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Abstract: Physconia hokkaidensis methanol extract (PHE) was studied to identify anticancer effects and
reveal its mechanism of action by an analysis of cytotoxicity, cell cycles, and apoptosis biomarkers.
PHE showed strong cytotoxicity in various cancer cells, including HL-60, HeLa, A549, Hep G2,
AGS, MDA-MB-231, and MCF-7. Of these cell lines, the growth of MDA-MB-231 was concentration-
dependently suppressed by PHE, but MCF-7 was not affected. MDA-MB-231 cells, triple-negative
breast cancer (TNBC) cells, do not express estrogen receptor (ER), progesterone receptor (PR), and hu-
man epidermal growth factor receptor 2 (HER-2), whereas MCF-7 cells are ER-positive, PR-positive,
and HER-2-negative breast cancer cells. The number of cells in sub-G1 phase was increased after 24 h
of treatment, and annexin V/PI staining showed that the population size of apoptotic cells was in-
creased by prolonged exposure to PHE. Moreover, PHE treatment downregulated the transcriptional
levels of Bcl-2, AMPK, and p-Akt, whereas it significantly upregulated the levels of cleaved caspase-3,
cleaved caspase-9, and cleaved-PARP. In conclusion, it was confirmed that the PHE exhibited selective
cytotoxicity toward MDA-MB-231, not toward MCF-7, and its cytotoxic activity is based on induction
of apoptosis.

Keywords: triple-negative breast cancer (TNBC); MDA-MB-231; MCF-7; apoptosis; anticancer; lichen;
Physconia hokkaidensis

1. Introduction

Breast cancer is the most frequent cause of cancer deaths in women around the
world [1]. Breast cancer remains an unsolved problem in women’s health, with 2.1 million
patients and more than 600,000 deaths worldwide in 2018 [2]. Breast cancer is the most
common cancer among women in China, with an incidence of 17.07% and 278,800 new
cases, ranking fifth in the causes of tumor death after lung, gastric, liver, and colorec-
tum cancers [3]. Treatment options for breast cancer include surgery, radiation therapy,
chemotherapy, and targeted therapies in clinical treatments [4]. However, cancer metas-
tasizes or relapses due to drug resistance and toxicity [5]. Therefore, exploring novel
therapeutics against breast cancer would benefit public health. It is common for breast
cancer patients to highly express female hormone receptors, including estrogen receptor
(ER) and progesterone receptor (PR), or/and human epidermal growth factor receptor 2
(HER-2), which are biomarkers for the treatment of breast cancer in targeted therapy [6].

Triple-negative breast cancer (TNBC) is characterized by a relatively high rate of early
invasion, metastasis, and mortality among all breast cancers, accounting for 15–20% of all
breast cancer patients [7]. TNBC is a subtype of breast cancer that is deficient in estrogen re-
ceptors and progesterone receptors and has low human epidermal growth factor receptor 2
(HER-2) expression, which leads to poor prognosis due to the difficulty of medication in
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targeted therapy [8–10]. Of patients with the TNBC subtype, 10–20% tend to have shorter
survival times owing to high malignancy, recurrence rate, and transferability [11]. One to
three years after TNBC is diagnosed, tumors can easily metastasize to internal organs, and
40% of the metastasis occurs in the lungs [12]. Therefore, the prognosis is worse than that
of the other subtypes of breast cancer, and there is an urgent need to find new biomarkers
and develop effective therapeutic strategies against TNBC.

Lichens are classified as symbiotic organisms composed of a fungal partner and a
photosynthetic organism such as an alga or cyanobacterium. In the symbiotic relationship,
lichens often stimulate fungi to produce secondary metabolites that have important biolog-
ical roles, such as self-defense against microbial infection [13,14]. Although lichens and
their secondary metabolites with promising anticancer activities have been identified, their
beneficial effect as an anticancer agent is not conclusive, due to a lack of evidence [14–16].
Physconia is a genus of lichenized fungi in the family Physciaceae. It grows mainly in
temperate or boreal regions in North America, Europe, Asia, Africa, South America, and
Australia and is found in bark, wood, rock, and soil [17].

