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Deep brain stimulation (DBS) of the nucleus accumbens (NAc) is an effective therapy
for obsessive compulsive disorder (OCD) and is currently under investigation as a
treatment for eating disorders. DBS of this area is associated with altered food intake
and pharmacological treatment of OCD is associated with the risk of developing type
2 diabetes. Therefore we examined if DBS of the NAc-shell (sNAc) influences glucose
metabolism. Male Wistar rats were subjected to DBS, or sham stimulation, for a period of
1 h. To assess the effects of stimulation on blood glucose and glucoregulatory hormones,
blood samples were drawn before, during and after stimulation. Subsequently, all animals
were used for quantitative assessment of Fos immunoreactivity in the lateral hypothalamic
area (LHA) using computerized image analysis. DBS of the sNAc rapidly increased plasma
concentrations of glucagon and glucose while sham stimulation and DBS outside the
sNAc were ineffective. In addition, the increase in glucose was dependent on DBS
intensity. In contrast, the DBS-induced increase in plasma corticosterone concentrations
was independent of intensity and region, indicating that the observed DBS-induced
metabolic changes were not due to corticosterone release. Stimulation of the sNAc
with 200 µA increased Fos immunoreactivity in the LHA compared to sham or 100 µA
stimulated animals. These data show that DBS of the sNAc alters glucose metabolism in
a region- and intensity- dependent manner in association with neuronal activation in the
LHA. Moreover, these data illustrate the need to monitor changes in glucose metabolism
during DBS-treatment of OCD patients.

Keywords: deep brain stimulation (DBS), nucleus accumbens shell, lateral hypothalamic area, glucose,

glucoregulatory hormones, neural activity

INTRODUCTION
Deep brain stimulation (DBS) of the nucleus accumbens (NAc)
is used to treat obsessive compulsive disorder (OCD), depression
and addiction (Denys et al., 2010; Bewernick et al., 2012; Muller
et al., 2013) and is currently under investigation for the treatment
of eating-disorders (eg., Halpern et al., 2008). Although the pre-
cise mechanisms through which DBS exerts its effects remain to
be elucidated, recent data from human and animal studies suggest
that DBS directly affects neuronal network activity (McCracken
and Grace, 2007; Vandehey et al., 2010; Tan et al., 2011; Figee
et al., 2013) and alters neurotransmitter release (van Dijk et al.,
2012; Halpern et al., 2013).

Effective pharmacological treatment of OCD, such as
anti-depressants and serotonin reuptake inhibitors target the
dopaminergic- and serotoninergic system. This suggests that

modulation of these neurotransmitter systems could well be
involved in the effects of DBS. Unfortunately, drugs targeting
these neurotransmitter systems increase the risk to develop type 2
diabetes, through direct modulation of glucose metabolism, inde-
pendent of alterations in body weight. In addition, DBS of the
NAc has been associated with changes in food intake (van der
Plasse et al., 2012; Halpern et al., 2013). In light of these findings,
and the current interest in DBS as a treatment for eating-disorders
(Benabid and Torres, 2012), it is imperative to determine whether
DBS might influence glucose metabolism and thus induce side
effects.

Central control of glucose metabolism is mediated by multi-
ple brain areas and neurotransmitter systems that include sero-
tonergic neurons in the raphe nucleus, noradrenergic neurons
in the locus coeruleus, and hypothalamic nuclei that project,
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directly and indirectly to brainstem nuclei that regulate auto-
nomic outflow (Lechin and van der Dijs, 2006; Marino et al.,
2011). Of these, hypothalamic nuclei are ideally situated to sense
and integrate peripheral metabolic signals and regulate auto-
nomic tone to maintain a positive energy balance. With respect
to possible NAc DBS-induced alterations in glucose metabolism
and food intake, early viral tracing experiments in rats revealed
a neural connection between the NAc (part of the ventral stria-
tum) and pancreas (Buijs et al., 2001). Specifically, the shell
region of the NAc (sNAc) projects to the lateral hypothala-
mic area (LHA), directly as well as via the ventral pallidum
(Zahm and Brog, 1992). The LHA, in turn, projects to the
dorsal motor nucleus of the vagus, the ventral lateral medulla
and preganglionic spinal cord neurons, all of which project to
the pancreas to regulate endocrine pancreatic functions, but
also project to the liver and thus may alter glucose metabolism
(Buijs et al., 2001; Berthoud, 2004; Wu et al., 2004; Yi et al.,
2010).

