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Abstract: Event recognition is one of the most active research areas in video surveillance
fields. Advancement in event recognition systems mainly aims to provide convenience,
safety and an efficient lifestyle for humanity. A precise, accurate and robust approach
is necessary to enable event recognition systems to respond to sudden changes in various
uncontrolled environments, such as the case of an emergency, physical threat and a fire or
bomb alert. The performance of sudden event recognition systems depends heavily on the
accuracy of low level processing, like detection, recognition, tracking and machine learning
algorithms. This survey aims to detect and characterize a sudden event, which is a subset
of an abnormal event in several video surveillance applications. This paper discusses the
following in detail: (1) the importance of a sudden event over a general anomalous event;
(2) frameworks used in sudden event recognition; (3) the requirements and comparative
studies of a sudden event recognition system and (4) various decision-making approaches for
sudden event recognition. The advantages and drawbacks of using 3D images from multiple
cameras for real-time application are also discussed. The paper concludes with suggestions
for future research directions in sudden event recognition.
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1. Introduction

Event recognition is a very significant research topic and is heavily used in many high-level computer
vision applications, such as security surveillance, human-computer interaction, automatic indexing and
retrieval and video browsing. With regard to security-related event recognition, a video surveillance
system is readily available in most areas, including smart homes, parking areas, hospitals and
community places.

The importance of surveillance systems and alert networks is to provide an immediate response during
an emergency situation [1,2]. An emergency situation is a situation that typically involves an immediate
threat, which can occur at any time and place, due to multiple factors, such as a fire, medical emergency,
gas leak, bomb and physical threat. Therefore, the emergency response must ensure the safety of the
people and protect the emergency scene.

Event detection has become an important research area in which many researchers have focused on
classifying the event as either a normal or abnormal event. Consequently, abnormal event recognition
becomes a necessity in surveillance systems to ensure safety and comfort. An abnormal event may or
may not be a sudden event. An example of an abnormal event that is not sudden is the case of suspicious
behavior detection. An example is loitering activity that can be recognized only after a certain period of
time and that does not require a split-second decision to disperse the loiterers. In contrast, an abnormal
event that is recognized as sudden, e.g., in cases that involve a sudden fall in a patient monitoring system
or a snatch theft, will require immediate mitigation to alert the relevant authorities.

In addition, sudden event recognition is becoming an important mechanism in elderly care monitoring
systems to ensure their safety, security and comfort. These systems are meant to detect sudden
anomalous events to reduce the risks that endanger the elderly. Moreover, the world population is
expected to reach 9.3 billion by 2050 [3], and people who are older than 60 years will constitute 28% of
the population. This situation requires massive resources to support the ever-increasing living cost, where
human life expectancy will reach 81 years old by 2100. Senior groups can live independently if their
minimum safety, security and comfort can be guaranteed. For example, the GERHOME (Gerontology
at Home) [4] system, which is a pilot project that aims to provide a surveillance system for the elderly,
is shown in Figure 1. The smart alert function in the GERHOME system enables the elderly to live
independently and, thus, helps them to reduce the cost of care. GERHOME is equipped with a function
that acts as a communication medium during an emergency situation to alert the relevant authorities.

Figure 1. Images from the GERHOME Laboratory. Reproduced with permission from
www-sop.inria.fr/stars/projects/Gerhome/Videos/ (accessed on 20 February 2013)
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A summary of event recognition related review papers that involve various human activities or actions
is provided in Table 1. These papers highlight the typical framework that is used in visual surveillance
systems, which comprise detection, feature extraction and classification. In contrast to these papers, our
review is aimed at sudden event recognition systems. Sudden event recognition is a subset of abnormal
event recognition that requires instant mitigation. Because of the rapid development in event recognition
systems [5–7], our survey focuses on low-level processing aspects of sudden event recognition.
Figure 2 depicts the overall structure of video-based sudden event recognition, which is presented in
this survey paper. Initially, the accuracy of most event detection, either sudden or non-sudden, depends
on the effectiveness of the low-level processing, which involves motion detection, object recognition
and tracking techniques. The extracted low-level information is then used to design a sudden event
recognition system, and finally, a machine learning approach is used to recognize the sudden event.

Table 1. Previous related surveys.

Year First Author Focus Reference

1999 Aggarwal Human movement analysis [8]
2002 Wang et al. Human motion estimation and activity understanding [9]
2004 Aggarwal and Park Recognition of actions and interaction [10]
2004 Weiming Hu et al. Detection of anomalous behavior in dynamic scenes [11]
2006 Thomas B. Moesland Human body motion and recognition [12]
2006 Gandhi.T Pedestrian detection based on various cases [7]
2007 Pantic et al. Behavior understanding [13]
2008 Morris B.T Trajectory analysis for visual surveillance [14]
2008 Teddy Ko Behavior analysis in automated video surveillance [15]
2008 Turaga et al. Human activities recognition [16]
2009 G.Lavee et al. Video event understanding (abstraction and event modeling) [17]
2009 Varun Chandola Anomaly detection [18]
2010 Joshua Candamo Event recognition in transit applications [19]
2010 Ji and Liu Recognition of poses and actions in multiple view [20]
2011 Popoola and Wang Contextual abnormal human behavior [21]

Figure 2. Common structure of video-based sudden event recognition system.
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The remainder of this paper is organized as follows: The definition of a sudden event is discussed
in Section 2. Section 3 describes various types of sudden events, and Section 4 provides an in-depth
explanation of existing methodologies that are related to sudden event recognition. This section also
discusses machine learning techniques that can be used in sudden event recognition. Finally, Section 5
summarizes the overall content of the paper and proposes several approaches for future work.

2. Terms and Definitions

2.1. Terminology

The term “event” has been used interchangeably with the terms “action” and “activity”. No consensus
on the exact definition of such terms has been made to date. Bobick [22] attempted to differentiate
“action” from “activity” based on the occurrences of the events (movements and interactions), in
which he has defined an “action” as a higher semantic level than an “activity”. In contrast,
Govindaraju et al. [23] defined an “action” as an atomic motion-pattern that is often gesture-like and
has a single-cut trajectory (e.g., sit or wave arm), whereas an “activity” is a series of actions in an
ordered sequence that is dependent on motion patterns. These definitions are in agreement with those of
Lavee et al. [17], who referred to an “action” as a “sub-event”, which is part of an “event”.

Event terminology is typically dependent on the nature of the application, which results in different
descriptions of the event, while retaining the same aim to discover “what is happening”. Nagel [24]
described events as a hierarchy of occurrences in a video sequence, whereas Hongeng et al. [25] defined
events as several actions that occur in a linear time sequence. Candamo et al. [19] stated that an event
is a single low-level spatiotemporal entity that cannot be decomposed further. Therefore, an “event” is
used to determine the following: (1) the action being performed; (2) the actor performing the action; and
(3) the objective of the action.

Figure 3 shows the relationships of the levels in the semantic hierarchy, which is composed of “event”,
“action” and “activity”. These terminologies were adopted from Govindaraju et al. [23], who stated that
“event” is the highest level of the hierarchy, followed by “activity” and “action” occurrences in a video.
These definitions are also in line with the description by Nagel [24], who put “event” at the top of the
semantic level relationships.

