
Fast activation maximization for molecular
sequence design
Johannes Linder1*  and Georg Seelig1,2 

Background
Rational design of DNA, RNA and protein sequences has enabled the rapid development
of a wide range of biomolecules, including functional or stably folded proteins [1–3], opti-
mized promoter sequences [4], active enzymes [5] and de novo antibody components [6, 7].
These design principles are now starting to be applied to specific therapeutic domains, for
example AAV gene therapy [8], antimicrobial peptides [9] and vaccines [10, 11]. A number
of Machine Learning methods have been explored for sequence design, such as Genetic
Algorithms [12], Simulated Annealing [3, 13], Bayesian optimization [14], Particle swarms

Abstract 

Background:  Optimization of DNA and protein sequences based on Machine Learn-
ing models is becoming a powerful tool for molecular design. Activation maximization
offers a simple design strategy for differentiable models: one-hot coded sequences are
first approximated by a continuous representation, which is then iteratively optimized
with respect to the predictor oracle by gradient ascent. While elegant, the current ver-
sion of the method suffers from vanishing gradients and may cause predictor patholo-
gies leading to poor convergence.

Results:  Here, we introduce Fast SeqProp, an improved activation maximization
method that combines straight-through approximation with normalization across the
parameters of the input sequence distribution. Fast SeqProp overcomes bottlenecks in
earlier methods arising from input parameters becoming skewed during optimization.
Compared to prior methods, Fast SeqProp results in up to 100-fold faster convergence
while also finding improved fitness optima for many applications. We demonstrate Fast
SeqProp’s capabilities by designing DNA and protein sequences for six deep learning
predictors, including a protein structure predictor.

Conclusions:  Fast SeqProp offers a reliable and efficient method for general-purpose
sequence optimization through a differentiable fitness predictor. As demonstrated on a
variety of deep learning models, the method is widely applicable, and can incorporate
various regularization techniques to maintain confidence in the sequence designs.
As a design tool, Fast SeqProp may aid in the development of novel molecules, drug
therapies and vaccines.

Keywords:  Activation maximization, Sequence design, DNA, RNA, Protein, Deep
learning, Design, Gradient ascent, Neural network, Optimization

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHODOLOGY ARTICLE

Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510
https://doi.org/10.1186/s12859-021-04437-5

*Correspondence:
jlinder2@cs.washington.edu
1 Paul G. Allen School
of Computer Science
and Engineering, University
of Washington, Seattle, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-2134-7292
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04437-5&domain=pdf

Page 2 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

[15–17] and population-based methods [18]. Most design methods are guided by predictive
models, often based on deep learning, that reliably relate sequence to fitness or function
[19–36]. More recently, methods combining adaptive sampling or other conditioning tech-
niques with deep generative networks have been used to model distributions of sequences
with desired properties [6, 9, 37–42], including Deep Exploration Networks (DENs) which
were developed by our group. While powerful, these methods first require selecting an
appropriate generative network and tuning several hyper-parameters.

Perhaps the simplest and most direct approach to sequence design based on a differenti-
able fitness predictor is to optimize the input pattern by gradient ascent [29, 37, 43–46].
This approach is commonly known as activation maximization and uses the gradient of the
neural network output to make incremental changes to the input. However, gradient ascent
cannot be directly applied to discrete sequence data. Several extensions have been proposed
to rectify this. Killoran et al. [44] used a softmax layer to turn the sequences into continu-
ous relaxations. In previous work, we developed SeqProp which uses straight-through (ST)
gradients to optimize discrete samples [29]. However, as our results indicate below, both
methods converge slowly. Furthermore, continuous input relaxations may cause predictor
pathologies leading to poor designs.

Here, we develop Fast SeqProp, a gradient-based design method that combines discrete
nucleotide sampling and straight-through approximation with normalization across the
parameters of the sampling distributions. We hypothesized that these modifications would
overcome the issue of slow convergence encountered by previous methods. To test this
idea, we systematically compared Fast SeqProp to prior methods on a range of DNA and
protein design tasks, including the design of strong enhancers, 5’UTRs, alternative poly-
adenylation signals and protein structures. We also examined whether methods based on
direct optimization (such as activation maximization) in general reach higher fitness scores
than conditioning of generative models when there is a low degree of epistemic uncertainty.
Finally, we explored techniques for regularizing activation maximization such that the
designed sequences do not drift too far from the original training data distribution.

Fast SeqProp demonstrated up to a 100-fold optimization speedup, and improved
optima, on the design tasks compared to prior methods based on activation maximization.
We validated designs by scoring them with models that were not used during optimization.
We also found that our method can outperform global search heuristics such as Simulated
Annealing as well as more recent methods based on generative models. Unlike the latter
approaches, Fast SeqProp does not require training of an independent generator. It is thus
model–free, making it easy to use when designing smaller sequence sets. Moreover, Fast
SeqProp can incorporate many different regularization techniques to maintain confidence
in its designs, such as regularization based on a variational autoencoder (VAE) and optimi-
zation of probabilistic predictor models that are capable of estimating their uncertainty.

Activation maximization for biological sequences

Given a sequence-predictive neural network P and an initial input pattern x(0) , the gra-
dient ascent method seeks to maximize the predicted fitness P(x) ∈ R by tuning the
input pattern x:

(1)max
x

P(x)

Page 3 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

Assuming P is differentiable, we can compute the gradient ∇xP(x) with respect to the
input and optimize x by updating the variable with a small step η ∈ R in the direction of
the fitness gradient [47]:

However, sequences are usually represented as one-hot coded patterns ( x ∈ {0, 1}N×M ,
where N is the sequence length and M the number of channels or monomer possibilities;
M = 4 for nucleic acids and M = 20 for proteins), and discrete variables cannot be opti-
mized by gradient ascent. Several different reparameterizations of x have been proposed
to bypass this issue. In one of the earliest implementations, Lanchantin et al. [43] repre-
sented the sequence as an unstructured, real-valued pattern ( x ∈ R

N×M ) but imposed
an L2-penalty on x in order to keep it from growing too large and causing predictor
pathologies. After optimization, this real-valued pattern is interpreted as a sequence
logo from which samples can be drawn. However, the method was introduced mainly
as a visualization tool rather than a sequence design approach. Killoran et al. [44] later
introduced a softmax reparameterization, turning x into a continuous relaxation σ(l):

Here lij ∈ R are differentiable nucleotide logits. The gradient of σ(l) with respect to l is
defined as:

Given Eqs. 3 and 4, we can maximize P(σ (l)) with respect to the logits l using the gra-
dient ∇lP(σ (l)) . While elegant, there are two issues with this architecture. First, the
gradient in Eq. 4 becomes vanishingly small for large values of lij (when σ(l)ik ≈ 0 or
σ(l)ij ≈ 1 ), halting convergence. Second, sequence-predictive neural networks have only
been trained on discrete one-hot coded patterns and the predictive power of P may be
poor on a continuous relaxation such as σ(l).

Following advances in gradient estimators for discretized neurons [48, 49], we devel-
oped SeqProp, a version of the gradient ascent method that replaces the softmax trans-
form σ with a discrete, stochastic sampler δ:

Here, Zi ∼ σ(l)i is a randomly drawn categorical nucleotide at the ith position from the
(softmax) probability distribution σ(l)i . The nucleotide logits lij can be interpreted as
parameters to N categorical distributions, from which we sample nucleotides {Zi}

N
i=1 and

construct a discrete, one-hot coded pattern δ(l) ∈ {0, 1}N×M . While δ(l) is not directly
differentiable, l can be updated based on the estimate of ∇lP(δ(l)) using straight-
through approximation. Rather than using the original ST estimator of Bengio et al. [48],
we here adopt an estimator with theoretically better properties from Chung et al. [50]
where the gradient of δ(l)ij is replaced by that of the softmax σ(l)ij:

(2)x
(t+1) ← x

(t) + η · ∇xP(x)

(3)σ(l)ij =
elij

∑4
k=1 e

lik

(4)
∂σ (l)ij

∂lik
= σ(l)ik ·

(

1(j=k) − σ(l)ij
)

(5)δ(l)ij = 1(Zi=j)

Page 4 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

By sending discrete samples as input to P we remove any pathology that could arise
from using a continuous input relaxation. But, as we show below, convergence remains
almost as slow as the softmax method. Switching to the original ST estimator ( ∂δ(l)ij

∂lij
= 1 )

speeds up convergence but worsens fitness optima (see Additional file 1, Figure S1G for
a comparison).