It is well documented that the projection between the sNAc
and the LHA plays a role in food directed behavior (Kelley and
Swanson, 1997; Stratford and Kelley, 1999). Recently, van der
Plasse et al. (2012) showed that DBS of the sNAc in free-fed rats
with access to normal chow elicits feeding behavior. However,
to date, a role for this neuroanatomical connection in the reg-
ulation of glucose metabolism has not been investigated. We
hypothesized that the neural connection between the sNAc and
pancreas (and liver) is functional in glucose metabolism. To inves-
tigate this hypothesis, we implanted stimulation electrodes in
the sNAc of rats and studied the effects of local stimulation
on blood glucose and glucoregulatory hormones. In addition,
to test if the LHA is involved in the effects of sNAc stimula-
tion we measured the Fos response in the LHA following DBS
of the sNAc, as a marker for neuronal activity. We subjected
rats to 1h stimulation at two different intensities. Prior to-,
during-, and after cessation of stimulation, blood samples were
drawn and concentrations of blood glucose and plasma glucoreg-
ulatory hormones were measured. Subsequently, brain sections
were stained and Fos activation in the LHA was quantified. This
study shows for the first time the effects of electrical stimula-
tion in the sNAc on neural activity in the LHA and on glucose
metabolism.

METHODS
ANIMALS
Twenty five male Wistar rats (250–280 g; Harlan, Horst,
the Netherlands) were individually housed in Plexiglas cages
in a temperature (20 ± 2◦C), humidity (60 ± 2%) and
light controlled room with a 12/12 h light-dark schedule
(lights on at 7:00 h AM). All animals had ad libitum access
to laboratory chow (Teklad Global 18% Protein Rodent
Diet, Harlan, Horst, Netherlands) and tap water prior to
testing.

Rats were adapted to handling in the period prior to
surgery. The experiment was performed in the rat’s home
cage. The experiment was approved by the Committee for
Animal Experimentation of the Academic Medical Center of the
University of Amsterdam, Netherlands.

SURGERY
Rats were anaesthetized with an i.p. injection of 80 mg/kg
Ketamine (Eurovet Animal Health, Bladel, Netherlands),
8 mg/kg Rompun® (xylazine, Bayer Health Care, Mijdrecht,
Netherlands) and 0.1 mg/kg Atropine (Pharmachemie B. V.,
Haarlem, Netherlands), after which an intra-atrial silicone
catheter was implanted in the jugular vein, according to the
method of Steffens (1969). After catheter implantation, rats
were bilaterally implanted with bipolar electrodes (dual stainless
steel electrodes, 300 µm length, 125 µm diameter, distance
between poles was 100 µm, 325 µm of the end of the elec-
trodes was stripped; PlasticOne) aimed at the sNAc (A +
1.44 mm, L + 3 mm, V −7.3 mm, angle 17◦), using a stereotaxic
apparatus (Kopf). Catheters and electrodes were fixed on the
skull with dental cement. Rats received a recovery period of 7
days.

STIMULATION
Four hours prior to stimulation food was removed (i.e., at 8:00h
AM). Animals were connected to the blood-sampling catheter
and electrode implants were attached to stimulation cables
which were, via an electrically-shielded dual channel swivel (Med
Associates, St Albans, VT, USA), connected to stimulation equip-
ment. The sampling catheter and cables were kept out of reach
by means of a counterbalanced beam. This allowed the animals
to move freely during the experiment and allowed all manipu-
lations to be performed outside the cages without handling the
animals.

