include small 
molecules like ROS and antioxidants, and proteins such as 
thioredoxin (28) and chemokines (as described above for cystic 
fibrosis, 24), which induce inflammation transcellularly, i.e., by 
recruiting and activating other cells (Figure 1A). When instead 
it is a professional inflammatory cell that produces a proteotoxic 
mutant, inflammation is generated in a cell-autonomous way and 
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FigUre 1 | Mutant proteins induce more severe inflammation when expressed in professional inflammatory cells. (A) Non-inflammatory cells 
(e.g., epithelia or muscle), which express mutant proteins that undergo aberrant folding in the ER, exhibit ER stress and increased ROS, and promote NF-κB-
mediated chemokine induction. The release of chemokines recruits inflammatory cells that secrete pro-inflammatory cytokines, ultimately causing inflammation. 
(B) Inflammatory cells from cryopyrin-associated periodic syndrome patients, which express mutated NLRP3, display cell stress with high reactive oxygen species 
(ROS) and antioxidant levels resulting in a precarious redox equilibrium that is deranged by toll-like receptor (TLR) stimulation. The high ROS levels facilitate autocrine 
ATP secretion, with increased and accelerated IL-1β secretion. When the antioxidant responses collapse, oxidative stress occurs with inhibition of protein synthesis 
responsible for the decrease of IL-1Ra secretion. Dysregulated cytokine production results in explosive inflammation. ROS are released in both conditions, triggering 
loops of amplification of stress and inflammation.
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the onset, development, and outcome of it will be much worse for 
the host (Figure 1B).

stress iN cAPs MONOcYtes

This hypothesis is supported by the observation that monocytes 
from CAPS patients, which express mutated NLRP3 molecules, 
display redox distress even before PAMP stimulation. Why 
mutant NLRP3 causes stress is unclear. A possible explanation 
is that it changes the affinity for the other components of the 
inflammasome complex (4), causing a disruption of the cyto-
solic homeostasis with induction of stress and integrated stress 
responses (10). Whatever the reason of NLRP3-induced stress, 
CAPS monocytes have higher basal ROS levels than monocytes 
from healthy donors but also higher expression of antioxidant 
systems (29–31) that allow them to maintain the redox homeo-
stasis despite their stressed state. This equilibrium is, however, 
precarious, and CAPS monocytes can easily be induced to 
overreact, through pathways that largely depend on extracellular 
ATP, the most common inflammasome-activating signal (32). 
ATP is released by injured tissues, activated platelets, and other 
cells through pathways that are still ill defined (32). Unlike other 
pro-inflammatory cells, however, human monocytes do not need 

ATP from external sources. The accumulation of ROS upon TLR 
triggering (33) induces them to secrete ATP (34) that autocrinally 
or paracrinally stimulates cognate purinergic receptors (P2X7R) 
at the cell surface (32, 34). The ensuing lower intracellular [K+] 
induces inflammasome assembly and IL-1β secretion (35). The 
higher ROS levels in CAPS monocytes following TLR triggering 
facilitate ATP release that increases and accelerates IL-1β secre-
tion (31) (Figure 1B).

Cell stress also decreases the threshold for IL-1β processing 
and secretion: minute amounts of TLR agonists, that in healthy 
monocytes are sufficient to trigger pro-IL-1β synthesis but not 
its processing and secretion, drive large amounts of IL-1β release 
in CAPS monocytes (31). Probably owing to their “pre-activated 
state,” small doses of TLR agonists increase ROS, inducing 
abundant ATP release, and IL-1β processing and secretion (31). 
This circuit explains why small traumas or infections that go 
undetected in healthy subjects can cause severe inflammatory 
manifestations in CAPS patients.

The effects described above occur soon after TLR stimula-
tion. In later phases, the precarious redox equilibrium of CAPS 
monocytes is broken as antioxidant responses collapse. CAPS 
monocytes display damaged mitochondria (30), a further 
indication of the presence of oxidative stress [(12), Figure 2]. 
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FigUre 2 | A model for stress-mediated cytokine secretion in cryopyrin-associated periodic syndromes (cAPs) monocytes. (A) In healthy monocytes, 
toll-like receptor (TLR) stimulation induces the production of low amounts of reactive oxygen species (ROS), rapidly neutralized by the antioxidant response. The 
ROS-induced ATP release is low, resulting in processing and secretion of little amounts of IL-1β through secretory lysosomes. The anti-inflammatory cytokine IL-1Ra 
is produced, contributing to switch off the inflammatory response. (B) In CAPS monocytes, small doses of TLR agonists induce a strong increase of ROS resulting in 
release of large amounts of endogenous ATP and IL-1β. The state of stress may trigger pyroptotic secretion of IL-1β through activation of caspase-11/4 that cleaves 
gasdermin D (GSDMD) generating a toxin-like N-terminal peptide that forms pores on the plasma membrane. Mature IL-1β, cleaved by the NLRP3 inflammasome, 
will be released through gasdermin D-formed pores. Later, failure of antioxidant response and mitochondria dysfunctions lead to severe oxidative stress, with 
impaired production of IL-1Ra. NLRP3*, mutated NLRP3.
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Interestingly, mitochondria are normal in CAPS lymphocytes, 
which do not express NLRP3, and in monocytes from healthy 
donors, which express wild-type NLRP3 (30), suggesting that 
mutant NLRP3 is indeed the causative agent of the oxidative 
stress. In this crucial phase, stress impacts also the produc-
tion of IL-1Ra, normally secreted by activated monocytes a 
few hours after IL-1β to limit inflammation [(30), Figure  1]. 
Thus, deficient IL-1Ra production likely concurs in increas-
ing the severity of the disease. Highlighting the dangerous 
stress-inflammation liaisons, insufficient IL-1Ra production 
may depend on eIF2α phosphorylation. Indeed, TLR-activated 
monocytes from CAPS patients, but not from healthy donors, 
display attenuated protein translation (30). Thus, IL-1ra mRNA 
is transcribed but stress prevents translation. Once more, oxida-
tive and ER stress appear to be linked because IL-1Ra secretion 
is restored by antioxidants.