Figure 3. Semantic hierarchy level description.
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2.2. Abnormal Event

According to Popoola and Wang [21], previous surveys focused only on abnormal event detection
and did not attempt to distinguish various types of abnormal events. An abnormal event is typically
assumed to be similar to the terms unusual, rare, atypical, surprising, suspicious, anomalous, irregular
and outlying. Differences in opinion might be caused by the different subjective viewpoints of different
studies. Xiang and Gong [26] defined an unusual event as an abnormal behavior pattern that is not
represented by a sufficient number of samples during data set training, but remains within the constraints
of abnormal behavior. Similarly, Hamid et al. [27] defined an abnormal event as a rare or dissimilar
event that deviates from normal occurrences.

Based on the World Dictionary of the American Language [28], the words “sudden” and “abnormal”
can be differentiated by “unforeseen” and “deviating from general rule”, respectively. Odobez et al. [29]
simply defined an abnormal event as an “action that is performed at an unusual location and that occurred
at an unusual time”. This definition can be related to the concept of Popoola and Wang [21], who
considered anomalies to be temporal or spatial outliers. Therefore, in the current study, an “abnormal
event” is defined as an event that is dependent on temporal and spatial information and does not conform
to any learned motion patterns.

2.3. Sudden Event

To date, no consensus has been reached on the definition of “sudden event”. From a psychologist’s
perspective, Jagacinski et al. [30] described a sudden event as a motion that caused significant change
in the patterns of the motion trajectories. The resulting dynamic state of the object, such as direction
and speed of motion, are caused by a change in the force applied to the object during the activity. As
such, we define “sudden event” terminology as an abnormal event that occurs unexpectedly, abruptly
and unintentionally, such that the state of the object deviates from the previous state, which invokes
an emergency situation that requires fast responses; for example, a sudden fall among the elderly that
might occur due to a loss of balance, a loss of support from an external object (e.g., a walker as a typical
Parkinson support) or slipping after a sudden bump on a certain object. In Figure 4a, a sudden event has
occurred in which the actor fell down, whereas the real intention is to sit down. Such an event implies
that the actor does not follow the normal trajectory pattern. Therefore, it is important to detect this type
of event, especially for an elderly monitoring system that demands an immediate mitigation action to
reduce the negative consequence on them. Moreover, a sudden event happened unintentionally and does
not require a built up event. For instance, a burglary is not considered a sudden event, since the thief will
walk around the jewelery store with the intention to break in. Thus, there is a precedence event, which
is defined as intentional, that does not comply with a sudden event definition.
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Figure 4. (a) Sudden fall. Reproduced with permission from www.iro.umontreal.ca/ labim-
age/Dataset/ (accessed on 20 February 2013) [31]; and (b) snatch theft. Adapted from [32].

Other than elderly or patient care, sudden event recognition can also be implemented on a public
road or accident prone area. In an anomalous visual scene, the difference between a non-sudden and
sudden event is that the former event requires a relatively longer observation scene, whereas the latter
event typically takes only a few frames to be identified. For example, the case of abandoned luggage
can be viewed as an abnormal event when the actor moves a few meters away from his bag and leaves
it unattended for a certain period of time. Such an event is not considered a sudden event, because the
event took a longer reaction time to be recognized. However, the case of a snatch theft in Figure 4b,
which is detected in a public area, will be considered as a sudden event. A snatch theft event attracts
the attention of the public, and it requires an urgent reaction to help the victim. The understanding of
contextual information in a scene is very significant in developing an automatic sudden event recognition
system. In the future, the system should be able to anticipate the same event by learning the risk factors
to mitigate the crime effect.

In the case of crossing the line of a prohibited area, although it invokes an emergency situation, it is
not considered as a sudden event, because it does not happen abruptly. Normally, it is an intended event,
where a person intentionally crosses the alert line, as, for instance, the yellow line in a subway station or
the safety line in a construction site or restricted area. However, it may be viewed as a sudden event if
someone accidentally pushes a person beyond the alert line. Similarly, for a toddler monitoring system,
a jump and run action is not considered as a sudden event. Although it is an abrupt event that can be
detected within a few frames, it does not invoke an emergency warning, since they are just playing.

Therefore, as shown in Figure 5, we summarize a sudden event as: (1) a subset of an abnormal
event; (2) an event that occurred unexpectedly, abruptly and unintentionally that invokes an emergency
situation; and (3) an event that is detected in a few numbers of frames, which requires a fast response to
mitigate the posterior risks. Table 2 summarizes several abnormal events subject to the definitions of a
sudden event, such that a sudden event is recognized if all three aforementioned criteria are fulfilled.
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Figure 5. Diagram of sudden event recognition.

Table 2. Sudden event criteria.

Example of Case
Sudden Event Criteria

Abrupt, Unintentionally Short Period of Invoke Emergency Situation/Attention
and Unexpected Observation Scene That Requires Immediate Response

Elderly/Patient walk and fall X X X

Snatch theft X X X

Crossing a prohibited area × X X

Children jump and run X X ×
Burglary × × X

Abandoned luggage X × ×

3. Sudden Event Description

The awareness of the need to provide a safe and comfortable living environment has led to a surge of
video-based research activity in the surveillance community. The advantage of having a video-based
system is the introduction of an autonomous system that reduces the reliance on the human ability
to monitor and detect anomalous events. In general, sudden event recognition for visual applications
can be divided into two categories, namely, those that involve a human-centered sudden event, a
vehicle-centered sudden event and a place-centered one, as explained in the following scenarios.

3.1. Human-Centered

This unexpected event can be defined by considering (1) single and (2) multiple persons. Examples
for each of these groups are as follows:

1. Single person (Figure 6a)
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This event comprises behavior that involves only a single person without any interaction with
another person or vehicle, e.g., a patient’s sudden fall out of his bed or an elderly fall at a
nursing home.

2. Multiple person interaction (Figure 6b)

This event consists of behavior that involves multiple persons interacting with each other, e.g.,
people who fight and disperse suddenly, muggers and a snatch theft.

Figure 6. Example of a human-centered sudden event. (a) Patient
falls out of bed. c©2011 IEEE. Reprinted, with permission, from [33];
(b) group interaction shows the sequence of a sudden assault. Reproduced with permission
from [34]. With kind permission from Springer Science and Business Media.

(a) (b)

3.2. Vehicle-Centered (Figure 7)

This category of sudden event consists of behavior that is defined through human interaction with
vehicles. A vehicle-centered sudden event could occur when there is an unexpected behavior suddenly
on the road, such as a vehicle that deviates from the normal lane that could lead to a collision, a sudden
stop in the middle of traffic and a road accident. These examples need an urgent response from the traffic
monitoring system to prevent the occurrence of a serious incident.
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Figure 7. Example of vehicle-centered sudden event. (a) Car makes a U-turn in the middle
of the road. c©2008 IEEE. Reprinted, with permission, from [35]; (b) a car suddenly stops
and makes a U-turn. c©2011 IEEE. Reprinted, with permission, from [36].

(a) (b)

3.3. Small Area-Centered (Figure 8)

This category of sudden event mainly happened due to tight spatial constraint, which may cause some
inconvenience or accident, such as in an elevator cage, staircase or corridor. The small area-centered
event is represented by space volume properties that include perspective and size. The characteristics of
the small area-centered event are highly correlated with the semantic definitions of the sudden event. A
staircase fall can occur when a person misses a step at some point, either by completely overstepping or
slipping off. The risk of a sudden event happening is higher when the small area is crowded with people,
such as at public stairways or escalators [37,38]. Furthermore, the enclosed and isolated area, such as an
elevator cage or a lift, might instigate a sudden assault [39] and rape.