On experimental days a total of 25 rats were subjected to
60 min of either 100 µA (n = 12) or 200 µA (n = 13) or sham
(all animals) stimulation. Each animal served as its own control
and was, controlled for body weight, randomly assigned to an
experimental group. Each experimental day all three stimulation
conditions were applied. Rats received 7 days of recovery before
being switched in experimental condition.

Stimulations were performed with a digital stimulator
(DS8000, World Precision Instruments, Sarasota, USA) and stim-
ulus isolator (DLS100, World Precision Instruments, Sarasota,
USA). Stimulation parameters were as follows; biphasic square
pulses, 60 µs duration, 200 µs ‘zero’ time, frequency 130 Hz.
Blood samples were drawn prior (t = −1 min, baseline) dur-
ing (t = 5, t = 10, t = 15, t = 30, t = 60 min) and following
cessation of stimulation (t = 90 and t = 120 min).

ANALYTICAL METHODS
Blood glucose concentrations were measured directly during the
experiment, using a custom glucose meter (Freestyle Freedom
Lite, Abbot, Hoofddorp, Netherlands). Blood samples were
immediately chilled on ice in Eppendorf tubes with 5 µL heparin:
saline (10x) solution and centrifuged at 4◦C (15 min, 3000 rpm).
Plasma samples were stored at −20◦C until further analysis.
Plasma insulin, glucagon and corticosterone concentrations were
measured using radioimmunoassay kits (Millipore, St Charles,
MO, USA and Biochemicals, Costa Mesa, CA, respectively). The
amount of sample-, standards-, label-, antibody and precipitating
reagent, described in the manufacture’s protocol, were divided by
four. The variation-coefficient of the immunoassays was < 10%.
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FIGURE 1 | Localization of electrode tips in 100 µA (black circles) and 200 µA (white circles) stimulated animals. Adapted from (Paxinos and Watson,
1998).
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HISTOLOGY AND IMMUNOCYTOCHEMISTRY
At the end of the experiment (t = 120), animals were anaes-
thetized with a CO2/O2 mixture (6:4) followed by 100% CO2

and killed by decapitation. Brains were then rapidly removed,
frozen on dry ice and stored at −80◦. Brain tissue was cut
on a cryostat in 35 µm sections. Sections were collected on
gelatin coated slides and fixed for 10 min in 4% paraformalde-
hyde at room temperature. For verification of electrode place-
ment, slides were Nissl-stained after fixation and examined
with a microscope to determine precise location of the elec-
trodes. Given the functional specificity of the sNAc in the
(para)sympathetic projection to the pancreas and liver, elec-
trode placement was considered misplaced when electrode tips
were observed outside the sNAc according to the delineation of
Paxinos and Watson (1998).

For immunohistochemical staining, sections were incubated
with 10% methanol, 3% H2O2 in Tris-buffered saline (TBS,
0.06 M Tris, 0.2 M NaCl, pH 7.6) for 10 min. Slides were then
rinsed in TBS (3 times, 10 min) and incubated overnight at
4◦C with goat anti-Fos IgG (1:1500; Santa Cruz Biotechnology,
Inc., California) diluted in supermix (SUMI, 0.25% gelatin,
0.5% Triton X-100 in TBS (pH 7.6)). Following incuba-
tion, slides were rinsed in TBS (3 times, 10 min), incubated
for 1 h in biotinylated horse anti-goat IgG (1:400 in SUMI;
Vector Laboratories Inc., Burlingame, CA), rinsed in TBS (3
times, 10 min), and incubated for 1 h in avidin-biotin com-
plex (ABC in SUMI, Vector Laboratories Inc., Burlingame,
CA). Following incubation, slides were rinsed in TBS (3
times, 10 min). The reaction product was visualized by incu-
bation in 1% diaminobenzidine (DAB) (0.05% nickel ammo-
nium sulphate was added to the DAB solution to darken the
reaction product) with 0.01% H2O2 for 7 min. After incuba-
tion, slides were rinsed with water. Finally, slides were run
through ethanol and xylene and covered for observation by light
microscopy.

