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The Escherichia coli cyclic AMP receptor protein (CRP or catabolite activator protein, CAP) provides a textbook ex-
ample of bacterial transcriptional regulation and is one of the best studied transcription factors in biology. For al-
most five decades a large number of mutants, evolved in vivo or engineered in vitro, have shed light on the
molecular structure andmechanism of CRP. Here,we reviewpreviouswork, providing an overview of studies de-
scribing the isolation of CRP mutants. Furthermore, we present new data on deep sequencing of different bacte-
rial populations that have evolved under selective pressure that strongly favors mutations in the crp locus. Our
new approach identifies more than 100 new CRP mutations and paves the way for a deeper understanding of
this fascinating bacterial master regulator.

© 2019 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Studies of CRP date back to the earliest days of molecular biology,
shortly after the model for negative lac gene regulation was presented
[25]. In the decade following Jacob and Monod's groundbreaking dis-
coveries, several reports on positive gene regulation were published in-
cluding catabolite activation by CRP [14,15,69]. CRP is mostly known for
its global regulatory role in carbon catabolism in the model bacterium
Escherichia coli (E. coli): In the absence of readily metabolized carbon
sources such as glucose, the enzyme adenylate cyclase is activated, pro-
ducing cyclic AMP (cAMP) from ATP. cAMP binds and activates CRP, in-
creasing the affinity for DNA, which in many cases activate operons
holm).

. on behalf of Research Network of C
involved in the utilization of alternative carbon sources such as lactose
and maltose. However, CRP can also repress gene expression and has
been shown to regulate hundreds of genes in the E. coli genome, earning
it the status of “global” or “master” regulator (Fig. 1) [31]. In fact, beyond
the many specific binding sites experimentally validated in E. coli, CRP
exhibits unspecific DNA binding affinity and together these observa-
tions points towards a role more akin to that of a nucleoid-associated
protein involved in the organisation of the bacterial chromosome [55].

The first experimentally solved three-dimensional structure of CRP
bound to cAMP was published in 1981 [32], but for many years the ab-
sence of an experimentally determined structure of apo-CRP hindered
the understanding of the conformational changes that occur upon
cAMP binding [18,27]. Presently, only one crystal structure [62] and
one NMR structure [39] of wildtype apoCRP have been published.
Both structures indicate that large structural rearrangements take
place for DNA binding to occur. These include reorientation of the
omputational and Structural Biotechnology. This is an open access article under the CC BY
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Fig. 1. Network of global transcription factors and sigma factors in Escherichia coli. Illustrated is a) The sigma factors (orange circles) and the 14 biggest regulators by regulon size (grey
circles). The size of the circles is directly proportional to the sigmulon or regulon size by number of genes directly affected (RegulonDB 04-03-2019) [19]. Arrows designate regulation
of regulator expression; sigma factor transcription (grey arrows), activation (green, arrowheads), repression (red, perpendicular line ends) or dual regulation (blue, reverse
arrowheads) [26]. b) The sigma factors (orange circles) and 207 regulators (grey circles) of E. coli plotted by the number of promoters or binding sites recognized, respectively, and the
number of genes directly affected (RegulonDB 04-03-2019) [19].
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DNA-binding domain and stabilization of the backbone helix, but the
two different structures do not agree on the orientation of the C-
terminal domain. This observation, and the limited number of published
apo CRP structures, suggests that apoCRP may be unstable due to flexi-
bility of the C-terminal domain [44].

CRP is a 45 kDa homodimer (Fig. 2), with each monomer
consisting of 209 amino acids in two separate domains. The larger
N-terminal domain (residues 1–138) binds the allosteric effector
cAMP in the anti-conformation (residues 71, 72, 82, 83, 127 and
128) with reported binding constants in the range of 1–28 μM
[2,13,14,22,30,56]. The C-terminal domain (residues 139–209) houses
the DNA-recognition helix (residues 181–193) as part of a helix-turn-
helix (HTH) motif [6]. The N- and C-terminal domains are connected
by a hinge region (residues 135–138). In the absence of ligand, CRP
exists in a closed conformation (Fig. 2, left), where the HTH motif is
secluded inside the C-terminal domain. When cAMP binds the main
binding site, allosteric change stabilizes an open complex (Fig. 2,
Fig. 2. Illustration of functional domains in a closed and an open conformation of CRP. The loca
CRP-cAMP2 (right). The protein structures are from Protein Data Bank entries 3FWE (apo-CRP)
Version 2.3 Schrödinger, LLC.
right), resulting in the HTH motif protruding from the surface of the
protein, thereby enabling DNA binding. A secondary effector binding
site binds cAMP in its syn-conformation (residues 58, 135, 180) with
binding constants in the millimolar range likely to be of limited phys-
iological relevance [30,38]. In the presence of excess cAMP, both cAMP
binding sites in one monomer are occupied, resulting in a lower DNA-
binding affinity [38].