Figure 8. Example of a space-centered sudden event. (a) Elevator cage monitoring. c©2009
IEEE. Reprinted, with permission, from [39]); (b) staircase monitoring. c©2006 IEEE.
Reprinted, with permission, from [37]).

(a) (b)
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4. Methods for Sudden Event Recognition

Most of the existing research on sudden event detection and recognition has been designed only to
solve specific problems, and the approaches used are developed based on models and prior assumptions.
The effectiveness and limitations of the existing methods are discussed below.

4.1. Single Person

In the case of a patient monitoring and home care assistance system, a sudden event refers specifically
to a sudden fall by a patient or elderly person. Detection and tracking of the human body are useful
features for early indication of a sudden fall event. However, the comfort and privacy of the person being
monitored must be considered prior to system installation.

4.1.1. Sudden Fall

A single person’s sudden fall is defined as an instantaneous change in the human body from a higher to
a lower position, which is a major challenge in the public health care domain, especially for the elderly. A
reliable video surveillance system, such as a patient monitoring system, is a necessity to mitigate the ef-
fect of the fall. Sudden fall detection using computer vision has been widely investigated, especially for a
2D vision system, which requires only one uncalibrated camera. A vision-based system is also preferable
over other sensors, because of its non-intrusive nature. In most of the computer vision literature, low
level processing can be represented by motion segmentation and geometrical feature extraction, such as
the shape and posture.

A background subtraction method is typically used to extract the human silhouette to detect a
fall [31,40–44], where it is used to extract regions of interest by comparing the current frame information
with the background model. This approach is a commonly used method for moving object detection. A
pixel is recognized as foreground when the difference between two successive frames is significant.
The most popular algorithm, which was proposed by Stauffer and Grimson [45], is based on statistical
background subtraction, which employs a combination of Gaussian models to observe the probability of
detecting a background pixel, x, at time t, as follows:

P (xt) =
K∑
i=1

ωi,t ∗ η(xt, µi,t, σ2
i,t) (1)

where K is the number of distributions, which is normally set to [3,5], ωi,t and µi,t are the weighted
and mean of the Gaussian distributions, respectively, σ2

i,t is the covariance matrix and η is the Gaussian
probability density function. The Gaussian mixture is a stable real-time outdoor tracker and works well
in various environments, such as variations in lighting, repetitive motion caused by clutter and long-term
scene variation. The Gaussian mixture has been used successfully as a motion detector for a hierarchical
multiple hypothesis tracker (MHT) [46], which can solve merge, split, occlusion and fragment problems.

Instead of using a combination of Gaussian distributions, Harish et al. [47] implemented a symmetric
alpha-stable distribution to detect clutter background. The background appearance is characterized
by spectral, spatial and temporal features at each pixel. Martel et al. [48] incorporated cast shadow
removal into their pixel-based Gaussian mixture for surveillance application. Young et al. [49]
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combined a Gaussian mixture and weight subtraction methods between the consecutive frames to extract
the foreground object. In addition, Yan et al. [50] fused both spatial and temporal information to
the conventional Gaussian mixture using a regional growth approach. Their method can adapt to
both sudden and gradual illumination changes in various complex scenes for real-time applications.
However, the Gaussian approach lacks flexibility when addressing a dynamic background. Although
robust background subtraction is typically computationally expensive, a different method to improve the
standard algorithm is required to construct online detection [51] and an adaptive background model [42]
for sudden event recognition. Most of the recent background subtraction methods focus on improving
the modeling of statistical behavior [52,53] and on using an integrated approach that includes multiple
models [40,54–56].

Several existing methods for detecting a fall that have a good detection rate are based on the fall
characteristics of the human body shape, which varies drastically from a vertical to horizontal orientation
during a sudden fall event. The most common geometrical features that are used in sudden event
recognition are the rectangular bounding box [40,42,43,57] and an approximated ellipse [58,59]. The
extracted geometrical properties include the horizontal and vertical gradients, aspect ratio, centroid,
angle, projection of the head position and velocity. In [40,57], a fall was confirmed if the aspect ratio
was high, whereas [42] detected a fall if the angle between the long axis of the bounding box and the
horizontal direction had a value of less than 45 degrees. However, these methods are invalid in the case
of a person who falls toward the camera. Rougier et al. [60] used shape context matching based on a
human deformation measure of a mean matching cost and the Procustes distance to detect any change
in the body shape. This method is robust to small movements that occurred immediately after the fall.
Wu et al. [61] demonstrated velocity profile features to distinguish from standing and tripping in fall
event detection. The change in magnitudes characterized the horizontal and vertical velocities, which
are sensitive to the camera view, especially when the person is close to the camera. Thus, their study
concluded that the aspect ratio of the person’s bounding box varied according to the velocity changes.

Furthermore, the use of a wall-mounted camera [31] and omni-camera [43] allowed for the monitoring
of fall incidents with a wide angle view of a living room or bedroom. The motion pattern of an extracted
geometrical region is particularly useful in detecting a sudden fall. Fall detection based on global and
local motion clustering in [62] utilized three features, including the duration of the sudden fall, the rate
of change of the human centroid and the vertical histogram projection of the human body. However, the
direction of the body movement between various camera views and a changeable video frame rate would
certainly affect the feature values. In [58], a motion history image (MHI) was combined with shape
variations to identify the fall event. Recent motion patterns were used by [63] to detect a slip or fall
event; here, a spatiotemporal motion energy (ISTE) map is employed. Additionally, Olivieri et al. [64]
presented an extended MHI called a Motion Vector Flow Instance (MVFI) template, which extracted the
dense optical flow of human actions. Although MHI retained the information for the entire sequence
of images, the new information was not truly useful for recognizing a sudden event when occlusion
occurred. In addition, the MVFI method characterized a fall event based on a spatio-temporal motion
template that discriminates human motion effectively if the velocity information is made available.

Posture is the other important feature that is utilized in sudden fall detection; it is used to
represent the different body poses. Cucchiara et al. [41] proposed a method that utilized a posture
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map with a histogram projection to monitor the movement of a person to detect a fall event.
Brulin et al. [33] proposed a posture recognition approach in a home care monitoring system for the
elderly that used principal component analysis (PCA). PCA was used to compute the principal axis of
the human body and to extract the center of the human silhouette, which signified the posture center of
gravity. Miao et al. [65] employed ellipse fitting and histogram projection along the axes of the ellipse
to discriminate different types of human postures. These posture-based methods [33,41,65] were highly
dependent on the effectiveness of the background subtraction method and were used to differentiate
several similar events, such as lying down, bending and falling.

Instead of analyzing the human body as a whole, the detection of body parts, i.e., head detection,
has been applied in sudden fall event detection. In [59], a histogram projection of the head position
was used to detect a fall incident, because the head produced the largest movement during a fall.
Hazeldoff et al.[44] estimated the head position using a Gaussian skin color model and found a match
for skin colored blobs that were close to the head. Jansen and Deklerck [66] used 3D head motion-based
analysis in which a fall was confirmed when the period of vertical motion was shorter than the horizontal
motion. Rougier et al. [67] used a 3D ellipsoid for a bounding box fitting of the head in a 2D image. A
particle filer was then used to extract the 3D trajectory of the head based on the 3D velocity features for
fall detection.