Results
Fast stochastic sequence backpropagation

Inspired by instance normalization in image GANs [51], we hypothesized that the main
bottleneck in earlier design methods—both in terms of optimization speed and minima
found—stem from overly large and disproportionally scaled nucleotide logits. Here, we
mitigate this problem by normalizing the logits across positions. Specifically, we insert a
normalization layer between the trainable logits lij and the sampling layer δ(l)ij (Fig. 1a).

For DNA sequence design, where the number of one-hot channels M is small ( M = 4 ),
we use a normalization scheme commonly referred to as instance-normalization. In this
scheme, the nucleotide logits of each channel are normalized independently across posi-
tions. Let µ̄j =

1
N

∑N
i=1 lij and ε̄j =

√

1
N

∑N
i=1(lij − µ̄j)2 be the sample mean and devia-

tion of logits for nucleotide j across all positions i. For each step of gradient ascent, we
compute the normalized logits l(norm)

ij as:

Since logits with zero mean and unit variance have limited expressiveness when used as
parameters to a probability distribution, we associate each channel j with a global scal-
ing parameter γj and offset βj . Having an independent offset βj per channel is particularly
well-suited for DNA, as nucleotides are often associated with a global preferential bias.
The scaled, re-centered logits are calculated as:

For protein sequence design, the number of one-hot channels M is considerably larger
( M = 20 ) while the sequences often are shorter, resulting in fewer samples per channel
and noisier normalization statistics. Here we found that layer-normalization was more
stable: We compute a global mean µ̄ = 1

N ·M

∑N
i=1

∑M
j=1 lij and deviation

ε̄ =

√

1
NM

∑N
i=1

∑M
j=1(lij − µ̄j)2 , and use a shared scaling factor γ and offset β for all M

channels.
Given the normalized and scaled logits l(scaled) as parameters for the nucleotide sam-

pler δ defined in Eq. 5, we maximize P(δ(l(scaled))) with respect to lij , γj and βj (or γ and β
in the context of proteins) using the softmax ST estimator from Eq. 6. The normalization
removes logit drift by keeping the values proportionally scaled and centered at zero
( E[l(norm)

ij] = 0 , Var[l(norm)
ij] = 1 ), enabling the gradients to swap nucleotides with few

updates. Furthermore, the scaling parameter γj (or γ ) adaptively adjusts the sampling

(6)
∂δ(l)ij

∂lik
≈

∂σ (l)ij

∂lik
= σ(l)ik · (1(j=k) − σ(l)ij)

(7)l
(norm)
ij =

lij − µ̄j

ε̄2j

(8)l
(scaled)
ij = l

(norm)
ij ∗ γj + βj

Page 5 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

entropy to control global versus local optimization: When our confidence in a particular
nucleotide j at position i ( l(norm)

ij  ) is consistent with its impact on fitness (shares the sign
of the fitness gradient ∂P(δ(l(scaled)))

∂δ(l(scaled))ij
 ), the scaling parameter γj increases, thus lowering

sampling entropy. Whenever we sample inconsistent nucleotides, γj decreases and the
temperature again increases, promoting exploration. See Methods for further details.

Maximizing nucleic acid sequence‑predictive neural networks

We first evaluated our method on the task of maximizing the classification or regres-
sion scores of five DNA- or RNA-level neural networks: (1) DragoNN, a model trained
on ChIP-seq data to predict Transcription Factor (TF) binding (in this case binding of
SPI1), (2) DeepSEA [22], which predicts multiple TF binding probabilities and chroma-
tin modifications (we use it here to maximize the probability of CTCF binding in the
cell type Dnd41), (3) APARENT [29], which predicts alternative polyadenylation iso-
form abundance given an input polyadenylation signal, (4) MPRA-DragoNN [24], a neu-
ral network trained to predict transcriptional activity of short enhancer sequences and,
finally, (5) Optimus 5’ [25], which predicts ribosomal load (translational efficiency) of 5’
UTR sequences.

We compare our new logit-normalized, straight-through sampled sequence design
method (Fast SeqProp) to the previous versions of the algorithm, namely the original
method with continuous softmax-relaxed inputs [44] (here referred to as PWM) and

Fig. 1  Fast activation maximization for sequence design. a The Fast SeqProp pipeline. A normalization layer
is prepended to a softmax layer, which is used as parameters to a sampling layer. b Maximizing the predictors
DragoNN (SPI1), DeepSEA (CTCF Dnd41), MPRA-DragoNN (SV40), Optimus 5’ and APARENT

Page 6 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

SeqProp, the categorical sampling method described in [29] using a (non-normalized)
gradient estimator. We also tested a logit-normalized version of the softmax-relaxed
method, Fast PWM, in order to disentangle the individual performance contributions of
the normalization scheme and the sampling scheme.

Figure 1b shows the result of using the design methods to generate maximally scored
sequences for each of the five DNA-based predictors. Fast SeqProp converges to 95–99%
of its minimum test loss within 2000 logit updates, and reaches 50% of the minimum
loss after only 200 updates for all predictors except MPRA-DragoNN and Optimus 5’. In
contrast, PWM and SeqProp do not converge within 20,000 updates. Fast SeqProp con-
verges to up to threefold better optima than all other compared methods. In fact, Fast
SeqProp reaches the same or better optima in 200 updates than the competing meth-
ods reach in 20,000 updates for DragoNN, MPRA-DragoNN and DeepSEA, marking a
100x speedup. For Optimus 5’ and APARENT, the speedup is 20x-50x. In addition to
gradient-based methods, we demonstrate improved performance compared to discrete
search algorithms such as Simulated Annealing (see Additional file 1, Figure S1A-B).

In the Additional file 1, we provide additional technical comparisons of Fast SeqProp to
previous activation maximization methods. For example, In Figure S1C, we demonstrate that
certain sequence-predictive neural networks suffer from out-of-distribution (OOD) patholo-
gies on continuous sequence relaxations as input, explaining the poor performance of the
PWM design method. We further show that adding an entropy penalty to the PWM method
still cannot close the performance gap to Fast SeqProp (Figure S1D) and that the Softmax
ST estimator outperforms Gumbel Sampling on a number of tasks (Figure S1E). Finally, we
show that Fast SeqProp appears robust to the choice of optimizer parameters (Figure S1F)
and that the Softmax ST estimator outperforms the original ST estimator (Figure S1G).

Recapitulating cis‑regulatory biology with activation maximization

In Fig. 2 we compare example sequence optimizations of the PWM and Fast SeqProp
methods. As can be seen, even after 20, 000 updates, the PWM method has not con-
verged for most of the tested predictors. In contrast, we find plenty of cis-regulatory
motifs in the converged sequences generated by Fast SeqProp. Since our method was
tasked with maximizing the predicted score of each model, we would expect to find
enhancing motifs and regulatory logic embedded in the sequences which give rise to
these extreme model responses.

For example, when maximizing DragoNN, Fast SeqProp generates multiple SPI1 bind-
ing motifs [52]. For APARENT, Fast SeqProp generates CFIm binding motifs, dual CSE
hexamers, and multiple cut sites with CstF binding sites. These are all regulatory motifs
known to enhance cleavage and polyadenylation by stimulating recruitment of the poly-
adenylation machinery [53–56]. For DeepSEA, Fast SeqProp generates four CTCF bind-
ing sites. For MPRA-DragoNN, we identify both CRE- and CTCF binding sites embedded
within a GC-rich context, which aligns well with what we might expect to find in a strong
enhancer [57, 58]. Finally, for Optimus 5’, Fast SeqProp generates a T-rich sequence with
multiple in-frame (IF) uAUGs. These determinants were found to improve ribosome
loading [25]. See the Additional file 1 (Figure S2) for additional visualizations comparing
the PWM and Fast SeqProp methods at different stages of optimization.