In our preliminary study that screened four different species of lichens, assessing
their effects on various cell lines, the methanol extract of Physconia hokkaidensis (PHE)
showed the most selective cytotoxicity toward TNBC MDA-MB-231 cells compared to
MCF-7 breast cancer cells, although it was not the most cytotoxic toward MDA-MB-231
cells (data not shown). Moreover, just a few studies on the biological activity of Physconia
have been reported [18]. Hence, this study aimed to disclose the molecular mechanism of
the anticancer activity of Physconia hokkaidensis methanol extract on MDA-MB-231 cells, the
human TNBC adenocarcinoma cell line, which can provide the evidence needed to begin
the successful development of a novel anticancer agent from lichen metabolites.

2. Materials and Methods
2.1. Chemicals and Reagents

Roswell Park Memorial Institute 1640 medium (RPMI-1640), fetal bovine serum
(FBS), and penicillin/streptomycin solution were purchased from Hyclone Laboratories
(CA, USA). Cell counting kit-8 (CCK-8) and dimethyl sulfoxide (DMSO) were obtained
from Dojindo Laboratories (Kumamoto, Japan) and Sigma-Aldrich (St. Louis, MO, USA),
respectively. FITC annexin V Apoptosis Detection Kit and propidium iodide (PI) were pur-
chased from BD Biosciences (San Jose, CA, USA). Radioimmunoprecipitation assay buffer,
protease and phosphatase inhibitor cocktail, BCA protein assay kit, 4–12% bis-tris plus gels,
nitrocellulose membranes, TBS Tween 20 Buffer, Starting Block T20 Blocking Buffer, en-
hanced chemiluminescence kit, and the following antibodies: caspase-9, cleaved caspase-9,
PARP, cleaved PARP, Bcl-2, β-actin, and horseradish peroxidase (HRP)-conjugated sec-
ondary antibody were acquired from Thermo Fisher (Rockford, IL, USA). Antibodies
against caspase-3, cleaved caspase-3, AMPKα, Akt, and phospho-Akt were purchased from
Cell Signaling (Danvers, MA, USA).

2.2. Collection and Preparation of the Lichen

Physconia hokkaidensis (Kol.170047, PH) was provided by Allied Bioresource Center
in the Korean Lichen Research Institute, Sunchon National University, Korea. PH was
collected from the bark of Gwaneumsa Temple in Jeju Island, Korea. The dried lichen
thalli (60 g) was extracted with 2 L methanol (MeOH) at room temperature for 48 h
using sonication. The extract was then filtered and concentrated under vacuum at 40 ◦C
using a rotary evaporator. The dry extract powders were stored at –20 ◦C until further
use. Phytochemical analysis of methanol (MeOH) lichen extract was performed using an
HPLC–UV (SHIMADZU, LC–20A) system [19].

2.3. Cell Culture

Human acute promyelocytic leukemia cells (HL-60), human lung carcinoma cells
(A549), human cervical adenocarcinoma cells (HeLa), human hepatoblastoma cells (Hep G2),
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human gastric carcinoma cells (AGS), human breast adenocarcinoma cells (MDA-MB-231
and MCF-7), and Madin–Darby canine kidney (MDCK) cells were obtained from the
Korean Cell Line Bank (Seoul, Korea). The cells were cultured in RPMI-1640 medium,
or Dulbecco’s Modified Eagle Medium (DMEM) for MDCK cells, containing 10% FBS, 1%
penicillin/streptomycin, and 0.1% 2-mercaptoethanol. Cultures were maintained at 37 ◦C
and 5% CO2, and the media were changed every two days.

2.4. Cytotoxicity Assay

Cell viability was determined using the CCK-8 assay. Briefly, HL-60, HeLa, A549,
Hep G2, AGS, MDA-MB-231, and MCF-7 cells were resuspended in RPMI-1640, or DMEM
for MDCK cells, at 3 × 105 cells/mL or 5 × 104 cells/mL. The cell suspension (100 µL)
was added to each well of the 96-well plate and incubated for 24 h at 5% CO2 and 37 ◦C.
After the incubation, 100 µL of the medium supplemented with 1, 3, 10, and 30 µg/mL of
PHE was added to each well and incubated at 5% CO2 and 37 ◦C. After 24 h, 100 µL of
solution was removed from each well and CCK-8 (10 µL/well) was dispensed. After 2 h,
the absorbance was detected at 450 nm with a microplate reader (Versa max, Molecular
Devices, CA, USA). IC50 values were calculated from the cell viability values at each
concentration.