An event monitoring system typically involves supervised training. The extracted feature vectors
are fed to the classifier, where a new scenario will invoke the system to learn it. Several machine
learning methods have been used to detect a sudden fall. Rougier et al. [60] used a Gaussian mixture
model (GMM) to classify a fall incident based on a measure of human shape deformation, whereas
Faroughi et al.[59] used the extracted motion features to train a multi-layer perceptron (MLP) neural
network. In another work by Faroughi et al. [68], support vector machine (SVM) was used to
detect a fall based on the shape variation of the ellipse that encapsulates the silhouette and head pose.
Thome et al. [69] developed a Hierarchical Hidden Markov Model (HHMM) that has two layers of
motion modeling; Brulin [33] and Juang [70] further analyzed the features via a fuzzy inference model;
whereas Tao [40] and Liao et al. [63] used a Bayesian inference model to detect a sudden fall. Although
most of the selected machine learning methods can classify a sudden fall effectively, our review found
that they have some limitations. For instance, in the fuzzy learning model developed by Juang [70],
the membership function and fuzzy rules should be adapted and refined first, considering the posture
variation of the elderly and young people. Moreover, the efficiency of a sudden event recognition system
will be limited when generalizing fuzzy inference based on an articulated human model, because a longer
response time is required. Table 3 summarizes the features that are used in the sudden fall detection
systems from the selected literature.

Table 3. Experimental results in relation to sudden fall (TP: true positives; TN:
true negatives).

Features for Event Detection Results Ref

2D features: bounding box aspect ratio Parallel and top view camera perform >80% within a distance of 4–7 m [41]
Top view camera limits the precision within a distance of 1–4 m (< 80%)

Aspect ratio, horizontal and vertical gradient Accurately detect single person fall indoors and outdoors 100%, [43]
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Table 3. Cont.

Features for event detection Results Ref

but <80% accuracy for a person fall with multiple people in the scene

Horizontal and vertical velocities profile ANOVA analysis indicated that the peak horizontal and [61]
vertical velocities were higher (p = 0.001) than those in the normal activities

2D silhouette aspect ratio and utilized personal information The successful rates of fall detections with and without personal [44]
information, such as weight, height and health history information are 79.8% and 68%, respectively

Bounding box aspect ratio and covariance matrix Only preliminary results; no quantitative analysis [40]

Vertical projection histogram of silhouette Correct detection rate is 84.44% [71]

Shape deformation using shape context Reduce error rate from 9.1% to 3.8% [60]
using Procrustes distance compared to other 2D features

Motion features and metric rectification TP = 97.6%, TN = 86.7% [69]

Integrated spatio-temporal map and shape variations Slip only and fall events detected with 90% and 95% accuracy, respectively; [63]

Spatio-temporal motion from dense optical flow Performed on six classes of action and fall events detected with 99% accuracy [64]

Motion history image (MHI); shape variations Sensitivity of 88% and an acceptable rate [58]
and motion quantification of false detection with a specicity of 87.5% for 24 daily activities

Global motion: period of fall, change of centroid Achieve correctness ratio of about 93% with a 13% [62]
location and vertical histogram projection missed ratio; the ratio of FPis 0% for all 28 events

Approximated ellipse, projection histogram TP = 94.3% and TN = 96.9% for 10 classes of action [59]
and temporal changes of head positions

Principal component analysis (PCA) >85% fall detection rate [57]

3D orientation of image Only preliminary results; no quantitative analysis [66]

Length and width ratio (DFTcoefficient) Average recognition rate for four classes of action is 97.8% [70]
of Fourier transform histogram projection

Posture-based with point tracking Achieve accuracy of 74.29% [33]

Posture-based probabilistic projection maps Average accuracy >95% in classifying human postures [42]

Head tracking using particle filter Reasonable mean error of 5% at five meters [67]

4.2. Multiple Person Interaction

A multiple person interaction of a sudden event recognition system has been motivated by the public
demand for a safe and secure environment. Security and surveillance systems are crucial tools in crime
prevention, because they alert the required authorities to be fully aware of the threats, allowing them
to mitigate the risks and consequences. Examples of sudden events that could involve multiple person
interactions are snatch theft and sudden assault.

4.2.1. Snatch Theft

An automatic detection system for a sudden event involving a snatch theft crime would require both
the victim and thief to be identified. The snatch thief will typically approach the victim from behind.
The methods proposed by [72,73] are based on motion cues for extracting low-level motion patterns in
the scene. For each video clip, the optical flow was computed, and the motion vector flow was extracted
and later used to detect the snatch event. The optical flow technique is built on the assumption that
the neighboring points of most pixels in an image have approximately the same brightness level. The
foundation of the optical flow can be attributed to the gradient-based algorithm that estimates pixel
movement between successive frames through feature similarities, which is an approach that was first
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proposed by Shi and Tomasi [74]. The combination of the Lucas-Kanade [75] optical flow and the
Gaussian background model has yielded good foreground segmentation, and the basic optical flow can
be written as follows:

5I · vm +
δI

δt
= 0 (2)

where 5I = [ δI
δx
, δI
δy
]T is the spatial intensity gradient vector. Assuming that I(x, y, t) is the intensity

of pixel m(x, y) at time t, then the velocity vector of pixel m(x, y) can be denoted as follows:
vm = [vx, vy]. The Lucas-Kanade method is suitable in cases where the video contains a crowded
scene, because the detection operates on a single pixel basis, in which partially occluded objects can
still obtain their matching features. The combination of the Lucas-Kanade approach and Gaussian-based
background modeling yields a good optical flow field between two adjacent frames. The median value
and the Gaussian filter are then used to reduce the noise. A predefined threshold value is necessary to
determine the cutoff value and extract the label from the Gaussian background model. The joint areas
between the optical flows and foreground outputs are extracted to obtain the optimal foreground image.

In [73], three motion characteristics are determined from the video stream: (1) the distance between
objects; (2) the moving velocity of objects; and (3) the area of the objects. The average velocity
obtained from the motion vector flow is used to analyze a sudden change in the target velocity and
moving direction. During the monitoring process, more attention is required when the distance between
two moving objects is decreasing. Then, the extracted feature vectors are classified using the nearest
neighbor classifier.

Similarly, [72] demonstrated that the optical flow motion vector is consistent during a normal
interaction and is distracted if a snatching activity has occurred. Then, a support vector machine
(SVM) is used to classify between snatch and non-snatch activity. The advantage of the optical flow
approach is that the motion vector is apparent during crowded scenes, where a pixel-based detection
can distinguish the foreground objects and provide good results for video surveillance applications with
multiple and synchronized cameras. However, the computational burden of optical flow is very high and
it is very sensitive to noise and illumination changes; thus, it requires specialized hardware for real-time
implementation.