ANALYSIS OF Fos IMMUNOREACTIVITY
Fos immunoreactivity in the LHA was identified and displayed
with a computerized image analysis system consisting of a Zeiss
Axioskop and a Media Cybermetrics evolution 9801 video camera
(Media Cybernetics, Silver Spring, MD, USA). The LHA was man-
ually outlined in every captured image. The Fos-postive nuclear
profiles were manually counted using locally programmed soft-
ware developed at the Netherlands Institute for Neuroscience.
Quantification of Fos was performed by an experimenter who was
blind to the experimental conditions. For each rat, one section

was measured every 1.80 mm (from bregma −1.20 to −4.56 mm).
Subsequently, the mean number of Fos-positive cells in these
sections was calculated.

STATISTICS
All data are presented as means ± SEM. Statistical analysis
was performed using a repeated-measure analysis of variance
(rmANOVA) (SPSS Inc, Chicago, USA) to test for effects of time,
stimulation and time ∗ stimulation interaction. When a treatment
or interaction effect was detected, a paired-samples t-test test was
used to test for group differences. Data were tested on outliers
with the Grubbs’outlier test (GraphPad Sofware, Inc, La Jolla,
USA). Fos immunoreactivity was statistically analyzed using the
non-parametric Kruskall Wallis test. A difference was considered
significant when p < 0.05 and as a trend when p < 0.10.

RESULTS
HISTOLOGY
Figure 1 shows electrode placement of all animals that were
bilaterally stimulated in the target area and were included in
the analysis. Verification of electrode placement revealed correct
placement of the electrodes in the sNAc in 6 out of 12 and 5 out
of 13 animals in the 100 and 200 µA groups, respectively. Data of
animals with misplaced electrodes were analyzed per condition
(100 µA: n = 3, 200 µA: n = 5) and used to assess the topo-
graphical specificity of sNAc stimulation. In four animals (n =
2 for both stimulation conditions), electrode placement could
not be verified due to absence of traces in brain tissue. Two
animals could not be used for analysis due to incomplete data
sets.

CONCENTRATIONS OF BLOOD GLUCOSE AND PLASMA
GLUCOREGULATORY HORMONES
Baseline concentrations of blood glucose and plasma concentra-
tions of glucagon, insulin and corticosterone were not signifi-
cantly different between the 100 µA, 200 µA or sham condition
(Table 1).

Although blood glucose concentrations changed over time,
there were no differences between rats stimulated with 100 µA
compared to controls (Figure 2A). In contrast, blood glucose
concentrations showed a significant increase during bilateral
sNAc stimulation with 200 µA, which was significant at t = 5
and t = 30 compared to the sham condition while a trend was
detected for t = 10 (Figure 2B, see figure legends for statistics).

Bilateral sNAc stimulation with 200 µA increased plasma
glucagon concentrations compared to the sham condition with

Table 1 | Basal concentrations of blood glucose, plasma glucagon, corticosterone and insulin in the 100 (n = 6) and 200 µA (n = 5) stimulated

animals and their sham condition.

sham 100 µA DBS 100 µA sham 200 µA DBS 200 µA

Glucose (mmol/l) 6.4 ± 0.1 6.6 ± 0.1 6.6 ± 0.1 6.4 ± 0.1

Glucagon (ng/l) 87.5 ± 5.5 89.9 ± 6.7 77.2 ± 11.7 81.0 ± 8.1

Corticosterone (nmol/l) 33.1 ± 9.5 73.9 ± 35.4 35.0 ± 14.8 44.7 ± 12.2

Insulin (pmol/l) kloppen de 635.9 ± 104.2 692.2 ± 174.0 516.3 ± 135.0 535.9 ± 269.3