Page 7 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

Regularized sequence design

While finding regulatory logic in the sequences produced by activation maximization
is a good indication that we actually generate patterns with biological meaning, the
method may still not be suitable in its most basic form for sequence design. There is
the potential issue of overfitting to the predictor oracle during sequence optimization,
as the oracle may lose its accuracy when drifting out of the training data distribution
to maximize predicted fitness. By training a differentiable likelihood model, such as a
variational autoencoder (VAE) [59], on samples from the same data and using it as a
regularizer in the cost function, we can prevent drift to low-confidence regions of design
space (Fig. 3a; top). Using a VAE to avoid drift has previously been demonstrated by [37,
39, 42]. In summary, we extend the original optimization objective (Eq. 1) by passing
the sampled one-hot pattern δ(l) to the VAE and penalize the pattern based on its VAE-
estimated marginal likelihood, pVAE(δ(l)) , using importance-weighted inference and ST
approximation for backpropagation (see Eq. 13 in Methods).

The degree to which predictors exhibit pathological behavior when maximized var-
ies on a case-by-case basis and likely depends heavily on the data distribution. When
designing maximally strong gene enhancers using the MPRA-DragoNN predictor,
for example, VAE-regularization has a clear effect on shifting the distribution of the
designed sequences (Fig. 3a; bottom histograms). In contrast, when designing polyade-
nylation signals, VAE-regularization has no effect since non-regularized optimization
already generates sequences that are at least as likely as training data according to the
VAE (see Additional file 1, Figure S3A).

Fig. 2  Example designed sequences. Softmax sequences (PSSMs) generated by the PWM and Fast SeqProp
methods after 20,000 updates of gradient ascent updates with default optimizer parameters (Adam). The
logit matrices l were uniformly randomly initialized prior to optimization. Identified cis-regulatory motifs
annotated above each sequence

Page 8 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

Next, we tasked the VAE-regularized Fast SeqProp method with designing maximally
strong polyadenylation signals (using APARENT as the oracle), maximally transcrip-
tionally active enhancer sequences (using MPRA-DragoNN as the oracle) and maxi-
mally translationally efficient 5’ UTRs (using Optimus 5’). For each task, we trained a
β-VAE [59] and a W-GAN [60] on a sample of 5000 high-fitness sequences (see Meth-
ods for details). We then used the methods CbAS [39] FB-GAN [38], AM-VAE [44],
RWR [61] and FB-VAE (VAE-version of FB-GAN) to maximize each oracle, using the
VAE or GAN we trained earlier with default method parameters. We used the same
VAE as the regularizer for our design method (Fast SeqProp). During optimization,

Fig. 3  Regularized sequence design. a Top: VAE-regularized Fast SeqProp. A variational autoencoder (VAE)
is used to control the estimated likelihood of designed sequences during gradient ascent optimization.
Bottom: Estimated VAE log likelihood distribution of random sequences (green), test sequences from the
MPRA-DragoNN dataset (orange) and designed sequences (red), using Fast SeqProp without and with
VAE regularization (top and bottom histogram respectively). b Oracle fitness score trajectories (APARENT,
MPRA-DragoNN and Optimus 5’) and validation model score trajectories (DeeReCT-APA, iEnhancer-2L and
retrained Optimus 5’) as a function of the cumulative number of predictor calls made during the sequence
design phase. Shown are the median scores across 10 samples per design method, for three repeats. c
Example designed sequences for APARENT, MPRA-DragoNN and Optimus 5’, using Fast SeqProp with and
without VAE-regularization. Oracle and validation model scores are annotated on the right

Page 9 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

we measured the fitness scores of both the oracle and a number of independent vali-
dation models that we did not directly optimize for, allowing us to estimate sequence
fitness in an unbiased way. Specifically, when designing polyadenylation signals based
on APARENT, we validated the designs using DeeReCT-APA [31], an LSTM trained
on 3’-sequencing data of mouse cells, and DeepPASTA [30], a CNN trained on human
3’-sequencing data. When designing enhancer sequences, we validated the designs
using iEnhancer-ECNN [62], an ensemble of CNNs trained on genomic enhancer
sequences, and EnhancerP-2L [63], a Random Forest-classifier based on statistical fea-
tures extracted from enhancer regions in the genome. Finally, to validate Optimus 5’
designs, we had access to a newer version of the model that had been trained on addi-
tional MPRA data, making it more robust particularly on outlier sequences such as
long homopolymer stretches [25]. On a practical note, we found it difficult to train a
VAE on the APARENT, Optimus 5’ and MPRA-DragoNN datasets, and the conver-
gence of CbAS, RWR and FB-GAN appeared sensitive to quantile threshold settings,
which we believe stem from the considerable data heterogeneity and variability.

The results (Fig. 3b) show that Fast SeqProp reaches significantly higher oracle fit-
ness scores and validation model scores with orders of magnitudes fewer calls to the
oracle for all tasks except the 5’ UTR design problem, where instead AM-VAE reaches
high validation scores faster. The other methods either do not reach the same median
validation score in the total allotted time, or do so at the expense of reduced diver-
sity (see Additional file 1, Figure S3B). For the polyadenylation signal design task,
Fast SeqProp reaches identical validation scores with or without VAE-regularization
(Fig. 3b, top right; Additional file 1, Figure S3C). The designed polyadenylation signal
sequences include motifs such as CFIm-, CstF- and CPSF binding sites (Fig. 3c, top).
For the enhancer design task, the VAE-regularization is clearly beneficial according
to the validation model; while enhancers designed by Fast SeqProp without the VAE
have a median MPRA-DragoNN score of 3.5, the median iEnhancer-ECNN score
(Fig. 3b, middle right) is just 0.43. With VAE-regularization, we generate sequences
with a lower median MPRA-DragoNN score (3.25), but higher iEnhancer-ECNN
score (0.55). However, closer inspection reveals that Fast SeqProp does not consist-
ently generate worse enhancers according to the validation model than its VAE-regu-
larized counterpart. Rather, Fast SeqProp without VAE either generates highly scored
enhancers by the validation model or sequences that are lowly scored, while Fast
SeqProp with VAE consistently generates medium-scored enhancers (example shown
in Fig. 3c, middle). This dynamic is also observed with another validation model
(EnhancerP-2L; see Additional file 1, Figure S3D). Only 80% of Fast SeqProp (no VAE)
sequences are identified by EnhancerP-2L as enhancers, while nearly 100% of Fast
SeqProp-VAE sequences are identified. However, their weighted predicted enhancer
strengths are identical. It is also worth noting that most other methods decrease
their validation scores when increasing their MPRA-DragoNN scores; this is because
they get stuck in a suboptimal, local minimum with pathological AT-repeats. Finally,
VAE-regularization is beneficial for designing 5’ UTRs, as it restricts the sequences
from becoming overly T-rich, a sequence pathology present in the original Optimus
5’ model which the retrained version understands actually decreases ribosome load
(Fig. 3b, bottom; Fig. 3c, bottom).

Page 10 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

In the Additional file 1, we provide extra benchmark experiments comparing Fast
SeqProp to a subset of the above design methods. In particular, in Figure S3E, we train
the same kind of oracles as was used by Brookes et al. [39] to estimate uncertainty in
the fitness predictions [64], and use these models to replicate the polyadenylation signal
and 5’ UTR design benchmarks. We also replicate the GFP design task used in Brookes
et al. [39]. Additionally, in Figure S3F, we include an example where we use MPRA-Drag-
oNN to design maximally specific enhancers in the cell line HepG2 (and inactivated in
K562), and show how internal network penalties can be used to regularize the sequence
optimization when it is hard to train an uncertainty-estimator oracle that is sufficiently
accurate.