In [76], Voronoi diagrams were used to quantify the sociological concept of personal space. The
approximate area that has possible threatening activities is up to 0.5 meters. The temporal aspect of the
Voronoi diagrams is used to identify groups in the scene, whereas a spatial area within each individual’s
field of view is used to classify the groups as intentional or unintentional. The tracking of each individual
within this area is necessary, although it might be difficult in densely crowded scenes. Liu and Chua [77]
used motion trajectories to simulate the activity of multi-agent snatch thefts. Motion trajectory patterns
were used to detect the position and classify the state of an object of interest. Therefore, the extracted
individual motion trajectories represent the role of each agent. The state of an object is observed and
predicted based on the common pattern of using trajectory clustering. The cluster of object-centered
motion patterns is modeled by the motion time series of the object trajectories. The re-occurrence of
a trajectory is typically considered a normal event, whereas a rare trajectory pattern that is beyond the
learning pattern is considered a sudden case. In [77], the pre-defined activity models were classified
using an HMM.
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Instead of performing snatching activities based on a detection or tracking method, which efficiently
recognizes primitive actions, such as walking and running, contextual information [78] is used to reduce
the complexity of the scene modeling. The contextual information is composed of integrated features
and the event models developed from prior knowledge of object interactions between actions, poses and
objects in the scene. This information will reduce the size of the possible sets, whereas it will only allow
the events that can fulfill the context. A sudden change of behavior in the scene is typically derived
based on the misclassified detection model, where it is quantified by using deviation measures between
the observation and predefined normal behaviors. Jeong and Yang [79] presented each target activity as
ground, weighted and undirected trees. Snatching activity is defined in natural language and the Horn
clause. For example, a snatch event is defined by a description of (1) what the thief does to snatch
something (follow); and (2) the thief taking someone else’s belongings using force (attack). These
two expressions, follow and attack, are detected through several primitive actions, such as running,
walking, approach and turning. Then, the rules of each activity and the probabilities of the actions
are learned using a Markov logic network. Therefore, the knowledge of the relationship between the
people, contextual objects and events are presented as semantic information that help achieve an efficient
decision-making process in recognizing the event. The contextual approach in sudden event recognition
has two main advantages: (1) the training sets are composed of a limited scenario of normal behaviors
only; and (2) sudden events are detected when unexpected behavior patterns are observed based on
contextual features. In addition, an online clustering algorithm can be employed for the continuous
video stream to detect any sudden event in a smart surveillance system.

4.2.2. Sudden Assault

A crowd monitoring system helps to detect and prevent any crime cases or deliberate wrongful acts
(e.g., muggers, assaults and fights) by monitoring both crowd and individual behaviors. A sudden assault
indicates a situation in which one person approaches and attempts to hurt another person who was acting
peacefully. Then, a fighting interaction follows after the assault. Sudden assault attacks can be observed
when one blob becomes too close to another static or moving blob.

In most of the literature, the multiple person interaction process consists of segmentation, blob
detection and tracking. For example, assaults that are followed by a fighting interaction are defined
by blob centroids merging and splitting with fast changes in the blob characteristics. Blobs are extracted
in each frame by using a background subtraction method. The blobs that represent the semantic entities
are tracked by matching those blobs in consecutive frames. Object tracking has typically been performed
by predicting the position in the current frame from the observation in the previous frame. One of the
popular tracking methods is mean-shift tracking. Comaniciu and Meer [80] used mean-shift techniques
to search for an object location by comparing the histogram properties between object Q and the
predicted object location, P . Then, the similarity measure is defined using Bhattacharyya distances,∑b

u=1 P (u)Q(u), where b is the number of bins. This algorithm requires five or six iterations for
each frame before the mean-shift converges to a single location. The highest weight obtained from the
histogram similarity determines the closeness of the new location to the centroid of the tracked object.
Evidently, a mean-shift tracker exhibits many advantages, such as having a faster processing speed and
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being more adaptable to complex scene variations [81,82]. Mean-shift has also been enhanced by using
a kernel method [83] to filter the background information.

In the case of multiple-object interactions, the interaction between an object and the background is
important, because multiple objects can merge, split and occlude one another [84]. The objects can also
appear, stop moving and leave the camera’s field of view at any time. Some examples of multiple-object
tracking algorithms include the particle filter [85], HMM filter [86], joint probability data association
filter (JPDAF) [87], probability hypothesis density filter [88] and MHT [89]. However, sudden
assault detection is considered a high level activity that requires efficacy in the low-level processing
to determine the overall success of the detection. Several projects, such as Multi-camera Human
Action Video (MuHAVi) [90], Computer-assisted Prescreening of Video Streams or Unusual Activities
(BEHAVE) [91] and Context-Aware Vision using Image-based Active Recognition (CAVIAR) [92], have
been conducted to act as the benchmark dataset for sudden assault behaviors, such as shot gun collapse,
punch, kick, fight and run away.

Initially the actions are detected from low-level processing, such as the object motion speed and
tracking of the object trajectory. At the same time, high level processing presents context language to
detect actions of interest. The high-level processing presented in [79] addresses contextual information
by learning predefined rules that were used to detect the occurrence of a sudden assault. For example,
a fight is detected when two persons hit, kick or punch each other. These actions define a formula that
has a sudden assault event term as the person is being attacked before a fight. The weights indicate how
significantly the respective formula infers the likelihood of an attack or fight. Then, a ground network is
constructed using Markov logic networks (MLNs) with primitive actions at the bottom level and activities
at the top level. The probability of sudden event occurrences is given by the likelihood of the ground
activity at the root.

The object interactions interpret the object behavior under various conditions (e.g., object orientation
and proximity to detect the grouping of objects). Previously, Allen [93] demonstrated the temporal
organization of events and activities in terms of first-order logic. Based on Allen temporal logic, the
relationship between two events is calculated as follows:

E → s{R}[P ] (3)

whereE is the event representation of the low-level features (the set of primitives) that serve as terminals
in a stochastic grammar system, s denotes a sub-event of E, R is the temporal matrix and P is the
conditional probability output. Allen’s temporal logic has been adopted to represent activities in temporal
structures [94]. However, the above description is limited to recognizing activities that have complex
structures and lack the difficulty that arises from noisy observations and the stochastic nature of the
sub-events. Therefore, grammar-based detection has been designed to overcome the above-mentioned
problems. Extensive work has been conducted on indoor and outdoor activities, with single and
multi-agent events to validate the robustness of the stochastic context-free grammar (CFG) in learning
the object interactions in the scene [95]. CFG typically attempts to interpret actions in terms of temporal
state transitions and conditions. Ryoo [96] presented a CFG-based representation scheme as a formal
syntax for representing composite and continuing activities. The system is able to recognize recursive
activities, such as assault and fighting. A hierarchical process of sudden assault activity involves the
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descriptions and relations between sub-events, such as standing, watching, approaching, attacking,
fighting and guarding. The approach can recognize continued and crowd or group activities. Although
the rule induction technique provides a high-level expression of the observed scene, it is limited to rigid
event attributes, which are not robust to view changes. These event attributes must be specified by an
expert in advance.

Grammar requires the training of classifiers, such as HMMs [94]. Bayesian networks can detect the
proximity of an agent and determine an individual person’s behavior. However, using such machine
learning techniques suffers from drawbacks that are related to the classifier itself and the activity in
question. Each classifier typically has its own peculiarities and weaknesses. For example, HMMs have
a highly sequential nature and cannot capture parallel and sub-events; thus, the scarcity of standard
labeled data sets that can be employed for reliable training is a major disadvantage. In addition, the
high-dimensional feature space that is associated with extremely variable activities, such as fighting,
makes this task even more difficult. Another machine learning method that is used to recognize
interactions between multiple persons with a grammar-based framework is the dynamic probabilistics
networks (DBNs) [97] and MLN [79]. Table 4 presents the features that are used in the literature that are
related to sudden event recognition for multiple person interactions.

Table 4. Experimental results in relation to sudden events with multiple person interaction.
HMM, Hidden Markov Model; MLN, Markov logic network; SVM, support vector machine.