2.5. Cell Cycle Assay

MDA-MB-231 (1 × 105 cells/well) and MCF-7 (5 × 104 cells/well) cells were grown in
24-well plates and incubated for 24 h at 5% CO2 and 37 ◦C. After the incubation, a medium
containing 1, 3, 10, and 30 µg/mL PHE was added to each well and incubated at 5% CO2
and 37 ◦C. After 24 h, the treatment medium and the attached cells were collected after
centrifugation at 1200 rpm. The cells were fixed with 70% ethanol at 4 ◦C overnight. The
cells were incubated with ribonuclease A (100 µg/mL) for 20 min at room temperature in
the dark and stained with propidium iodide (50 µg/mL) for 30 min at room temperature
in the dark. The DNA content of the stained cells was analyzed by flow cytometry (FACS
Canto 2, BD Biosciences).

2.6. Annexin V/PI Staining

MDA-MB-231 (1 × 105 cells/well) and MCF-7 (5 × 104 cells/well) cells were grown in
a 24-well plate and incubated for 24 h at 5% CO2 and 37 ◦C. After the incubation, a medium
containing 1, 3, 10, and 30 µg/mL PHE was added to each well and incubated at 5% CO2
and 37 ◦C. After 48 h, the cells were harvested, washed with PBS, and stained with 5 µL of
annexin V-FITC/PI (1 mg/mL). The stained cells were analyzed by flow cytometry.

2.7. Western Blot Assay

MDA-MB-231 cells were incubated in a six-well plate at a density of 5 × 105 cells/well
for 24 h. Then, 30 µg/mL of PHE was added to the cells, which were then incubated
for 24 h. The cells were washed twice with cold PBS on ice and lysed in RIPA buffer
containing phosphatase and protease inhibitors cocktail. The cells were centrifuged at
14,000× g and 4 ◦C for 20 min to obtain soluble proteins. The concentration of protein
samples was determined using the BCA protein assay kit. First, 40 µg of protein was
mixed with SDS loading buffer (×5) and then boiled for 5 min. Then, the protein samples
were separated using 4–12% bis-tris plus gels and transferred to nitrocellulose membranes,
which were incubated with starting Block T20 Blocking Buffer for 3 h at room temperature.
The primary antibodies against caspase-9, cleaved caspase-9, PARP, cleaved PARP, Bcl-2,
caspase-3, cleaved caspase-3, AMPKα, and Akt were then treated overnight at 4 ◦C. After
washing with TBST buffer three times for 15 min, the membranes were incubated with HRP-
conjugated secondary antibodies (1:5000) for 1 h at room temperature. Then, membranes
were washed with TBST buffer three times for 15 min and developed with the enhanced
chemiluminescence kit. The protein bands were captured and measured using a bio-
imaging system (MicroChemi 4.2 Chemilumineszenz-System, Neve Yamin, Israel).
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2.8. Statistical Analysis

Data are presented as mean ± SD of three independent experiments. Statistical
differences between groups were compared using the Student’s t-test. Probability values
less than 0.05 were considered significant (p values * p <0.05, ** p <0.01, *** p <0.001).