Protein structure optimization

Multiple deep learning models have recently been developed for predicting tertiary
protein structure [32–34]. Here, we demonstrate our method by designing de novo pro-
tein sequences which conform to a target residue contact map as predicted by trRo-
setta [34]. The predictor takes three inputs (Fig. 4a): A one-hot coded sequence, a PSSM
constructed from a multiple-sequence alignment (MSA) and a direct-coupling analysis
(DCA) map. For our design task, we pass the optimizable one-hot pattern to the first
two inputs and an all-zeros tensor as the DCA feature map. Given the predicted dis-
tance distribution DP ∈ [0, 1]N×N×37 and angle distributions θP ,ωP ∈ [0, 1]N×N×24 ,
φP ∈ [0, 1]N×N×12 , we minimize the mean KL-divergence against target distributions
D

T , θT , ωT and φT :

We compared SeqProp and Simulated Annealing to a modified version of Fast SeqProp,
where logits are normalized across all residue channels (layer-normalized rather than
instance-normalized) to reduce the increased variance of shorter sequences with 20
one-hot coded channels. We used the methods to design protein sequences which con-
formed to the target structure of an example protein (Sensor Histidine Kinase). We
optimized 5 independent sequences per design method and recorded the median KL-
loss at each iteration. The results show that Fast SeqProp converges considerably faster
than other methods (Fig. 4b and Additional file 1 Figure S4A); after 200 iterations, Fast
SeqProp reached 4x lower KL-divergence and much of the target structure is visible
(Fig. 4c). While the choice of learning rate changes the rate of convergence, it does not
alter the minima found by Fast SeqProp. Additionally, by sampling multiple sequences
at once and walking down the average gradient (e.g. 10 samples per gradient update),
we can improve the rate of convergence further by making the gradient less noisy (see
Additional file 1, Figure S4B). Importantly, this scales significantly better than linear in
execution time, since multiple samples can be computed and differentiated in parallel on
a GPU. Finally, we replicated our results by designing sequences for a different protein
structure (an alpha-helical hairpin protein; see Additional file 1, Figure S4C-E).

(9)

min
l

KL(DP ||DT)+ KL(θP ||θT)+ KL(ωP ||ωT)+ KL(φP ||φT)

where KL(X ||Y) =
1

N 2
·

N
∑

i=1

N
∑

j=1

K
∑

k=1

Y ijk · log

(

Y ijk

X ijk

)

Page 11 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

Discussion
Methods guided by Machine Learning are used for a growing number of molecular
design problems. To support this ongoing effort, it is crucial that we have optimization
methods at the sequence-level which are fast, flexible and generally applicable with min-
imal tuning. Fast SeqProp is a model-free method that exhibits many of these proper-
ties. We demonstrated the method on a diverse set of problems, including the design of
strong polyadenylation signals, efficiently translated 5’ UTRs and enhancers that result
in high transcriptional activity. Interestingly, Fast SeqProp found higher fitness optima
when compared to estimation-of-distribution (EDA) approaches, in particular for design
tasks with low epistemic uncertainty. These results suggest that conditioning of deep
generative models might be overly restrictive for some problems.

By normalizing nucleotide logits across positions and using a global entropy param-
eter, Fast SeqProp keeps logits proportionally scaled and centered at zero. The gradi-
ent of the entropy parameter γ in our design method adaptively adjusts the sampling
temperature to trade off global and local optimization. In the beginning, γ is small, cor-
responding to a high PWM entropy and consequently very diverse sequence samples.
As optimization progresses, γ grows, leading to more localized sequence changes. This
adaptive mechanism, in combination with flexible nucleotide logits due to the nor-
malization, results in a highly efficient design method. As demonstrated on five deep
learning predictors, logit normalization enables extremely fast sequence optimization,
with a 50-100-fold speedup compared to previous gradient-based methods for many
predictors.

Fig. 4  Protein structure optimization. a Protein sequences are designed to minimize the KL-divergence
between predicted and target distance and angle distributions. The one-hot pattern is used for two of
the trRosetta inputs. b Generating sequences which conform to the target predicted structure of a Sensor
Histidine Kinase. Simulated Annealing was tested at several initial temperatures, with 1 substitution per step.
Similarly, SeqProp and Fast SeqProp was tested at several combinations of learning rate and momentum. c
Predicted residue distance distributions after 200 iterations

Page 12 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

In addition to logit drift and vanishing gradients, the original gradient ascent (or activa-
tion maximization) method suffers from predictor pathologies due to passing continu-
ous softmax sequence relaxations as input, a problem fully removed by using discrete
sampling. We further observed that straight-through sampling leads to consistently bet-
ter optima than softmax relaxation, suggesting that it traverses local minima. In fact, our
method outperformed global optimization meta heuristics such as Simulated Annealing
on more difficult design tasks, such as designing 1000 nt long enhancer regions or design-
ing protein sequences which conform to a complex target structure. We further demon-
strated robust sequence design even when there is a high degree of epistemic uncertainty,
by incorporating a regularization penalty based on variational autoencoders. Our
approach showed better and faster convergence than other regularized design methods.

Conclusion
We presented an improved version of activation maximization for biological sequence
design. Fast SeqProp combines logit normalization with stochastic nucleotide sampling
and straight-through gradients. We demonstrated the efficacy of the method on several
DNA, RNA and protein design tasks. We expect this algorithmic improvement to be
broadly useful to the research community for biomolecular optimization at the level of
primary sequence. The approach introduced here could accelerate the design of func-
tional biomolecules, potentially resulting in novel drug therapies, vaccines, molecular
sensors and other bioengineering products.

Methods
Activation maximization design methods

In Fig. 1 and throughout the paper, we compare four different activation maximization
methods for sequences: (1) Fast SeqProp (Our method)—The modified activation maxi-
mization method which combines the logit normalization scheme of Eqs. 7–8 with the
softmax straight-through estimator of Eqs. 5–6, (2) PWM—The original method with
continuous softmax-relaxed inputs [44], (3) SeqProp—The categorical sampling method
described in [29] using the (non-normalized) softmax straight-through gradient estima-
tor, and (4) Fast PWM—A logit-normalized version of the softmax-relaxed method.

Starting with a randomly initialized logit matrix l , for the methods PWM and Fast
PWM we optimize l using the softmax relaxation σ(l) from Eq. 3. For SeqProp and Fast
SeqProp, we optimize l using the discrete nucleotide sampler δ(l) from Eq. 5. We define
the optimization loss (or the ’train’ loss) as:

For PWM and Fast PWM, x(l) = σ(l) . For SeqProp and Fast SeqProp, x(l) = δ(l).
For Fast SeqProp we use the scaled, normalized logits l(scaled) (Eqs. 7–8) as parameters for

the sampler δ defined in Eq. 5. As such, we minimize the above loss with respect to lij , γj and
βj (or γ and β for proteins). Using the softmax ST estimator from Eq. 6, we arrive at the fol-
lowing gradients for Fast SeqProp:

Ltrain(l) = −P(x(l))

Page 13 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

The gradient equations are very similar for Fast PWM (the logit-normalized PWM
method); the only difference is that the discrete sampler δ in the forward pass is replaced
by the standard softmax σ . Similar design methods were published in parallel with (or
shortly after) this work, including an editing method based on the Gumbel-Softmax dis-
tribution [45] and other algorithms based on discretized activation maximization [46,
65]. See Figure S1E in the Additional file 1 for a comparison to optimization based on
Gumbel-Softmax.