Features for Event Detection Results Reference

Motion trajectories High recognition rate; almost 100% using HMM classifier, while the proposed [77]
model observation decomposed HMM is less sensitive

Velocity measured using optical flow Results reported that 80% of snatching events are detected [73]

Optical flow Achieved accuracy of 91% [72]

Blob detection, motion features 100% precision and 32% recall using BEHAVE dataset [98]
semantics behavior representations

Silhouette ellipse representation and Accuracy reported for the deterministic approach is 91.6%, [96]
convex hull with context free grammar representations, while the probabilistic approach achieves 93.8%

Logic programming with context free Tested using four techniques; (1) Traditional MLN with Backward Induction (TBI); [79]
grammar representations (2) Traditional MLN with Q-values (TQV); (3) Modified MLN with Backward

Induction (MBI); and (4) Modified Q-values (MQV). Overall, MQV achieved
a high precision value, almost 100%, while TQV is less sensitive

Learning context of group activities The results reported that SVM outperformed rule-based learning [99]
with ROC > 0.81 for six different actions

4.3. Vehicle-Centered System

Sudden traffic incident detection is modeled using events, activities and behaviors among vehicles
and humans. The decision to detect a sudden event depends on the inter-relation of spatio-temporal
information. Furthermore, the temporal uncertainties of event occurrences are important features for
sudden event detection in traffic monitoring systems.



Sensors 2013, 13 9983

4.3.1. Person with Vehicle Interaction

Most existing traffic monitoring systems are based on motion trajectory analysis. Motion trajectory
patterns can be used to detect the position and classify the state of an object of interest. Tracking
trajectory approaches are based on a Kalman filter [100,101], optical flow [102] or particle filter [103].
Isard and Blake [85] introduced the particle filter (also known as a condensation method) that exploits
the dynamical information in the image sequence. This technique provides a high degree of robustness
to a non-linear, non-Gaussian model, particularly in complicated scenes. In contrast to the Kalman
filter [104], which assumes that the tracked object dynamic and measurement model is linear, the particle
filter allows for nonlinear movement through Monte Carlo sampling. Let Xt and Zt be the target state
and observation in each frame, respectively, and the conditional state density, p(Xt | Zt), is represented
by s(n)t : n = 1..., N . Then, the posterior distribution is obtained through a set of particles, which can be
approximated as follows: (s(n), π(n) | n) = 1..., N . Each particle, s(n), is the target model that specifies
the particle location, (x, y), velocity, (x̂, ŷ), and size, (Hx, Hy). The scaling change, â, is determined
by the weights, π(n)

t . In [103], the particle filter can effectively complete lane detection and tracking in
complicated or variable lane environments that include highways and ordinary roads, as well as straight
and curved lanes, uphill and downhill lanes and lane changes.

Other common tracking trajectory approaches include dynamic programming [105], the adaptive
Gaussian mixture model [106] and HMMs [107,108]. These trajectories are used to profile the actions
of a target, which is tracked to recognize any sudden event automatically. Then, the motion trajectory
patterns are commonly learned using the HMM [109,110], expectation-maximization (EM) [107], fuzzy
models [111] and statistical methods [102,112]. An HMM learning trajectory is performed on a new
unknown video by using known normal events. For the unseen object trajectory, i, the likelihood of
observing i given any HMM of normal events, mk, is denoted by L(i | mk). If the maximum likelihood
is less than a threshold, i.e.,

maxk{L(i | mk)} < ThA (4)

, where ThA denotes the threshold and trajectory i is detected as sudden. HMM-based methods are
robust when they learn various event behavior patterns for sudden traffic incidents, such as sudden stops,
reckless driving, illegal lane driving or accidents. Meanwhile, the EM algorithm can guarantee a fast
convergence time, and the model was designed by simply performing on local maximum data.

Another approach to analyzing motion patterns is using a stochastic model [113] or statistical methods
that attempt to calculate the probability of an abnormal event in a video scene [102]. In [113], a traffic
flow is modeled to detect sudden incident behaviors of the vehicles at intersections. The system records
the historical motion of vehicles to build a stochastic graph model based on a Markovian approach. A
sudden incident is detected when the current motion pattern is not recognized or any specific sequence
of tested video cannot be parsed with the stochastic model. The low complexity and flexibility of the
binary coding of the historical motion and the stochastic model approach are reliable for use in real-time
systems. In contrast to a statistical model [102], the occurrence of a sudden change in the object motion
can be detected as early as possible, specifically when the object arrives at position k (the sample points
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in T∗, where T∗ denotes the trajectory of the object). Statistical motion patterns can be formulated
according to the Bayes rule, where the probability of φj given T∗ can be calculated as follows:

P (φj | T∗) =
P (T∗ | φj)P (φj)∑C

m=1 P (T∗ | φm)P (φm)
, j = 1, 2, ..., C (5)

P (φj) is the ratio of the number of samples of m observations. The highest probability at point k is
used to predict the sudden changes in the object behavior at the current position, k. The Bayesian method
predicts the probability of a future event by using likelihood and prior information, where the maximum
a posteriori is usually used to select the final decision. In contrast to the Bayesian method, an HMM
requires an optimized number of states, which can be reduced through sampling to limit the possible
sets. However, HMMs are the most effective method for modeling temporal data by forming structural
relationships among the variables in the system. The Markov approach models any unseen sequence of
states as having a high probability of being detected as a sudden event. At the same time, the Bayesian
approach performs well in real-time applications, but most cameras require manual calibration to extract
the actual driveways from the video.

Sudden traffic incidents can also be modeled by using semantic rules [94,114,115], which require
human interpretation of such events and are validated using the existing data. In [116], the semantic
rules are designed based on the observation that a sudden change in the velocity and driving direction
extracted from the motion vector could indicate an accident. Furthermore, there is a higher accident risk
as the vehicle becomes close to the other vehicles. Rules-based learning is similar to the investigation of
vehicle behaviors by applying algorithms with logical reasoning [114].

In addition, rules-based learning can be viewed in a CFG approach. Ivanov and Bobick [115]
proposed a stochastic CFG (SCFG) and stochastic parsing model to recognize the activities in a video
scene. In general, the motion trajectories of low-level image features are transformed to a set of symbols
(an alphabet) based on some prior knowledge. The symbol stream is then fed into the event rule induction
algorithm to extract hidden information, to recognize the behavior of the object and to distinguish the
events. The SCFG can automatically learn models of outdoor activities in traffic [117], such as sudden
lane changes and sudden stops. The grammar learned is extracted from a known class of activity.
Meanwhile, the example selector is a search-based algorithm that automatically selects unknown activity
to the grammar learner. After a few iterations, the conditional classification entropy will represent the
amount of uncertainty in the classification of unknown activity. Zhang et al. [94] used a Minimum
Description Length (MDL)-based rule induction algorithm to investigate hidden temporal structures and
SCFG to model the complex temporal relations between sub-events of vehicle behaviors at traffic light
events. SCFG could represent parallel relations in complex events, and the proposed multithread parsing
algorithm could recognize the occurrence of sudden incidents in the given video stream.

Table 5 presents the employed features that are related to sudden event recognition for person vehicle
interactions in the literature, and Table 6 presents the trends of interest in research on sudden event
recognition for three main categories and the performance comparison performance against related work
in the type of event detection and the event learning algorithm.
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Table 5. Experimental results in relation to a sudden event for a person with vehicle
interaction (TP: true positives, TN: true negatives).