When CRP binds, the DNA is bent 90°, which likely significantly af-
fects protein-protein and protein-DNA interactions in promoter regions
[17,28,47,61] and several studies suggest that CRP is involved both in
recruiting the RNA polymerase and in post-recruitment regulation
[7,29,35,41]. In the case of transcriptional activation, regulation is medi-
ated by direct interactions with the RNA polymerase holoenzyme
through so-called activating regions (ARs). AR1 (residues 156–164) in-
teracts with the αCTD domain [36,46,63–66], AR2 (residues 19, 21, 96
and 101) with the αNTD domain [35,58] and AR3 (residues 52–55
and 58) with the sigma factor [4,41,42,58–60].
tions of functionally important CRP domains in the tertiary structure of apo-CRP (left) and
and 1ZRC (CRP-cAMP2) and were modified using the PyMOL Molecular Graphics System,
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Complementary to structural and biochemical studies, evolved and
rationally engineered mutations are imperative when elucidating pro-
tein structure and function. In this respect, CRP is probably one of the
best studied transcription factors. For several decades, mutant genera-
tion has been applied to study the physiological role and molecular
mechanism of CRP [37,45]. A comprehensive list of mutations identified
in CRP was previously assembled [37], but to our knowledge the differ-
ent approaches towards obtaining these CRP mutants have not been
reviewed previously. In light of recent high throughput sequencing
(HTS) approaches applied to crp mutants [48], we here aim at present-
ing a short overviewon themore than 40 years of exploration of the CRP
mutational space and in addition provide complementary new data on
deep sequencing of experimentally evolved crp, obtained in aging bac-
terial colonies. An overview of all CRP mutants reviewed here is
shown in Tables S1 and S2.

2. Evolved and Engineered Mutations in crp

The outcome of an evolution experiment is dependent on the
mutational space available under the given experimental condi-
tions, the genotype of the organism and the selection pressure ap-
plied. Evolution of CRP has been pursued by inducing mutagenesis
using e.g. UV radiation or chemical reagents [33,45] or by directly
targeting the crp gene with error-prone PCR [67], but several stud-
ies have also relied on spontaneously arising mutants [9,43,48,50].
In most studies, the CRP variants were generated in a cAMP-
deficient production strain (Δcya) and screened for mutations en-
abling fermentation of a carbon source such as lactose or maltose.
Such cAMP suppressor mutations were termed csm [33] and CRP
variants called CRP* [45] or CRPi [5].

In the 1970's, early after the discovery of CRP, researchers began iso-
lating csm, CRP* [5,12,45,51,54] and defective crp- mutants [3] mostly
under conditions of induced mutagenesis. However, the exact molecu-
lar nature of these mutants was unknown for some time due to the
lack of DNA sequencing and amplification technologies.

In 1985, Aiba and colleagues published a paper where they had ex-
posed a plasmid-borne crp gene to UV-radiation and selected for lactose
utilization in a Δcya strain. The obtained crp mutations in the isolated
strains caused amino acid substitutions in positions 53, 62, 141, 142
and 148 of the CRP protein [1]. It was noted that positions 53 and 62
were in vicinity of the cAMP binding site, but that the phenotypes dif-
fered in that only CRP D53H was activated by the alternative cyclic nu-
cleotide cGMP. The role of position 53 being located in the AR3 region,
possible interacting with sigma factors, was not discussed in this work
as AR3 was unknown at this time. Amino acids 141, 142 and 148 are
part of the D-α-helix and it was speculated that they were critical in
the allosteric transition, from the N-terminal domain to the DNA bind-
ing C-terminal domain, normally caused by binding of cAMP.