Data are means ± SEM.
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FIGURE 2 | Blood glucose concentrations (A,B), and plasma- glucagon

(C,D), corticosterone (E,F) and insulin (G,H) concentrations during and

following stimulation. Effects of 100 µA stimulation (n = 6) are shown in
the left column, black squares = sham stimulation, white squares = 100 µA
stimulation (A,C,E,G), the right column (B,D,F,H) shows stimulation at 200 µA
(n = 5), black circles = sham stimulation, white circles = 200 µA stimulation.
All data are presented as mean ± SEM. ∗p < 0.05, #p < 0.10. (A–B) Blood
glucose concentrations were significantly elevated following stimulation at
200 µA compared with sham stimulation. (A) An overall time effect
(p < 0.001), but no stimulation or interaction effect. (B) rmANOVA indicated
an effect of stimulation (p = 0.03), post-hoc testing showed that glucose
concentrations were significant higher at t = 5, and t = 30 (both p = 0.04), a
trend was detected for t = 10 (p = 0.06). (C,D) Plasma glucagon
concentrations significantly increased following stimulation at 200 µA

compared with sham. (C) An effect of time (p < 0.001) and a trend for time ∗
stimulation (p = 0.09). (D) rmANOVA revealed a significant effect of time
(p = 0.05) and time ∗ stimulation (p = 0.03). A trend for higher glucagon
elevations was detected at t = 5 (p = 0.07). (E,F) Stimulation at both
intensities increased plasma corticosterone concentrations. (E) rmANOVA
revealed a time (p < 0.001) and an interaction effect between time and
stimulation (p < 0.001). Post-hoc analysis revealed a trend for t = 30
(p = 0.09). (F) rmANOVA revealed a trend for time (p = 0.10), a significant
effect of time ∗ stimulation (p < 0.001) and a trend for stimulation (p = 0.07).
Corticosterone elevation was significant at t = 10 (p = 0.05) and a trend was
detected for t = 15, t = 30, t = 90 (p = 0.07, p = 0.06 and p = 0.08
respectively). (G,H) Plasma insulin concentrations were not significant
different between the stimulation and sham condition of either 100 or 200 µA
stimulated animals.

the highest glucagon concentrations measured at 5 min after
DBS onset (Figure 2D). After cessation of stimulation, plasma
glucagon concentrations returned to pre-stimulation concen-
trations and were comparable to plasma concentrations of the
sham condition. Statistical analysis showed a significant effect of
time, and a trend toward a significant effect of bilateral sNAc
stimulation with 100 µA (Figure 2C).

Plasma corticosterone concentrations significantly increased
during 100 µA and showed a trend for an increase during
200 µA stimulation when compared to their own sham condi-
tion (Figures 2E,F). Post-hoc analysis revealed that plasma cor-
ticosterone concentrations with 100 µA stimulation showed an
increase compared to the sham condition at t = 30, although this
did not reach significance (Figure 2E).
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There were no significant differences in plasma insulin
concentrations in animals stimulated with 100 µA or 200 µA
compared to their non-stimulation condition (Figures 2G,H).

Statistical analysis of blood glucose and plasma glucoregula-
tory hormones in the animals with misplaced electrodes revealed
a significant increase in plasma corticosterone concentrations
during both 100 µA and 200 µA stimulation while concentra-
tions of blood glucose and plasma concentrations of glucagon and
insulin were not significantly changed.

NEURAL ACTIVATION IN THE LATERAL HYPOTHALAMIC AREA
The results of Fos immunoreactivity quantification, and a repre-
sentative histological section showing Fos-positive cells for each
stimulation condition are presented in Figure 3. Quantification
of neuronal activity revealed that stimulation of the sNAc with
200 µA increased Fos expression in the LHA compared to no
stimulation (sham) or stimulation with 100 µA. One animal in
the 100 µA stimulation group had to be excluded after being
identified as an outlier (p < 0.05).