Features for Event Detection Results Ref

Spatio-temporal of Markov Random Field (MRF) Overall success rate is 94.6% for horizontal and [110]
for motion vectors and object tracking vertical traffic

Discrete Cosine Transform (DCT) coefficient HMM classifier correctly detected 91% to 94% under [107]
feature vector with traffic detections using Gaussian different illumination situations
mixture HMM

Spatio-temporal motion trajectories using MRF Able to detect accidents at a very high recall [114]
rate, which is more than 90%

Blob tracker using Kalman filter Results reported that the percentage of [100]
falsely classified vehicle modes was about 3%

Extracted features: shape, position, motion Correctly classify five types of vehicle [105]
and track object using Kalman filter behavior and pedestrians with 86% to 96% accuracy

Motion trajectories and hierarchical Half total error rate (HTER) = 11% and area under the [109]
clustering curve (AUC) > 0.8

Motion trajectories; velocities of The accuracy increases up to 95%, tested on two video [116]
motion vector clips (277 frame sequences)

Target trajectories with context Results reported using (1) stochastic CFG, TP = 86%, TN = 14%; [117]
free grammar (CFG) representations (2) HMM, TP = 55%, TN = 45%

Optical flow and K-means clustering Only visual sample results; no empirical analysis [102]

Local motion patterns Accuracy of detection measured = 83.23%, [113]
to initialize the Gaussian mixture model (GMM) and the error rate is 16.77%

Motion trajectories and C-means Results reported that the false rejection rate (FRR) = 6%, [111]
clustering and the false acceptance rate (FAR) = 8.3%

Track target trajectories and learn The accuracy increased from 73% to 98.6% when tested on five [94]
rules using grammar representations traffic sub-events with different parsing parameters, θ and ω

Lane tracking using particle swarm Results indicated that particle filter output is smoother [103]
optimization (PSO) particle filters (PF) than the PSO-PF algorithm

Table 6. The trends of interest in sudden event recognition algorithms applicable in
crime prevention, traffic monitoring and home care/hospital assistant system (RT: real-time
implementations). MLP, multi-layer perceptron; EM, expectation-maximization; GMM,
Gaussian mixture model

Category First Author Yr Event Classifier/Matching RT Ref

Liu 06 Snatching HMM N [77]
Julio Cezar 07 Attack, threatening Voronoi diagram Y [76]

Crime Ryoo 09 Approach, attack, punch, kick Grammar learning N [96]
Prevention Goya 09 Purse snatching Nearest neighbor classifier N [73]

Jeong 10 Attack, fight, follow, snatch Markov logic network N [79]
Ibrahim 12 Snatching SVM N [72]
Zhang 12 Approach, attack, fight SVM N [99]

Kamijo 00 Video of reckless driver, bumping accident, HMM N [110]
sudden stop and start, passing

Xiaokun Li 04 Traffic behavior at the highway HMM Y [107]
Kamijo 04 Accidents detection Logical reasoning N [114]
Veeraraghavan 05 Turning, lane change, sudden stops Trajectory analysis Y [100]
Kumar 05 Vehicle behavior Bayesian classifier Y [105]

for accident detection
Jiang 07 Vehicle U-turn, sudden brake HMM N [109]

and pull over the road
Traffic Chen 07 Traffic behavior at intersection, MLP and RBF N [116]
Monitoring car crash event
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Table 6. Cont.

Category First Author Yr Event Classifier/Matching RT Ref

Veeraraghavan 09 Lane changes, sudden Grammar learning Y [117]
stop at intersection

Imran 10 Traffic behavior at intersection EM algorithm N [102]
Hernandez 10 Traffic behavior at intersection Hidden Markov Network N [113]
Hsieh 11 Traffic behavior at intersection Fuzzy SOM N [111]
Zhang 11 Traffic incidents at the crossroad Minimum Description Length (MDL) N [94]
Cheng 12 Sudden lane changes Particle Swarm Optimization (PSO) Y [103]

Ge Wu 00 Walk, sit down, down stairs, Velocity profile N [61]
lying down, tripping

Ji Tao 05 Simulated indoor standing, Statistical (Hypothesis testing) N [40]
walking, falling down

Cucchiara 05 Simulated indoor walking, crouching, Bayesian classifier N [41]
sitting and falling down

Miaou 06 Fall detection using omni Bounding box aspect ratio N [43]
camera view

Anderson 06 Indoor walking, fallen down, kneeling HMM N [57]
and getting up

Jansen 06 3D image Learn contextual model N [66]
Thome 06 Indoor video sequence of a walking- HMM N [69]

falling-lengthened motion patterns
Vishakarma 07 Indoor and outdoor walk and fall; Deterministic (gradient value and fall angle) N [42]

fall in crowd scene
Homecare/Hospital Juang 07 Indoor walk, jogging, bend,
Assistant System lying down and falling Fuzzy N [70]

Rougier 07 Indoor walk, bend, sit, Ellipse ratio, orientation and motion quantity N [58]
lying down and fall

Lin 07 Indoor standing, squatting, fallen down Centroid and vertical histogram projection N [62]
Foroughi 08 Indoor walk, run, stumble, limp, sit, bend MLP neural network N [59]

and lie down
Foroughi 08 Indoor walk, run, stumble, limp, bend, sit SVM N [68]

and lie down
Hazelhoff 08 Indoor walking, bending, Gaussian classifier Y [44]

sitting and fall
Anderson 09 Simulated on different types of falls Fuzzy Logic N [118]
Liu 10 Standing, sitting and fall postures KNNclassifier N [71]
Rougier 11 Indoor walk, bend, sit, lying down and fall GMM classifier N [60]
Liao 12 Indoor and outdoor walk, run, sit, Bayesian belief network N [63]

stand, lying down and crouching down
Miao Yu 12 Indoor walk, sit, bend, lying on sofa Directed acyclic graph SVM N [65]

and fallen down
Olivieri 12 Indoor walk, jogging, bend, KNN classifier N [64]

lying down and falling
Brulin 12 Simulated indoor sitting, standing, lying, NN; Fuzzy Logic N [33]

squatting and fall from bed

4.4. Multi-View Cameras

Multi-view cameras play an important role in real-time applications to cover the maximum
observations of the events that take place. A wide-angle camera view allows for the detection of
higher-priority event occurrence and provides more sophisticated event recognition and planning of
further actions to be taken. For example, sudden event recognition has motivated researchers to apply a
multi-camera system for image stream processing. This processing involves the recognition of hazardous
events and behavior, such as falls [119,120], activity recognition among multiple person interactions and
person-vehicle interactions [99,121].

Cucchiara et al. [119] exchanged visual data between partially overlapped cameras during camera
handover to deform the human shape from people’s silhouette. The video server (multi-client and
multi-threaded transcoding) transmits a video stream sequence to confirm the validity of the received
data. Thome et al. [120] used the fusion of the camera view based on a fuzzy logic context to form a
multiple view pose detector for fall detection. Anderson et al. [118] proposed a 3D human representation
that was acquired from multiple cameras, called a voxel person. Auvinet et al. [122] used a multi-camera
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network to construct the 3D shape of people and to detect falls from the volume distribution along the
vertical axis. Shieh and Huang [123] implemented a fall detection algorithm in a multi-camera video
system to fetch the images from the monitored region. The homography-related positions were utilized
to construct a background model for each reference camera, whereas the multiview data observation
measured across multiple cameras was used to track the person in the scene. The multi-camera view
images improved the noise reduction and edge contour algorithm and, thus, refined good falling-like
postures to alert the system.

Therefore, many studies have attempted to use a multi-view camera for a sudden fall detection system
to provide 3D information. This choice was made because of the limitations of a single camera view
in terms of precisely detecting a fall when a person’s movement is parallel with the camera’s view.
Furthermore, the movement of a person perpendicular to the camera view results in an occlusion and a
static centroid point with a larger size.