Around the same time, Garges and Adhya used crp-carrying phages
for infection and growth in a mutator E. coli strain for CRP mutant gen-
eration [21]. Phages carrying mutagenized crp variants were isolated as
positive lactose utilizing plaques in an Δcya background. The detected
mutations were in positions 72, engaged in cAMP binding, and again
in D-α-helix residues 141, 142 and 144.

The following year, Harman and colleagues sequenced and charac-
terized three CRP* mutants that previously were selected by different
methods [23,33,40,45]. The CRP mutation A144T in the D-α-helix was
again identified – in this case from a Δcya strain selected on xylose as
carbon source. A T127Imutation in the cAMPbinding sitewas identified
in combination with Q170K from a strain that complemented a CRP
binding site mutation designated L8 in the lac promoter [45]. This dou-
ble mutant showed a CRP* phenotype and was activated by cGMP, al-
though the physiological relevance of the latter was questioned by
Harman and colleagues. The individual effects of the 127 and 170muta-
tions were not explored further in this work. Finally, the mutation
L195R was evolved in the Δcya, crp T127I, Q170K mutant background
and the extra mutation enabled growth on arabinose in the absence of
cAMP [40]. The authors suggested that the increased positive charge
of this L195R mutation in the DNA binding domain caused an increase
in the affinity for DNA.

In a follow-up study by Garges andAdhya, CRP* suppressormutants,
causing a loss of the G141S and A144T CRP* phenotypes on lactose,
were identified as T127A and R169C/E171G, respectively [20]. In case
of the G141S CRP* mutant, it is perhaps not surprising that a mutation
near the cAMP binding (T127A) can neutralize cAMP independence.
Similarly, it was noted that amino acids near the twomutations in posi-
tions 169 and 171, identified in the CRP A144T mutant background,
were previously suggested to interact with the amino acid Y63 near
the cAMP binding site, but also could be in direct interaction with the
DNA [57].

Mutations in positions 141, 141 and 144 again occurred in a study
that described the selection of CRP*mutants based on growth on lactose
in a Δcyamutant background [53]. In this case, two different mutations
in position 144, A144T and A144E, were found in combination with
T28K. These two combinations were found to be toxic when expressed
on a multicopy plasmid, whereas two other D-helix mutations T140K
and G141D were tolerated in high copy.

Another broad category of CRP mutations, more generally
termed positive control mutants (pcm), were selected for their in-
ability to induce transcription while retaining binding to specific
CRP DNA binding sites. The first attempt at creating CRP pc mu-
tants introduced the mutations E171Q, E171K and Q170K based
on similarity to the lambda repressor, but these caused different
effects at different promoters [4,24]. A more clear pcm phenotype
was observed with the mutation CRP H159L in AR1 and second
site revertants was identified as K52N and K52Q in AR3 [4].
Eschenlauer and Reznikoff screened for CRP mutants that re-
pressed the gal promoter but had lost their ability to induce the
lac promoter [16]. This way, they identified mutations in cAMP
binding position 72, and in position 162 in the AR1 region. In a
similar study by Zhou and co-workers, plasmid-harbored crp
genes were mutagenized by error-prone PCR and screened in an
engineered Δcya strain for defective ribose fermentation, while
retaining the ability to repress a modified lac promoter [66]. The
identified mutations were in positions 156, 158, 159, and 162
that are all part of AR1. Finally, Niu and co-workers identified mu-
tations in the AR1 region that could not activate transcription of
Class I and II CRP-dependent promoters as well as the mutations
H19L, H19Y, H21L and K101E in the AR2 region that were only de-
fective in Class II promoter activation [35].

Experimental evolution of CRP has also addressed the complex inter-
play between CRP and the CytR transcription factor. A CytR-repressed
tsx promoter construct was screened in combination with a
mutagenized crp plasmid library for CRP variants that were dominantly
activating the promoter. This approach identifiedmutations in positions
17, 18, 108 and 110 in CRP – all in the vicinity of AR2 [52].