DISCUSSION
We here show that DBS of the sNAc affects systemic concen-
trations of glucose and glucagon in a region- and intensity-
dependent manner. These data thus suggest a role for the sNAc in
glucose metabolism through controlling pancreatic and/or hep-
atic output. Importantly, these data indicate that DBS stimulation

FIGURE 3 | Representative histological section of a sham (A), 100 µA

(B) and 200 µA (C) stimulated rat showing Fos-positive cells in the

lateral hypothalamic area (LHA). Arrows indicate Fos-positive nuclei. f,
fornix, mt, mammillothalamic tract. (D) Number of Fos positive cells in the
LHA of sham, 100 µA and 200 µA stimulated animals (n = 3–5). Fos
staining was significantly increased in 200 µA stimulated animals compared
to sham stimulated animals (∗p = 0.035).

used for treating OCD and, which may in future be used for
treating eating disorders, may induce metabolic changes.

Following onset of stimulation, concentrations of both blood
glucose and plasma glucagon acutely increased and, in the case
of glucose, lasted for the duration of the stimulation. These
increases were stimulation intensity dependent as DBS at 100 µA
did not yield these effects. DBS did not affect plasma insulin con-
centrations at either intensity tested, but it did increase plasma
corticosterone concentrations at both stimulation intensities (100
and 200 µA). Especially the latter result is of interest as it indi-
cates that DBS of the sNAc can induce a physiological stress-like
response, although behavioral experiments in rodents show no
increased anxiety or altered locomotor activity after acute sNAc
stimulation (van Dijk et al., 2013).

The increase in plasma corticosterone concentrations at both
stimulation intensities (100 and 200 µA), observed in our study,
indicates that the higher glucose concentrations are not driven
by a DBS-induced increase in general arousal/stress, as only
200 µA increased plasma glucose concentrations. This is further
supported by the finding that also in animals with misplaced elec-
trodes plasma corticosterone concentrations increased but blood
glucose or plasma glucagon concentrations did not. Importantly,
the latter observation suggests that the increased concentrations
of glucagon and glucose are specific to DBS of the sNAc as
stimulation just outside this area did not evoke a response.

With respect to the neural network that might mediate these
effects, it is interesting that the sNAc is anatomically connected
to the pancreas, via projections to the LHA and brainstem (Buijs
et al., 2001). Indeed, we observed specific activation of the LHA
following stimulation, whereas no activation was observed in
other areas within the hypothalamus (data not shown). Future
experiments are needed to elucidate whether brainstem nuclei
are also activated. Interestingly, the Fos expression in the LHA
appeared intensity dependent, showing increased expression only
at the higher stimulation intensity. This suggests that the higher
intensity affects projection areas of the sNAc, whereas the stimula-
tion at 100µA does not, which is also in line with the finding that
glucose and glucagon levels were only affected with high inten-
sity stimulation. It is however, unclear at this point which subsets
of neurons are activated in the LHA. Several neuropeptides are
expressed in the LHA that are known to be involved in energy
metabolism. Of special interest are the orexin neurons, which
have been shown to receive input from the NAc (Zheng et al.,
2003) and are involved in the regulation of glucose metabolism
(Yi et al., 2009).

We hypothesize that the increase in blood glucose concentra-
tions is driven by the DBS-stimulated release of glucagon from
pancreatic alpha cells. Although the rise in glucagon is small,
it has been shown that, in isolated perfused rat livers, small
glucagon peaks of 0.4 ug/l induce glycogenolysis and increase
glucose concentrations (Sokal et al., 1964). The rise in blood glu-
cose might, however, also result from a direct effect of DBS on
the muscle or liver via neural innervation. Sudo et al. (1991),
for example, showed that peripheral glucose uptake is under
hypothalamic control. Furthermore, we previously showed that
the LHA is neurally connected to the liver, and that a GABA
antagonist administered to the LHA increased plasma glucose
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concentrations, which could be prevented by a sympathetic liver
denervation (Yi et al., 2009). Administering a GABA antagonist
in the LHA did not, however, affect plasma glucagon concen-
trations making it unlikely that this projection to the liver, if
involved, is also underlying the effects of DBS on plasma glucagon
concentrations.