3. Results
3.1. PHE Decreases Viability of Cancer Cell Lines

The cytotoxic effects of PHE on HL-60 (a human leukemia cell), MDCK (a mammalian
kidney cell), HeLa (a human cervical cancer cell), A549 (a non-small-cell lung cancer
cell), Hep G2 (a human liver cancer cell), AGS (a human gastric adenocarcinoma cell),
MDA-MB-231 (a TNBC breast cancer cell), and MCF-7 (a human breast cancer cells) were
analyzed using CCK-8 analysis (Figure 1). Dose-dependent treatment of PME did not affect
the viability of MDCK, Hep G2, and MCF-7, whereas it did demonstrate cytotoxicities
on HL60, Hela, A549, and MDA-MB-231 cells. It was also not toxic in MDCK and MCF-7
when PHE was treated at a concentration of 100 µg/mL (Figure S1, Table 1). Interestingly,
PHE was cytotoxic to MDA-MB-231 TNBC cells but not to MCF-7, which is ER-(+), PR-(+),
and HER-2-(−) breast cancer cell. The IC50 values of PHE were >30 µg/mL in MCF-7 cells
and 23.77 ± 1.2 µg/mL in MDA-MB-231 cells, as summarized in Table 1. Consequently,
we paid attention to the selective cytotoxicity of PHE against DMA-MB-231 TNBC cells
compared to MCF-7 breast cancer cells, due to the poor prognosis and limited treatment
options of patients with TNBC cancer. Hence, we performed subsequent experiments to
identify and validate the anticancer effect of PHE on TNBC breast cancer cells.
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Figure 1. Effect of Physconia hokkaidensis methanol extract (PHE) on the viability of various cell lines. Seven cancer cell lines
and a normal cell line were treated with the PHE (1, 3, 10, and 30 µg/mL) for 24 h. The culture supernatant was removed
and cell counting kit-8 was added. Viability was quantified using a microplate reader. All data are expressed as mean ± SD
of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the control of each cell line.

Table 1. Effect of PHE on the viability of various cell lines.

IC50 Value (µg/mL)

PHE

MDCK (Madin–Darby canine kidney cells) >100
HL-60 (Human acute promyelocytic leukemia cells) 11.3 ± 0.4

HeLa (Human cervix adenocarcinoma cells) 21.1 ± 2.4
A549 (Human lung carcinoma cells) 7.6 ± 3.3

Hep G2 (Human hepatoblastoma cells) >30
AGS (Human gastric carcinoma cells) 22.6 ± 1.2

MDA-MB-231 (Human breast adenocarcinoma cells) 23.7 ± 1.2
MCF-7 (Human breast adenocarcinoma cells) >100

Seven cancer cell lines and a normal cell line were treated with PHE for 24 h. The culture supernatant was removed
and cell counting kit-8 was added. Viability was quantified using a microplate reader. Data are presented as 50%
inhibitory concentration (IC50, µg/mL). Values are presented as mean ± SD of three independent experiments.
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3.2. PHE Increased the Proportion of MDA-MB-231 Cells in the Sub-G1 Phase

As PHE showed noticeable cytotoxicity against MDA-MB-231 cells compared to
MCF-7 cells, we first inspected the effect of PHE on cell cycle progression to understand the
mode of action. To investigate whether the effect of PHE was mediated via the regulation
of cell cycle progression, flow cytometric analysis was conducted on MDA-MB-231 and
MCF-7 cells. PHE at 1, 3, 10, and 30 µg/mL increased the proportion of MDA-MB-231 cells
in the sub-G1 cell cycle phase from 12.43 ± 1.33% observed in the control to the percentages
of 33.6 ± 0.95%, 27.9 ± 1.05%, 36.33 ± 0.72%, and 42.36 ± 2.05%, respectively (Figure 2A).
However, PHE treatment did not result in a significantly increased proportion of MCF-7
cells in the sub-G1 phase (Figure 2C). These data suggest that PHE leads to the reduction
of viability of MDA-MB-231 by cell cycle arrest at the sub-G1 phase (Figure 2B).
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Figure 2. Physconia hokkaidensis methanol extract (PHE) induces the cell cycle arrest of MDA-MB-231 cells at the sub-G1
phase. (A) The cell cycle distribution of PHE-treated MDA-MB-231 and MCF-7 cells for 24 h. The cells were measured using
a flow cytometer. (B,C) Statistical analysis of cell cycle distribution of PHE-treated MDA-MB-231 and MCF-7 cells. All data
are expressed as mean ± SD of three independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the control
of each cell line.