Recent work has again explored CRP mutants that evolve
spontaneously under different selection regimes. Sievert and co-
workers observed that by growing an E. coli strain in high levels of the
(CRP-dependent) carbon source xylose, the CRP G141D mutation
again was found to evolve, promoting increased xylose utilization and
growth rate [50]. In adaptive laboratory evolution for improved fitness
in minimal medium supplied with lactate, the CRP mutations L150Q
and I165T evolved [9]. These are both located near AR1 and presumably
cause a changed interaction with the RNA polymerase.

In summary, adaptive mutations identified in the previous four
decades of CRP studies (Fig. 3) occur predominantly in the cAMP
binding site, the D-α-helix, and in the RNA polymerase activating
domains AR1 and AR2. These three categories are intuitively easy
to understand as they likely either directly affect ligand binding,
ligand-induced allosteric transitions, or the productive interaction
with the core RNA polymerase, respectively. Mutations around



Fig. 3. Illustration of adaptivemutations identified in CRP a) The locations of functionally important CRP domains in the primary amino acid sequence. b) Locations ofmutations identified
in the primary and tertiary structure of CRP in previous studies (upper black bar and structure to the left) and in our laboratories by deep sequencing (lower black bar and structure to the
right). The number of variants identified per residue is colour coded (black: 0 variants, yellow: 1 variant, orange: 2–3 variants, and red: more than three variants).
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position 170 are also frequently observed but are more difficult to
interpret and have been discussed both to directly affect interac-
tions with cAMP and the DNA.

To supplement crpmutants that evolve under selective pressure, the
advent of PCR enabled hypothesis-driven site-directedmutagenesis ex-
ploring the role of specific amino acid residues in the different domains
of the CRP protein. As summarized in Table S2, these are often studied in
areas wheremutations evolve naturally (the cAMP-anti binding pocket,
the D-α-helix and the activating regions AR1 and AR2), but have also
explored mutations in e.g. the hinge region that connects the C- and
D-helices, AR3, and the DNA binding domain in the C-terminus.

In an experiment designed to study adaptation when bacteria age
and starve over two months, our recent work identified a large number
of CRP mutants. By plating a Δcya E. coli strain on MacConkey agar sup-
plied with the CRP-dependent carbon source maltose, mutant red “pa-
pillae” - or “secondary colonies” - appeared that were able to use the
extra carbon source. 96 mutants were selected for genome sequencing
based on their different CRP* phenotypes and their temporal appear-
ance. In addition, an additional approximately 500 mutants had their
crp loci sequenced by PCR amplification and Sanger sequencing [48].
35 different missense mutations were identified in crp. Seven of the
identified mutations, S62F, T127I, G141D, G141S, A144T, A144E and
L195R were previously observed in adaptive evolution studies and
have all been classified as CRP*. Other crpmutations havenot been iden-
tified elsewhere, including P110Q, L134M, T140P/R/K, A144K, G162S
andM189K. The CRPmutant S62Y has not been identified before. How-
ever, the substitution of serine to phenylalanine (S62F) has been ob-
served by induced mutagenesis and screening on lactose previously
[1]. The Q170K mutation was always observed in combination with an
additional crp mutation such as T140R, A144T/E or M198K [48]. Inter-
estingly, a similar trend was observed in the study by Harman and co-
workers in which the Q170K mutation was paired with T127I or T127I
and L195R [23].
3. Deep Sequencing of CRP in Aging Bacterial Populations

We reasoned that we could obtain deeper insights into the muta-
tional space of CRP by growing a large number of different bacterial col-
onies, followed by deep sequencing of the crp locus. To this end, we
followed the same workflow as previously described [48], but now iso-
lated DNA from more than 500 colonies per plate at different time
points, followed by PCR amplification of crp and HTS.

The new data presented here identifies more than 100 new crpmis-
sense mutations (Figs. 3–4, Table S3), although we only observed a sig-
nificant increase in different mutations towards the end of the 35 days.
The HTS approach provides a previously unmatched look at the muta-
tional landscape of CRP, revealing novel insights into the evolutionary
response of a strain during a selective event. However, a tradeoff for
the sequencing depth is its inability to distinguish between amplifica-
tion of a single mutation and multiple occurrences of the same muta-
tion. Thus, mutations detected by this HTS approach can only be
roughly categorized into those appearing in higher frequencies (likely
due to a clear fitness advantage leading to a dominating population)
or those that appear in low frequencies. Similar, we cannot distinguish
between mutations that occur alone and those that only occur in com-
binationwith othermutations such as described above for themutation
Q170K.