The actual loss (or the ’test’ loss) is evaluated on the basis of discrete sequence samples
drawn from the optimized softmax representation σ(l) , regardless of design method. In all
four methods, we can use the categorical nucleotide sampler δ(l) to draw sequence samples
and compute the mean test loss as:

Here S refers to the number of samples drawn from each softmax sequence σ(l(k)) at
every weight update t, and K is the number of independent optimization runs. In all
experiments, we set K = 10 and S = 10.

In addition to gradient-based methods, we compare Fast SeqProp to discrete search algo-
rithms. The first method is a pairwise nucleotide-swapping search (Evolution) [25], where
sequence x is mutated with either 1 or, with a 50% chance, 2 random substitutions at each
iteration, resulting in a new candidate sequence x′ . x′ is only accepted if P(x′) > P(x) . We
also tested a well-known meta heuristic—Simulated Annealing [66]—which has recently
been demonstrated for sequence-level protein design [3]. In Simulated Annealing, muta-
tions are accepted even if they result in lower fitness with probability P(x′, x,T) , where T is
a temperature parameter. Here we use the Metropolis acceptance criterion [67]:

Adaptive sampling temperature with fast SeqProp

In Fast SeqProp, the scaling parameter γj adaptively adjusts the sampling entropy to con-
trol global versus local optimization. This can be deduced from the gradient components
of γj in Eq. 11:

(10)
∂P(δ(l(scaled)))

∂lij
=

M
∑

k=1

∂P(δ(l(scaled)))

∂δ(l(scaled))ik
·
∂σ (l(scaled))ik

∂l
(scaled)
ij

· γj ·
∂l

(norm)
ij

∂lij

(11)
∂P(δ(l(scaled)))

∂γj
=

N
∑

i=1

M
∑

k=1

∂P(δ(l(scaled)))

∂δ(l(scaled))ik
·
∂σ (l(scaled))ik

∂l
(scaled)
ij

· l
(norm)
ij

(12)
∂P(δ(l(scaled)))

∂βj
=

N
∑

i=1

M
∑

k=1

∂P(δ(l(scaled)))

∂δ(l(scaled))ik
·
∂σ (l(scaled))ik

∂l
(scaled)
ij

Ltest({l
(k)}Kk=1) = −

1

K

1

S

K
∑

k=1

S
∑

s=1

P(δ(l(k))(s))

P(x′, x,T) = e−(P(x)−P(x′))/T

Page 14 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

1	 ∂P(δ(l(scaled)))

∂δ(l(scaled))ik
 is positive for nucleotides which increase fitness and negative otherwise.

2	 ∂σ (l(scaled))ik

∂l
(scaled)
ij

 is positive when j = k and negative otherwise.

3	 l
(norm)

ik is positive only when we are likely to sample the corresponding nucleotide.

Here, the product of the first two terms, ∂P(δ(l(scaled)))

∂δ(l(scaled))ik
·
∂σ (l(scaled))ik

∂l
(scaled)
ij

 , is positive if j = k and

nucleotide j raises fitness or if j = k and nucleotide k lowers fitness. Put together, the
gradient for γj increases when our confidence l(norm)

ij in nucleotide j is consistent with its

impact on fitness, such that sign
(

∑M
k=1

∂P(δ(l(scaled)))

∂δ(l(scaled))ik
·
∂σ(l(scaled))ik

∂l
(scaled)
ij

)

= sign
(

l
(norm)
ij

)

 .

Conversely, inconsistent nucleotides decrement the gradient. At the start of optimiza-
tion, γj is small, leading to high PWM entropy and large jumps in sequence design space.
As we sample consistent nucleotides and the entropy gradient ∂P(δ(l(scaled)))

∂γj
 turns posi-

tive, γj increases. Larger γj lowers the entropy and leads to more localized optimization.
However, if we sample sufficiently many inconsistent nucleotides, the gradient of γj may
turn negative, again raising entropy and promoting global exploration.

Note that, in the context of protein design where we have a single scale γ and offset β ,
the gradient expressions from Eqs. 11 and 12 are additively pooled across all M channels.
The argued benefits of instance-normalization above thus holds true for layer-normali-
zation as well.

VAE‑regularized fast SeqProp

In the main paper (Fig. 3), we use a variational autoencoder (VAE) [59] to regularize the
sequence design when running Fast SeqProp. Similar regularization techniques based
on VAEs have previously been employed by [37, 39]. The original optimization objective
(Eq. 1) is extended by passing the sampled one-hot pattern δ(l) to the VAE and estimat-
ing its marginal likelihood, pVAE(δ(l)) , using importance-weighted inference. We then
minimize a margin loss with respect to the mean likelihood pref of the original training
data to keep sequence designs in-distribution, using the Softmax ST estimator to propa-
gate gradients back to l:

VAE‑regularized fast SeqProp with uncertainty‑estimation

In the Additional file 1 (Figure S3E), we replicate the benchmark comparison of the
main paper (Fig. 3), but we use oracle predictors capable of estimating the uncertainty
in their fitness predictions to further regularize the designs [64]. Sequence design based
on uncertainty estimators were originally proposed by [39, 68]. Assume that the oracle
model predicts the mean µ

[

δ(l)
]

 and standard deviation ǫ
[

δ(l)
]

 of fitness scores for the
designed (sampled) pattern δ(l) . We then use the (differentiable) survival function of the
normal distribution to maximize the probability pµ[δ(l)],ǫ[δ(l)](Y > q) that the predicted
fitness of sequence δ(l) is larger than quantile q of the training data:

(13)min
l

−P(δ(l))+ � ·max
[

log10 pref − log10 pVAE(δ(l))− ρ, 0
]

(14)min
l

− log10 pµ[δ(l)],ǫ[δ(l)](Y > q)+ � ·max
[

log pref − log10 pVAE(δ(l))− ρ, 0
]

Page 15 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

This fitness objective is known as ’Probability of Improvement’ (PI) [69–71].

VAE‑regularized fast SeqProp with activity‑regularization

In the Additional file 1 (Figure S3F), we use the predictor MPRA-DragoNN to design
maximally HepG2-specific enhancer sequences, and use activity-regularization on
(some of) the internal layers of the predictor to regularize the optimization. We maxi-
mize the predicted fitness score P(δ(l)) (and minimize the VAE-loss as before) while
also minimizing a margin loss applied to the sum of a subset of convolutional activation
maps Ck(δ(l)):

Predictor models

We designed sequences for five distinct DNA- or RNA deep learning predictors. For
each of these models, we defined one of their (potentially many) outputs as the clas-
sification or regression score P(x) ∈ R to maximize in Eq. 1. We also designed protein
sequences according to a 3D protein structure predictor. Here is a brief description of
each fitness predictor:

DragoNN Predicts the probability of SPI1 transcription factor (TF) binding within a
1000-nt sequence. We define P(x) as the logit score of the network output. The trained
model was downloaded from:1.

DeepSEA [22] Predicts multiple TF binding probabilities and chromatin modifications
in a 1000-nt sequence. We define P(x) as the logit score of the CTCF (Dnd41) output.
The trained model was downloaded from:2.

APARENT [29] Predicts proximal alternative polyadenylation isoform abundance in
a 206-nt sequence. We define P(x) as the logit score of the network output. The trained
model was downloaded from:3.

MPRA-DragoNN [24] Predicts transcriptional activity of a 145-nt promoter sequence.
We define P(x) as the sixth output (SV40) of the ’Deep Factorized’ model. The trained
model was downloaded from:4.