3.3. Effects of PHE on MDA-MB-231 Cell Membrane Change

To determine whether the cytotoxic effect of PHE was associated with apoptosis,
annexin V-FITC/PI double staining was used to determine the number of apoptotic cells
by flow cytometry analysis. Phosphatidylserine (PS) is a key biomarker of early apoptosis
and is translocated to the extracellular domain from the cytosolic portion of the membrane,
which is identified by annexin V-FITC staining. As apoptosis proceeds further, the cell
membrane is destroyed and the PI that goes into the nucleus eventually stains the DNA.
The MDA-MB-231 cell line displayed higher sensitivity than the MCF-7 cell line in response
to the apoptosis induction of PHE at concentrations of 1, 3, 10, and 30 µg/mL for 48 h.
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Early apoptosis increased to 5.6 ± 1.33%, 2.36 ± 0.15%, 7.06 ± 0.96%, 31.1 ± 0.51%, and
37.4 ± 1.7%; later apoptosis also increased to 6.06 ± 0.35%, 5.56 ± 0.15%, 8.93 ± 0.66%,
18.4 ± 1.67%, and 23.53 ± 0.23% (Figure 3A). The results indicated that differences in
apoptosis rates occurred in MDA-MB-231 and MCF-7 cells treated with PHE (Figure 3B,C).
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Figure 3. A 48-h treatment of Physconia hokkaidensis methanol extract (PHE) induces MDA-MB-231 cell membrane change.
(A) Cells were treated with PHE for 48 h and stained with annexin V/PI. (B,C) Statistical analysis of the apoptosis ratio of
MDA-MB-231 and MCF-7 cells after PHE treatment. All data are expressed as mean ± SD of three independent experiments.
* p < 0.05, ** p < 0.01, *** p < 0.001 compared to the control of each cell line.

3.4. Effect of M47 on the Levels of Apoptosis-Related Proteins

The transcriptional levels of various pro- and antiapoptotic proteins in PHE-treated
MDA-MB-231 cells were examined by Western blotting. The activation of AMP-activated
protein kinase (AMPK) and p-Akt leads is well known to mediate antiapoptotic effects,
whereas deactivation of the AMPK pathway results in elevated apoptosis levels. The
treatment of MDA-MB-231 with PHE at 30 µg/mL for 48 h showed significantly decreased
protein levels of AMPK and p-Akt (Figure 4A). Next, Western blotting was further per-
formed to analyze the effect of PHE treatment on antiapoptotic and apoptotic proteins. The
treatment with PHE for 48 h induced the decrease of the transcriptional level of antiapop-
totic proteins such as Bcl-2 but increased levels of key apoptotic proteins, including cleaved
caspase-9/-3 and cleaved PARP (Figure 4B).
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Figure 4. Physconia hokkaidensis methanol extract (PHE) induces apoptotic cell death of MDA-MB-231 cells. MDA-MB-231
cells were treated with 30 µg/mL of PHE for 48 h. (A,B) Apoptotic markers were analyzed by Western blotting and β-actin
was used as a protein loading control. (C) The level of apoptotic markers in lichen-extract-treated MDA-MB-231 cells was
analyzed. Protein levels were normalized to the control group. (−) means “without treatment of PHE”, (+) means “ with
treatment of PHE”, * p < 0.05, ** p < 0.01 compared to the control of each cell line.

4. Discussion

Cancer treatment still has many unmet needs and requires new therapeutic agents.
New and efficient drugs against cancer should be developed for public health, and for
this purpose, the identification of new substances with anticancer activity is essential in
the development of anticancer drugs. Many reports have mentioned that lichens have
potential as a source of biologically active substances for the development of anticancer
agents [14–16].

A few lichen species have been reported to have nonselective cytotoxicity against breast
cancer cells including MDA-MB-231, triple-negative breast cancer (TNBC) cells, and MCF-7
cells expressing ER and PR but not HER-2. Lichen species, such as Xanthoparmelia somloensis
(Gleyn.) Hale, Usnea intermedia (A. Massal.) Jatta, Bryoria capillaris (Ach.) Brodo & D. Hawksw,
and Lobaria pulmonaria (L.) Hoffm, have an antiproliferative effect on MDA-MB-231 and MCF-
7 cells, as well lung cancer cells, by inducing apoptosis [20]. Nanoparticles manufactured
with lichens such as Xanthoria parietina and Flavopunctelia flaventior showed antibacterial and
cytotoxic activity on both MDA-MB-231 and MCF-7 cells [21]. A lichen, Parmelia sulcata Taylor,
exhibited promising anticancer activity against breast cancer cells and a genotoxic effect
on human lymphocytes [22]. In addition to lichen extracts, atranorin, a metabolite isolated
from lichens including Stereocaulon cacspitorim, Everniastrum vexans, and Parmatrema species,
exhibited anti-breast cancer activity on MDA-MB-231 and MCF-7 cells through an effect on
Akt activity [23].