HYPer-stiMULAteD HeALtHY 
MONOcYtes recAPitULAte tHe 
BeHAviOr OF cAPs MONOcYtes

The above observations suggest that the increased IL-1β/IL-1Ra 
ratio in CAPS depends on the synergistic effects of NLRP3 muta-
tions and stress. Combinations of PAMPs that stimulate surface 
and intracellular TLRs (LPS, R848, zymosan) were then used to 
induce a CAPS-like stress state in healthy monocytes (36). When 
given alone, each TLR agonist triggered the secretion of IL-1β and 
IL-1Ra by healthy monocytes. When provided simultaneously, 

however, they induced a superstimulation resulting in enhanced 
secretion of IL-1β but impaired release of IL-1Ra (36). The 
underlying molecular mechanisms are similar to those described 
in CAPS monocytes (29–31): super-stimulation induces ROS 
accumulation, responsible of the massive ATP release and IL-1β 
secretion, and of the consequent oxidative stress leading to inhibi-
tion of IL-1Ra production, despite normal IL-1Ra mRNA levels. 
Antioxidants restore IL-1Ra release by super-stimulated healthy 
monocytes, confirming the role of oxidative stress and recapitu-
lating the phenotype of CAPS monocytes (36). However, the latter 
are constitutively stressed by the mutation (37) so that stimulation 
with low doses of a single TLR agonist strongly increases stress 
that drives prompt and abundant IL-1β secretion and, in a second 
phase, lowers IL-1Ra (30, 31). In healthy monocytes with balanced 
basal redox state (29, 36), instead, multiple TLR co-stimulation 
is needed to cause cell stress and derange the normal cytokine 
network (36). These observations may suggest that, in CAPS, 
mutations in NLRP3 are more important indirectly, triggering 
and enduring stress, than directly activating inflammasome.

DiFFereNt MecHANisMs FOr iL-1β 
secretiON: DOes stress DeterMiNe 
tHe PAtHWAYs OF secretiON?

Since IL-1β is a potent and potentially dangerous mediator of 
inflammation, its production is tightly controlled virtually at all 
levels, including post-translationally (38, 39). IL-1β is synthesized 
as an inactive precursor, pro-IL-1β, and processed mainly by 
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caspase-1, which in turn must be activated by the inflammasome. 
Only mature, 17  kDa IL-1β is then secreted. The underlying 
mechanisms are still poorly understood. Indeed, IL-1β secretion 
has been a problem for cell biologists, since it was shown that the 
cytokine lacks a secretory signal sequence (40). Initially, a popular 
view was that the cytokine was released by dying cells. However, 
further studies demonstrated that secretion of mature IL-1β is an 
active process, requires living cells, avoids the ER-Golgi route, 
and involves secretory lysosomes (41–44). In addition to this 
pathway, recent studies revealed another route for IL-1β release, 
involving pyroptosis. This is a highly inflammatory form of pro-
grammed cell death, which has been proposed to mediate IL-1β 
secretion under condition of strong stimulation such as infection 
with intracellular pathogens (45–48). According to this model of 
secretion, stressful stimuli (e.g., intracellular LPS) activate cas-
pase-11 (the mouse homologous of human caspase-4). In turn, 
caspase-11 cleaves gasdermin D, generating toxin-like peptides 
that form pores on the plasma membrane, which allow secre-
tion of mature IL-1β, but not of the 33 kDa precursor (48, 49). 
It remains to be determined how the pores guarantee transport 
selectivity.

The two pathways are not mutually exclusive, and the choice 
of lysosomal or pyroptotic secretion may depend on the strength 
of pro-inflammatory signals (Figure 2). Mild stimuli, such as 
low amounts of PAMPs triggering surface bound TLRs, would 
induce the less efficient but more regulated lysosomal pathway. 
Accordingly, low doses of LPS induce pro-IL-1β synthesis, but 
not ATP secretion (31): in the absence of a second trigger, 
therefore, pro-IL-1β is degraded by lysosomal proteases (31, 
42) preventing unnecessary inflammation. Stronger stimuli, 
such as intracellular infections with gram-negative bacteria 
(45) could instead induce pyroptosis, causing massive release 
of IL-1β and possibly DAMPs, and dysregulated cytokine 
production (36).