The increase in glucagon secretion from pancreatic alpha cells
might be achieved via direct stimulation of sympathetic effer-
ents or via sympathetic stimulation of adrenal-norepinephrine
(NA) release [eg., Zsombok and Smith (2009); Taborsky and
Mundinger (2012)]. As such, it is possible that DBS-induced acti-
vation of the HPA-axis contributed to the increase in glucagon
via increased NA release. For a more detailed description of
these alternative pathways we recommend a recent review by
Taborsky and Mundinger (2012). As glucagon secretion is under
para- as well as sympathetic control, we cannot distinguish from
our data which nervous system is involved. Future experiments
could shed light on the relative role of each of these path-
ways in the regulation of glucose metabolism during DBS and
the relative contribution of sympathetic versus parasympathetic
activity by combining DBS with the inclusion of independent
measures of sympathetic/parasympathetic activity, such as heart
rate variation.

In contrast to the effects of DBS on glucagon and glucose, we
observed no changes in plasma insulin concentrations, suggesting
that DBS of the sNAc does not directly act on pancreatic beta cells.
This concept is supported by observations reported by others
that electrical stimulation of the ventrolateral hypothalamic area
(Helman et al., 1980) and LHA (Helman et al., 1983), induces
a rise in glucagon without a rise in insulin. It could be sur-
prising that the glucose increase we observed after DBS did not
affect insulin concentrations as ex vivo experiments with perfused
pancreatic islets from Wistar rats, showed that glucose oscilla-
tions with amplitudes between ∼0.5 and ∼1.5 mmol/L induces
insulin secretory oscillations (Chou and Ipp, 1990). However,
in vivo measurements support our findings by showing that
higher glucose oscillations (�1 mmol/L) were not accompanied
by plasma insulin elevations (Yi et al., 2009). This may sug-
gest that the increase in glucose, observed in animals stimulated
with 200 µA, was not sufficient to induce an elevation in plasma
insulin concentrations.

To date, the role of the sNAc in the regulation of glucose
metabolism has received little attention whereas its role in food-
motivated behavior is well established (Diepenbroek et al., 2013).
The effects of DBS, we present here, point toward a role for this
nucleus in the response to hypoglycaemia. Glucose-sensitive and,
to a lesser extent, glucose-receptor cells are present in the sNAc
(Papp et al., 2007). In addition, the sNAc is responsive to 2-
deoxy-D-glucose (2DG), a glucose analog that inhibits glycolysis
(Dodd et al., 2010). Hypoglycaemia could be sensed in the sNAc,
and glucose homeostasis would be restored by the secretion of
glucagon and stimulation of food consumption. The latter is sup-
ported by the study of (Dodd et al., 2010) that showed that the
sNAc, as well as the orbitofrontal cortex and ventral pallidum are
responsive to 2DG. Together, these regions form a corticostriatal
connection with the hypothalamus via which processes of reward
can influence the hypothalamic control of feeding behavior

(Swanson, 2000; Fulton, 2010) and probably also glucose
metabolism.

Apart from showing a functional role of the sNAc in glucose
metabolism, these data are of great importance for the clinical use
of DBS. These data show that stimulation of the sNAc with DBS
for the treatment of psychiatric- and eating disorders may directly
affect normal energy homeostasis and induce unwanted side-
effects. Although interesting and potentially useful in employing
DBS for eating-disorders, these data point out that the effects of
DBS are not limited to the brain but also affect peripheral func-
tions which should be taken into consideration when applying
DBS.

In summary, we demonstrated that DBS of the sNAc in rats
increased blood glucose concentrations and plasma glucagon
concentrations in a region and intensity- dependent manner.
These data are the first to show a direct relation between the use
of DBS in the sNAc and changes in systemic concentrations of
glucose and glucagon.
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