Optimus 5’ [25] Predicts mean ribosome load in a 50-nt sequence. P(x) is the (non-
scaled) output of the ’evolution’ model. The trained model was downloaded from:5.

trRosetta [34] Predicts amino acid residue distance distributions and angle distribu-
tions of the input primary sequence. We defined the optimization objective as minimiz-
ing the mean KL-divergence between the predicted distance- and angle distributions
of the designed sequence compared to a target structure (see the definition in Section

(15)
min
l

− P(δ(l))+ � ·max
[

log10 pref − log10 pVAE(δ(l))− ρ, 0
]

+ η1 ·max
[

C1(δ(l))− C1, 0
]

+ ...+ ηK ·max
[

CK (δ(l))− CK , 0
]

1  http://​mitra.​stanf​ord.​edu/​kunda​je/​proje​cts/​drago​nn/​SPI1.​class​ifica​tion.​model.​hdf5.
2  http://​deeps​ea.​princ​eton.​edu/​media/​code/​deeps​ea.​v0.​94c.​tar.​gz.
3  https://​github.​com/​johli/​apare​nt/​tree/​master/​saved_​models.
4  https://​github.​com/​kunda​jelab/​MPRA-​Drago​NN/​tree/​master/​kipoi/​DeepF​actor​izedM​odel.
5  https://​github.​com/​pjsam​ple/​human_​5utr_​model​ing/​tree/​master/​model​ing/​saved_​models.

http://mitra.stanford.edu/kundaje/projects/dragonn/SPI1.classification.model.hdf5
http://deepsea.princeton.edu/media/code/deepsea.v0.94c.tar.gz
https://github.com/johli/aparent/tree/master/saved_models
https://github.com/kundajelab/MPRA-DragoNN/tree/master/kipoi/DeepFactorizedModel
https://github.com/pjsample/human_5utr_modeling/tree/master/modeling/saved_models

Page 16 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

’Protein Structure Optimization’ of the main paper). The trained model was downloaded
from:6.

All optimization experiments were carried out in Keras (Chollet, 2015) using Adam
with default parameters [72]. Some predictor models were ported using pytorch2keras.

Validation models

When designing sequences for the predictor models listed in the previous section, we
computed validation scores based on the following held-out models (i.e. models we did
not explicitly optimize for):

DeeReCT-APA [31] Predicts relative isoform abundances for multiple competing poly-
adenylation signals. The model was trained on mouse 3’ sequencing data. We used the
model to score a particular designed polyadenylation signal by predicting its relative
use when competing with a strong, fixed distal polyadenylation signal. The model was
trained using the code repository at:7.

DeepPASTA [30] Predicts relative isoform abundance of two competing polyadenyla-
tion signals. Several model versions exists, we used the one trained on human brain
tissue 3’ sequencing data. To score a particular designed polyadenylation signal, we
predicted its relative use when competing with a strong, fixed distal signal. The trained
model was downloaded from:8.

iEnhancer-ECNN [62] Detects genomic enhancer regions and predicts whether it is a
weak or strong enhancer. We used the product of these two probability outputs to score
each designed enhancer sequence. The model was trained using the code repository at:9.

EnhancerP-2L [63] Detects genomic enhancer regions and predicts whether it is a
weak or strong enhancer. For a sample of generated sequences per design method, we
calculated the mean detect/not detect prediction rate, the mean weak/strong prediction
rate and the mean p-score. The model was available via a web application at:10.

Retrained Optimus 5’ [25] A retrained version of Optimus 5’, where the training
data had been complemented with extreme sequences (such as long single-nucleotide
repeats, etc.). The trained model was downloaded from:11.

Auxiliary models

In Fig. 3, we trained a variational autoencoder (VAE) [59] and a generative adversarial
network (GAN) [60] on a subset of the data that was originally used to train each of the
predictor oracles APARENT, MPRA-DragoNN and Optimus 5’. For each design task, we
selected a sample of 5000 sequences with highest observed fitness and a sample of 5000
randomly selected sequences. The VAE, which was based on a residual network archi-
tecture [73], was trained on the high-fitness subset of sequences. The W-GAN, which
was based on the architecture of Gupta et al. [38], was trained on the random subset of
sequences.

6  https://​files.​ipd.​uw.​edu/​pub/​trRos​etta/​model​2019_​07.​tar.​bz2.
7  https://​github.​com/​lzx325/​DeeRe​CT-​APA-​repo.
8  https://​www.​cs.​ucr.​edu/​~aaref​001/​DeepP​ASTA_​site.​html.
9  https://​github.​com/​ngphu​binh/​enhan​cers.
10  http://​biopr​ed.​org/​enpred/​pred.
11  https://​github.​com/​pjsam​ple/​human_​5utr_​model​ing/​tree/​master/​model​ing/​saved_​models.

https://files.ipd.uw.edu/pub/trRosetta/model2019_07.tar.bz2
https://github.com/lzx325/DeeReCT-APA-repo
https://www.cs.ucr.edu/%7eaaref001/DeepPASTA_site.html
https://github.com/ngphubinh/enhancers
http://biopred.org/enpred/pred
https://github.com/pjsample/human_5utr_modeling/tree/master/modeling/saved_models

Page 17 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

Other design methods

A selection of design methods were used for benchmark comparisons in Fig. 3. Here we
describe how they were executed and what parameter settings were used:

CbAS [39] The procedure was started from the VAE which had been pre-trained
on the high-fitness dataset. It was executed for 150 rounds and, depending on design
task, either 100 or 1000 sequences were sampled and used for weighted re-training at
the end of each round (whichever resulted in higher fitness scores). The threshold was
set to either the 60th or 80th pecentile of fitness scores predicted on the training data
(whichever resulted in more stable fitness score trajectories). The VAE was trained for
either 1 or 10 epochs at the end of each round (whichever resulted in more stable fitness
scores—for some tasks, the fitness scores would drop abruptly after only a few sampling
rounds when training the VAE for 10 epochs per round). For the benchmark comparison
in the main paper, the standard deviation of the predictions were set to a small constant
value ranging between 0.02 and 0.1, depending on application (since none of the pre-
trained oracles APARENT, MPRA-DragoNN or Optimus 5’ predicts deviation, we used
a small constant deviation that was ∼ 50 x smaller than the maximum possible predicted
value). In the Additional file 1, where we use oracles with uncertainty estimation, we also
supplied the predicted standard deviation to the CbAS survival function. The code was
adapted from:12.

RWR​ [61] The procedure was started from the VAE which had been pre-trained on
the high-fitness dataset. It was executed for 150 rounds and 100 or 1000 sequence sam-
ples were used for weighted re-training at the end of each round (whichever resulted
in higher fitness scores). The VAE was trained for 10 epochs each round. The code was
adapted from:13.

AM-VAE [44] This method performs activation maximization by gradient ascent
through a pre-trained VAE in order to design sequences. The procedure was started
from the VAE which had been pre-trained on the high-fitness dataset. Each sequence
was optimized for 2000–5000 updates depending on design task (using the Adam opti-
mizer). A normally distributed noise term was added to the gradients to help overcome
potential local minima. The code was adapted from:14.

FB-GAN [38] The FB-GAN procedure was started from the W-GAN which had been
pre-trained on a random sample of sequences. The method was executed for 150 epochs
and 960 sequences were sampled and used for feedback at the end of each epoch. We
either set the feedback threshold to a fixed value (the 80th percentile of fitness scores
predicted on the high-fitness dataset), or we adaptively re-set the threshold to a certain
percentile as measured on the 960 sampled sequences at the end of each epoch. The
code was adapted from:15.

FB-VAE [38] A VAE-based version of the FB-GAN. The procedure was started from
the VAE which had been pre-trained on the high-fitness dataset. It was executed for 150

12  https://​github.​com/​dhbro​okes/​CbAS/.
13  https://​github.​com/​dhbro​okes/​CbAS/.
14  https://​github.​com/​dhbro​okes/​CbAS/.
15  https://​github.​com/​av1659/​fbgan.

https://github.com/dhbrookes/CbAS/
https://github.com/dhbrookes/CbAS/
https://github.com/dhbrookes/CbAS/
https://github.com/av1659/fbgan

Page 18 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

epochs and 100 or 1000 sequence samples were used for feedback at the end of each
epoch (whichever resulted in higher fitness scores). A fixed threshold was used (either
the 60th or 80th percentile as predicted on the high-fitness data). The code was adapted
from:16.

Graph tools

All graphs were made with Matplotlib [74].