Support to this hypothesis comes from our preliminary obser-
vations that human monocytes display more IL-1β-containing 
lysosomes when stimulated with LPS alone than with three 
agonists simultaneously triggering extra- and intracellular TLRs 
(unpublished results). Moreover, only in monocytes stimulated 
with extracellular LPS alone, do drugs interfering with lysoso-
mal function modulate IL-1β secretion. Conversely, caspase-4 
inhibitors block IL-1β release only in super-stimulated monocytes 
(unpublished results).

It is possible that the secretory lysosome-mediated mecha-
nism is more active in low pathogen load or small trauma, as 
a way to restore the homeostasis. Differently, the pyroptosis-
mediated secretion would intervene in severe inflammatory 
responses, characterized by strong or multiple stimuli such as 
it may occur in sepsis (50), diabetes (51) or cancer (52).

The ongoing stress could also determine the route of 
IL-1β secretion. Owing to the high ROS levels that favor ATP 
release, we predict that CAPS monocytes utilize preferentially 
the pyroptotic pathway. Accordingly, caspase-4 inhibition 
blocks IL-1β secretion by CAPS monocytes stimulated with a 
single TLR agonist, a condition that neither involves caspase-4 
nor induces pyroptosis in healthy monocytes (unpublished) 
(Figure 2).

ceLL-AUtONOMOUs PrOteOtOXic 
stress iN MONOcYtes iNcreAses 
iL-1β secretiON iN 
AUtOiNFLAMMAtOrY DiseAses

Increased IL-1β secretion has been reported in vitro by mono-
cytes from other autoinflammatory diseases, including FMF 
(53), TRAPS (54) hyperimmunoglobulinemia D syndrome (55), 
pyogenic sterile arthritis, pyoderma gangrenosum and acne 
(PAPA) (56), and also in the milder NLRP-12-associated periodic 
syndrome (57). As introduced above, anti-IL-1β therapies are the 
standard of care in these syndromes (58), suggesting that IL-1β 
is a key culprit. Nonetheless, the links between the mutated gene 
and IL-1β secretion are elusive. Remarkably, in these diseases, 
the mutant genes are expressed by monocytes that are under 
stress (53, 57, 59–61). It is tempting to speculate that stress and 
the ensuing responses converge to induce excessive IL-1β secre-
tion, possibly switching from lysosomal to pyroptotic secretion 
(Figure 2). The consequences on disease severity are many, since 
pyroptosis-mediated secretion would alter the networks of pro- 
and anti-inflammatory cytokine production.

Stress-induced hyperinflammatory response may occur in 
other inherited diseases that are not (yet) classified as autoin-
flammatory diseases. This is the case of chronic granulomatous 
disease (CGD), a disorder linked to mutations in NOX2. 
Because of these mutations, phagocytes of CGD patients fail to 
produce ROS with consequent deficiency in bactericidal activ-
ity and increased susceptibility to infections (62). In addition, 
and consistent with the evidence that CGD is associated with 
increased inflammasome activation (63–65), patients often 
develop hyperinflammatory traits. Moreover, Anakinra induced 
significant clinical improvement in two cases with colitis (66). 
Thus, CGD was defined as a potentially lethal combination of 
immunodeficiency and excess inflammation (67), most likely 
due to cell-autonomous stress responses. Likewise, evidence is 
accumulating for a role of stress and inflammation in the patho-
genesis of Gaucher disease, the inherited deficiency of lysosomal 
glucocerebrosidase (68). Monocyte/macrophages from these 
patients display increased secretion of IL-1β that depends on 
increased inflammasome activation, in turn due to the impaired 
autophagy secondary to the lysosomal enzyme deficiency (68). 
A further example is mucopolysaccharidosis type I, where, in 
innate immune cells, stress induced by lysosomal storage defects 
can upregulate immunity-related genes. In turn, these may be 
responsible for the severe inflammation-dependent pathologies 
observed in patients (69).

cONcLUsiON AND PersPectives

In essence, we propose that stress hallmarks monocytes from 
patients affected by autoinflammatory syndromes (and pos-
sibly other inherited diseases) that express mutant proteins not 
necessarily directly involved in IL-1β production. Stress induces 
inflammation and is, therefore, a key pathogenetic factor in these 
diseases. The stress levels contribute to determine the severity 
of the disease, and so do individual differences in resistance to 
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oxidative stress, as proposed for chronic inflammation-mediated 
diseases such as diabetes (70). Accordingly, we showed clear cor-
relations among basal stress, ongoing antioxidant responses, and 
disease severity in two CAPS patients sharing the same NLRP3 
mutation (31). Extending these concepts, we suggest that a simi-
lar stress-related mechanism may be operative in other genetic 
diseases, where the mutant protein is present in monocytes and 
inflammation participates to disease progression. Considering 
that individual tolerance plays a major role (71), improving the 
responses to stress represents a promising therapeutic opportu-
nity for these serious diseases.
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