Another advantage of a multi-view camera is that the constructed 3D reference system could
minimize the occlusion effects and enhance the tracking accuracy [123]. Several points in the human
silhouette that are extracted from multiple cameras could improve the estimation of the 3D human body
pose and perform object tracking with automatic initialization [121]. The advancements in the pose
estimations in a 3D environment have opened doors to many surveillance applications and intelligent
human-computer interactions.

However, there are always the tradeoffs between achieving 3D data when modeling the human body
and the computational cost, as well as the robustness of the multi-view cameras in real-time applications.
First, the enormous amount of information that is needed to infer 3D models requires a large amount of
computational power to automate the data collection and data processing. Second, the multiple camera
views will obtain features that are not unique, due to variations in the background scene. The background
scene variations will affect the runtime performance and increase the computational load during the
shape matching processing. Therefore, the computational complexity of the developed algorithms is
incompatible with a real-time constraint. Moreover, the multi-view cameras require accurate camera
calibration and additional cross-calibration steps. Table 7 summarizes the selected publications in
relation to sudden event recognition using multi-view cameras.

Table 7. Multi-view camera implementations in relation to sudden event recognition (RT:
real-time implementations).

First Author Yr Methods Results RT Ref

Weinland 06 Motion history volumes for kick, punch, turn and Classifier methods are PCA, Mahalanobis distance N [124]
get up actions and LDAwith an average rate of 73%, 93%

and 92%, respectively

Denman 06 Optical flow for vehicle tracking to predict Overall Euclidean tracking error of 11.41 pixels Y [125]
velocities—four cameras

Cuchiarra 07 Warping person silhouette from Only visual; no empirical data analysis Y [119]
multi-camera view

Weinland 07 3D exemplars based on HMM; silhouette Average recognition rate for all four cameras are 81.4% N [126]
projections for kick, punch, turn and get up actions

Taj 07 Object detection using statistical change detection Overall accuracy for a warning event is 94.45% N [127]
and tracking using graph matching and for an alarm event is 92.86%
Events classifier based on HMM

Calderara 07 Used two cameras to detect and track using background Accuracies detected are 100% for a sudden N [128]
suppression and appearance-based probabilistic approach event and 97.5% for a normal event
Applied Bayesian network for motion trajectory classifier
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Table 7. Cont.

First Author Yr Methods Results RT Ref

Thome 08 3D multiple view pose detector with motion Good ability to detect sudden changes of human pose Y [120]
modeling based on layered HMM (LHMM) with a rate of 82% correct detection for fall events

Adam 08 Statistical low-level processing; eliminate tracking Results recorded the detection rate as > 95%. Y [129]
based algorithm

Antonakaki 09 Videos from three cameras performed background Overall precision is 98.6% using SVM and Y [130]
subtraction, homography estimation and HMM for a sudden event, such as FightChase,
target localization FightRunAway, etc.

Uson 09 Voxel-based algorithm combined with Average detection rate for a fall down event is 95.6% N [131]
probabilistic models using eight cameras

Anderson 09 Extract person profile (height, width, length) Three fuzzy variable (Upright, On the ground N [118]
from silhouette in four cameras and In-between) positions; the precision recorded was 83.1%,

97.6% and 67.7%, respectively

Drews 10 Estimate crowd size and activity using optical flow HMM and Bayesian network (BN) to classified N [132]
from two cameras between calm, low and high movement

BN outperformed HMM with less false alarms

Peyman 11 Traffic flow monitoring for a sudden incident at The SVM learning machine performed recall above 93% N [133]
an intersection using a hybrid scale invariant feature and 95% precision
transform (SIFT)—two cameras

Auvinet 11 Analyzed volume distribution along vertical axis for Results achieved 99.7% sensitivity and specificity Y [122]
3D shape of people with four cameras.

5. Discussion and Future Directions

In this paper, we provide a review of sudden event recognition apart from the recognition of abnormal
events; sudden event recognition has the additional structure that an abnormal event must occur without
any warning (be unexpected), which causes an emergency situation that requires an immediate reaction.
We describe sudden event recognition in two areas; human-centered and vehicle-centered, along with
their requirements for successful detection. This section provides suggestions to extend the research to
attain a potential that appears to be promising from our perspective.

First, we provide an overview of the detection methods in relation to sudden events that involve
low-level processing, such as background modeling, feature extraction and tracking. We focus on the
comparative study of a different algorithm that is applied to handle common issues, such as noisy and
dynamic background, indoor and outdoor environments, occluded objects, initialization for tracking and
the significant features that represent the occurrences of sudden events. There are a substantial number
of issues that should be improved to increase the quality of the low-level processing. For example, a
sudden fall algorithm can only address an event that has a single person in the scene. Further study is
needed to carry out sudden fall detection with multiple people in the scene. Another important issue is
to emphasize the tracking of multiple objects simultaneously.

Next, the requirements for sudden event detection in real-time system implementations are reviewed.
These requirements include a suitable efficiency of the algorithm, a storage capability suitable for an
online system and at reasonable computational time. Therefore, another open-ended research area
should focus on early detection [134,135] to prevent a severe incident and to gain an informative
data representation to analyze the scene. Thus, high-level visual content presented in semantics
event detection is used to bridge the gap between low- and high-level processing. The contextual
grammar-based approaches and logic programming are examples of the high-level processing that is
required in sudden event recognition. The high-level event description enhances the understanding of
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event, which is semantically based on the spatiotemporal features to localize and detect the event of
interest. In addition, the rules-based approach that used an automatic learning of prior knowledge could
reduce the cost of hiring an expert. Further studies are needed to research the usability and effectiveness
of high-level event descriptions for real-time purposes. In addition to real-time applications, protecting
the privacy of the person in a monitored area should be considered. Then, modeling the graphical
representation [136] of human actions guarantees the comfort and safety of the user.

A multi-camera view is reviewed to support sudden event detection in a real-time implementation.
An efficient real-time system that can generate alerts when sudden events occur is important as an early
detection mechanism, in contrast to the current implementation of visual systems, which are mainly used
to investigate an event after it has already occurred. A sudden event occurs unexpectedly and requires
a fast response to mitigate the event before it becomes more severe. Therefore, reconstruction of a
3D human body or vehicles from multi-view image data is attempted to enhance current surveillance
applications and human-computer interactions. The 3D data representations outperform the 2D methods
in the quality of the full-volume of the human body, which is gathered from shape-silhouettes and
some refinement techniques. The data captured from multi-omnidirectional cameras could improve
the view of a person in noisy environments and occlusions. However, the reconstruction of 3D data
has some restrictions in providing quality silhouette data in the segmentation process, due to shadows,
self-occlusion and merging of body parts from multiple view image data. Thus, 3D data can be
reconstructed only in a limited coverage area with a controlled number of cameras. Furthermore,
although 3D reconstruction capabilities have extended the research potential of event recognition and
become the main focus of many researchers, we strongly believe that 2D modeling can still be improved.
The difficulties in multi-view cameras, such as calibration steps, decreased runtime performance and
high computational complexity, can be reduced.

To conclude, we highlighted the methodologies that are used in sudden event recognition. In general,
the learning of a sudden event is divided into two major categories, namely, object trajectory and rule-
based learning algorithms. Two other important parameters are the speed and acceleration, which can
be considered in the tracking process to classify objects into different classes, such as moving people
and vehicles. The choice of efficient machine learning for better classification techniques depends on
the significance of the extracted features in representing the events and the lacking of robustness in
recognizing all types of sudden events. Statistical machine learning has also become a trend in the event
classification and recognition process.
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