Abbreviations
5’ UTR​: 5’ untranslated region; 3’ UTR​: 3’ untranslated region; AAV: adeno-associated virus; AM: activation maximization;
APA: alternative polyadenylation; CbAS: conditioning by adaptive sampling; CNN: convolutional neural network; DEN:
deep exploration network; DCA: direct coupling analysis; DNA: deoxyribonucleic acid; FB-GAN: feedback GAN; GAN: gen-
erative adversarial network; KL: Kullback–Leibler; LSTM: long short-term memory; ML: machine learning; MPRA: massively
parallel reporter assay; MSA: multiple-sequence alignment; OOD: out-of-distribution; PAS: polyadenylation signal; PSSM:
position-specific scoring matrix; PWM: position-weight matrix; RNA: ribonucleic acid; RWR​: reward-weighted regression;
SeqProp: sequence backpropagation; ST: straight-through; TF: transcription factor; VAE: variational autoencoder; W-GAN:
Wasserstein GAN.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12859-​021-​04437-5.

Additional file 1. Supplementary Information, containing additional benchmark comparisons, design results and
other analyses.

Authors’ contributions
J.L. developed the computational method. J.L. and G.S. designed the computational experiments. J.L. and G.S. wrote the
manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by NIH Awards R01HG009136, R01HG009892 and R21HG010945 and by NSF Award 2021552.
The funding body did not play any role in the design of the study and collection, analysis, and interpretation of data nor
in writing the manuscript.

Availability of data and materials
All code is available at http://​www.​github.​com/​johli/​seqpr​op. External software and data used in this study are listed in
the Methods section.

Declarations

 Competing interests
The authors declare that they have no competing interests.

Author details
1 Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA. 2 Department
of Electrical and Computer Engineering, University of Washington, Seattle, USA.

Received: 7 January 2021 Accepted: 11 October 2021

References
	1.	 Biswas S, Kuznetsov G, Ogden PJ, Conway NJ, Adams RP, Church GM. Toward machine-guided design of proteins.

bioRxiv; 2018.
	2.	 Greener JG, Moffat L, Jones DT. Design of metalloproteins and novel protein folds using variational autoencoders.

Sci Rep. 2018;8:1–12.
	3.	 Anishchenko I, Chidyausiku TM, Ovchinnikov S, Pellock SJ, Baker D. De novo protein design by deep network hal-

lucination. bioRxiv; 2020.

16  https://​github.​com/​dhbro​okes/​CbAS/.

https://doi.org/10.1186/s12859-021-04437-5
http://www.github.com/johli/seqprop
https://github.com/dhbrookes/CbAS/

Page 19 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510 	

	4.	 Wang Y, Wang H, Liu L, Wang X. Synthetic promoter design in Escherichia coli based on generative adversarial net-
work. bioRxiv; 2019.

	5.	 Repecka D, Jauniskis V, Karpus L, Rembeza E, Rokaitis I, Zrimec J, Poviloniene S, Laurynenas A, Viknander S, Abuajwa
W, Savolainen O. Expanding functional protein sequence spaces using generative adversarial networks. Nat Mach
Intell. 2021;3:324–33.

	6.	 Shin JE, Riesselman AJ, Kollasch AW, McMahon C, Simon E, Sander C, Manglik A, Kruse AC, Marks DS. Protein design
and variant prediction using autoregressive generative models. Nat Commun. 2021;12:1–11.

	7.	 Amimeur T, Shaver JM, Ketchem RR, Taylor JA, Clark RH, Smith J, Citters DV, Siska CC, Smidt P, Sprague M, Kerwin BA.
Designing feature-controlled humanoid antibody discovery libraries using generative adversarial networks. bioRxiv;
2020.

	8.	 Wang D, Tai PW, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov.
2019;18:358–78.

	9.	 Das P, Sercu T, Wadhawan K, Padhi I, Gehrmann S, Cipcigan F, Chenthamarakshan V, Strobelt H, Santos CD, Chen PY,
Yang YY. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat
Biomed Eng. 2021;5:613–23.

	10.	 Kalita P, Padhi AK, Zhang KY, Tripathi T. Design of a peptide-based subunit vaccine against novel coronavirus sars-
cov-2. Microb Pathog. 2020;145:104236.

	11.	 Liu G, Carter B, Bricken T, Jain S, Viard M, Carrington M, Gifford DK. Robust computational design and evaluation of
peptide vaccines for cellular immunity with application to sars-cov-2. bioRxiv; 2020.

	12.	 Deaton RJ, Murphy RC, Garzon MH, Franceschetti DR, Jr SES. Good encodings for dna-based solutions to combina-
torial problems. In: DNA based computers; 1996. p. 247–258.

	13.	 Hao GF, Xu WF, Yang SG, Yang GF. Multiple simulated annealing-molecular dynamics (msa-md) for conformational
space search of peptide and miniprotein. Sci Rep. 2015;5:15568.

	14.	 Belanger D, Vora S, Mariet Z, Deshpande R, Dohan D, Angermueller C, Murphy K, Chapelle O, Colwell L. Biological
sequences design using batched Bayesian optimization; 2019.

	15.	 Xiao J, Xu J, Chen Z, Zhang K, Pan L. A hybrid quantum chaotic swarm evolutionary algorithm for dna encoding.
Comput Math Appl. 2009;57:1949–58.

	16.	 Ibrahim Z, Khalid NK, Lim KS, Buyamin S, Mukred JAA. A binary vector evaluated particle swarm optimization based
method for dna sequence design problem. In: 2011 IEEE student conference on research and development; 2011. p.
160–164.

	17.	 Mustaza SM, Abidin AFZ, Ibrahim Z, Shamsudin MA, Husain AR, Mukred JAA. A modified computational model of
ant colony system in dna sequence design. In: 2011 IEEE student conference on research and development; 2011. p.
169–173.

	18.	 Angermueller C, Belanger D, Gane A, Mariet Z, Dohan D, Murphy K, Colwell L, Sculley D. Population-based black-box
optimization for biological sequence design. arXiv; 2020.

	19.	 Eraslan G, Avsec Z, Gagneur J, Theis FJ. Deep learning: new computational modelling techniques for genomics. Nat
Rev Genet. 2019;20:389–403.

	20.	 Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in genomics. Nat Genet.
2019;51:12–8.

	21.	 Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of dna- and rna-binding proteins
by deep learning. Nat Biotechnol. 2015;33:831–8.

	22.	 Zhou J, Troyanskaya OG. Predicting effects of noncoding variants with deep learning-based sequence model. Nat
Methods. 2015;12:931–4.

	23.	 Tareen A, Kinney JB. Biophysical models of cis-regulation as interpretable neural networks. arXiv; 2019.
	24.	 Movva R, Greenside P, Marinov GK, Nair S, Shrikumar A, Kundaje A. Deciphering regulatory dna sequences

and noncoding genetic variants using neural network models of massively parallel reporter assays. PLoS ONE.
2019;14:e0218073.

	25.	 Sample PJ, Wang B, Reid DW, Presnyak V, McFadyen IJ, Morris DR, Seelig G. Human 5’ utr design and variant effect
prediction from a massively parallel translation assay. Nat Biotechnol. 2019;37:803–9.

	26.	 Karollus A, Avsec Z, Gagneur J. Predicting mean ribosome load for 5’utr of any length using deep learning. PLoS
Comput Biol. 2021;17:1008982.

	27.	 Jaganathan K, Panagiotopoulou SK, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz
GB, Chow ED. Predicting splicing from primary sequence with deep learning. Cell. 2019;176:535–48.

	28.	 Cheng J, Nguyen TYD, Cygan KJ, Çelik MH, Fairbrother WG, Gagneur J. Mmsplice: modular modeling improves the
predictions of genetic variant effects on splicing. Genome Biol. 2019;20:48.

	29.	 Bogard N, Linder J, Rosenberg AB, Seelig G. A deep neural network for predicting and engineering alternative poly-
adenylation. Cell. 2019;178:91–106.