The data presented in Figs. 3 and 4 is generallywell alignedwith pre-
vious observations. Several high-frequency mutations are observed in
the residues D53, S62, T140, G141, A144, Q170, and relatively few mu-
tations are seen in the C-terminus of CRP. In addition, DNA was isolated
from aging bacteria in the presence of two CRP ligands: 0.1 mM cAMP
and 0.5 mM cGMP, and with parental strains that already contained
the frequently observed CRP* mutants A144T and A144E (Fig. 4).
From plates supplemented with the two cyclic nucleotides, binding
site mutations again dominate together with mutations in the D-α-
helix. Interestingly, although the A144T/E mutations observed by



20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

CRP amino acid position

Day 0

Day 1

Day 3

Day 5

Day 7

Day 9

Day 15

Day 20

Day 25

Day 30

Day 35

cAMP

cGMP

A144T

A144E

0.01

0.1

0

1

100

0
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Sekowska et al. occur in the same residue, they have distinct effects on
the mutational landscape of CRP. The A144T mutation causes almost
uniformly distributed low frequencymutations, while the A144Emuta-
tion causes increased mutagenesis generally concentrated around resi-
dues 50–90 (AR3 and the cAMP binding site) and 110–150 (the cAMP
binding site and inter-domain stability).

To our knowledge, the data presented here is the most comprehen-
sive overview of the natural mutational landscape of CRP to date. Our
approach provides a detailed map of CRP mutations for future in-
depth characterization. With the increasingly affordable deep sequenc-
ing methodologies, the approach could be generalized to study similar
evolutionary tracks in transcriptional regulation. How can we try and
extend our knowledge of structural and regulatory features of the CRP
protein?

Besides exploring changes in physical growth conditions (altering
temperature or osmolarity) coupling with other master regulatory sys-
tems should be rewarding. Global regulators such as CRP manage coor-
dination of gene expression in a variety of conditions, that are also
coordinated by other regulatory molecules, in particular the alarmone
ppGpp. This “magic spot” has been discovered half a century ago as in-
volved in monitoring amino acid availability [8]. Yet its role is far from
fully understood and still a matter of considerable research. It is now
known that altered levels of this regulatory molecule in relA spoT mu-
tants – coding for enzymes controlling the synthesis and turnover of
the molecule – resulted in non-optimal resource allocation in E. coli
[68]. Interestingly, this happened under conditions where it is expected
that CRP is involved in themanagement of ppGpp-mediated effects [49]
and CRP-mediated contribution to relA expression has been demon-
strated [34]. This regulation must match the coupling between the
cAMP-CRP regulation and amino acid biosynthesis.

As a case in point indeed, it has long been known that there is an ex-
plicit link between ppGpp synthesis and serine/one carbonmetabolism.
Serine excess resulted in growth inhibition of relA mutants, while relA
cya-defective or crp-defective mutants became resistant to excess ser-
ine. In relA cya strains, sensitivity to serine was restored when the
growth medium was supplemented with cAMP, substantiating the
serine-mediated interference in the cAMP-CRP control of gene
expression [10]. To be sure, this effect was reverted in a crp* back-
ground. It was therefore interesting to isolate secondary mutants that
would again be resistant to excess serine in order to better understand
how CRP was involved in this regulation. A new class of CRP mutants
was identified in E. coli cya relA crp* strains. These mutants were
mapped in the crp gene, and their physiological features differed from
both the wild type crp and the crp* allele [11]. However, they could
not be studiedmore in-depth at the time. Exploring this selection proce-
dure with the “omics” techniques that are now familiar should allow us
to enter a new evolution landscape of the protein.

Similar approaches could be developed to study other global regula-
tors. In general, letting genes that are expressed under stationary condi-
tions evolve should bring about new observations in the unchartered
territory of adaptive mutations.
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