However, the cytotoxicity of PHE was evaluated in various cancer cells, and we iden-
tified an anticancer effect of the methanol extract of Physconia hokkadensis (PHE). It showed
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remarkable cytotoxicity against MDA-MB-231 cells, triple-negative breast cancer (TNBC)
cells, but not on MCF-7 (Figure 1 and Table 1). Then, the study was continued by iden-
tifying differences in the effect of PHE on TNBC MDA-MB-231 and MCF-7. Cell cycle
analysis and annexin V/PI staining were performed to identify the mechanism of action
of cytotoxicity from PHE. The MDA-MB-231 treated with PHE showed the arrest of sub-
G1 (Figure 2), implying PHE is able to induce apoptosis because the sub-G1 fraction of
DNA-labeled cells is usually related to apoptotic cells and because DNA fragmentation is a
feature of cell death. During apoptosis, the genome DNA is cut into small fragments of
approximately 180 bp (and multiples of it) each and placed below G1/G0 peak after dyeing
with propidium iodide [24,25]. Annexin V/PI staining showed a dose-dependent increase
in MDA-MB-231 but a consistent level of staining in MCF-7 (Figure 3). During apopto-
sis, lipid asymmetry in cell membranes is lost and phosphatidylserine (PS) is exposed
on the outer leaflet of the plasma membrane, which is the “eat me” signal for apoptosis.
Annexin V, a 36-kDa calcium-binding protein, can bind to the extracellular portion of PS.
Fluorescently labeled annexin V is generally used to detect PS that is exposed on the
outside of cell membrane in early/mid-stage apoptosis and to distinguish apoptotic and
necrotic cells by flow cytometry [26]. Most drugs used to treat carcinoma are associated
with the activation of apoptosis through the mitochondrial pathway [27–29]. Changes in
mitochondrial membrane potential are considered an important indicator of the onset of
apoptosis [30–33]. The altered membrane potential consequently initiates the outflow of
cytochrome c, which activates caspase-3 and caspase-9 [30–33]. As shown in Figure 4B,C,
PHE induced the increase of levels of cleaved caspase-3/9 and cleaved PARP, supporting
the idea that cytotoxicity of PHE is induced via apoptosis. In contrast to apoptotic proteins
such as cleaved caspase-3/9, Bcl-2 protein is a representative oncogenic and antiapoptotic
protein, and it acts as a radical-scavenging agent by scavenging radicals generated by
being contained in the membranes of the nucleus, endoplasmic reticulum, and mitochon-
dria [34,35]. In addition to Bcl-2, AMPK and Akt are proliferative proteins related to the
oncogenic signaling pathway in the progression of cancer and are potential therapeutic
targets for cancer treatment [36,37]. Akt, a downstream target of AMPK, regulates the
proliferation, survival, and growth of many human cancer cells [38]. It has been reported
that Akt on phosphorylation acts as an antiapoptotic molecule and prevents cells from
undergoing apoptosis [39]. As shown in Figure 4A,B, Western blotting of MDA-MB-231
treated with 30 µg/mL of PHE revealed that antiapoptotic biomarkers, including Bcl-2,
AMPK, and p-Akt, were significantly reduced. Taken together, this study supports that
the cytotoxic activity of PHE on MDA-MB-231 cells is clearly derived from the induction
of apoptosis.

5. Conclusions

In summary, the present study documented the selective cytotoxic effect of PHE in
MDA-MB-231 TNBC cells compared to MCF-7 breast cancer cells with expression of ER
and PR. The cell cytotoxic activity of the PHE on MDA-MB-231 cells is probably derived
from the cell cycle arrests and apoptosis. These results suggest that the PHE can be a
potential candidate as a hit compound to develop a therapeutic agent for the treatment of
MDA-MB-231 breast cancer. Further studies are still needed to explore its exact mechanism
of action and assess its therapeutic efficacy as a candidate for the development of an agent
against cancer.

Supplementary Materials: The following are available online at https://www.mdpi.com/2309
-608X/7/3/188/s1, Figure S1: Effect of PHE on the viability of MDCK and MCF-7, Figure S2:
HPLC chromatogram profiles of Physconia hokkaidensis methanol extract, Table S1: Integration of
chromatogram.
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