	30.	 Arefeen A, Xiao X, Jiang T. Deeppasta: deep neural network based polyadenylation site analysis. Bioinformatics.
2019;35:4577–85.

	31.	 Li Z, Li Y, Zhang B, Li Y, Long Y, Zhou J, Zou X, Zhang M, Hu Y, Chen W, Gao X. Deerect-apa: prediction of alternative
polyadenylation site usage through deep learning. Genom Proteom Bioinform. 2021. https://​doi.​org/​10.​1016/j.​gpb.​
2020.​05.​004

	32.	 AlQuraishi M. End-to-end differentiable learning of protein structure. Cell Syst. 2019;8:292–301.
	33.	 Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, Green T, Qin C, Žídek A, Nelson AW, Bridgland A, Penedones H.

Improved protein structure prediction using potentials from deep learning. Nature. 2020;577:706–10.
	34.	 Yang J, Anishchenko I, Park H, Peng Z, Ovchinnikov S, Baker D. Improved protein structure prediction using pre-

dicted interresidue orientations. Proc Natl Acad Sci. 2020;117:1496–503.
	35.	 Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Zidek A, Potapenko A,

Bridgland A. Highly accurate protein structure prediction with alphafold. Nature. 2021;596:583–9.
	36.	 Avsec Z, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, Assael Y, Jumber J, Kohli P, Kelley DR.

Effective gene expression prediction from sequence by integrating long-range interactions. bioRxiv; 2021.

https://doi.org/10.1016/j.gpb.2020.05.004
https://doi.org/10.1016/j.gpb.2020.05.004

Page 20 of 20Linder and Seelig ﻿BMC Bioinformatics (2021) 22:510

	37.	 Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-
Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A. Automatic chemical design using a data-driven continuous
representation of molecules. ACS Cent Sci. 2018;4:268–76.

	38.	 Gupta A, Zou J. Feedback gan for dna optimizes protein functions. Nat Mach Intell. 2019;1:105–11.
	39.	 Brookes DH, Park H, Listgarten J. Conditioning by adaptive sampling for robust design. arXiv; 2019.
	40.	 Yang KK, Wu Z, Arnold FH. Machine-learning-guided directed evolution for protein engineering. Nat Methods.

2019;16:687–94.
	41.	 Costello Z, Martin HG. How to hallucinate functional proteins. arXiv; 2019.
	42.	 Linder J, Bogard N, Rosenberg AB, Seelig G. A generative neural network for maximizing fitness and diversity of

synthetic dna and protein sequences. Cell Syst. 2020;11:49–62.
	43.	 Lanchantin J, Singh R, Lin Z, Qi Y. Deep motif: visualizing genomic sequence classifications. arXiv; 2016.
	44.	 Killoran N, Lee LJ, Delong A, Duvenaud D, Frey BJ. Generating and designing dna with deep generative models.

arXiv; 2017.
	45.	 Schreiber J, Lu YY, Noble WS. Ledidi: designing genome edits that induce functional activity. bioRxiv; 2020.
	46.	 Norn C, Wicky BI, Juergens D, Liu S, Kim D, Tischer D, Koepnick B, Anishchenko I, Baker D, Ovchinnikov S. Protein

sequence design by conformational landscape optimization. Proc Natl Acad Sci. 2021;118.
	47.	 Simonyan K, Vedaldi A, Zisserman A. Deep inside convolutional networks: visualising image classification models

and saliency maps. arXiv; 2013.
	48.	 Bengio Y, Léonard N, Courville A. Estimating or propagating gradients through stochastic neurons for conditional

computation. arXiv; 2013.
	49.	 Courbariaux M, Hubara I, Soudry D, El-Yaniv R, Bengio Y. Binarized neural networks: training deep neural networks

with weights and activations constrained to +1 or -1. arXiv; 2016.
	50.	 Chung J, Ahn S, Bengio Y. Hierarchical multiscale recurrent neural networks. arXiv; 2016.
	51.	 Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization: the missing ingredient for fast stylization. arXiv; 2016.
	52.	 Sandelin A, Alkema W, Engström P, Wasserman WW, Lenhard B. Jaspar: an open-access database for eukaryotic

transcription factor binding profiles. Nucleic Acids Res. 2004;32:91–4.
	53.	 Giammartino DCD, Nishida K, Manley JL. Mechanisms and consequences of alternative polyadenylation. Mol Cell.

2011;43:853–66.
	54.	 Shi Y. Alternative polyadenylation: new insights from global analyses. Rna. 2012;18:2105–17.
	55.	 Elkon R, Ugalde AP, Agami R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat Rev

Genet. 2013;14:496–506.
	56.	 Tian B, Manley JL. Alternative polyadenylation of mrna precursors. Nat Rev Mol Cell Biol. 2017;18:18–30.
	57.	 Kheradpour P, Kellis M. Systematic discovery and characterization of regulatory motifs in encode tf binding experi-

ments. Nucleic Acids Res. 2014;42:2976–87.
	58.	 Ernst J, Melnikov A, Zhang X, Wang L, Rogov P, Mikkelsen TS, Kellis M. Genome-scale high-resolution mapping of

activating and repressive nucleotides in regulatory regions. Nat Biotechnol. 2016;34:1180–90.
	59.	 Kingma DP, Welling M. Auto-encoding variational Bayes. arXiv; 2013.
	60.	 Arjovsky, M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on

machine learning. PMLR; 2017. p. 214–223.
	61.	 Peters J, Schaal S. Reinforcement learning by reward-weighted regression for operational space control. In: Proceed-

ings of the 24th international conference on Machine learning; 2007. p. 745–750.
	62.	 Nguyen QH, Nguyen-Vo TH, Le NQK, Do TT, Rahardja S, Nguyen BP. ienhancer-ecnn: identifying enhancers and their

strength using ensembles of convolutional neural networks. BMC Genom. 2019;20:951.
	63.	 Butt AH, Alkhalaf S, Iqbal S, Khan YD. Enhancerp-2l: a gene regulatory site identification tool for dna enhancer region

using cres motifs. bioRxiv; 2020.
	64.	 Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensem-

bles. Adv Neural Inf Process Syst. 2017;30:6402–13.
	65.	 Tischer D, Lisanza S, Wang J, Dong R, Anishchenko I, Milles LF, Ovchinnikov S, Baker D. Design of proteins presenting

discontinuous functional sites using deep learning. bioRxiv; 2020.
	66.	 Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by simulated annealing. Science. 1983;220:671–80.
	67.	 Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state calculations by fast computing

machines. J Chem Phys. 1953;21:1087–92.
	68.	 Brookes DH, Listgarten J. Design by adaptive sampling. arXiv; 2018.
	69.	 Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. arXiv; 2012.
	70.	 Shahriari B, Swersky K, Wang Z, Adams RP, Freitas ND. Taking the human out of the loop: a review of Bayesian optimi-

zation. Proc IEEE. 2015;104:148–75.
	71.	 Frazier PI. A tutorial on Bayesian optimization. arXiv; 2018.
	72.	 Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv; 2014.
	73.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on

computer vision and pattern recognition. 2016. p. 770–778.
	74.	 Hunter JD. Matplotlib: a 2d graphics environment. Comput Sci Eng. 2007;9:90–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Fast activation maximization for molecular sequence design
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Activation maximization for biological sequences

	Results
	Fast stochastic sequence backpropagation
	Maximizing nucleic acid sequence-predictive neural networks
	Recapitulating cis-regulatory biology with activation maximization
	Regularized sequence design
	Protein structure optimization

	Discussion
	Conclusion
	Methods
	Activation maximization design methods
	Adaptive sampling temperature with fast SeqProp
	VAE-regularized fast SeqProp
	VAE-regularized fast SeqProp with uncertainty-estimation
	VAE-regularized fast SeqProp with activity-regularization

	Predictor models
	Validation models
	Auxiliary models
	Other design methods
	Graph tools

	References

