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Abstract: Die drawing is an effective method for improving the properties of polymer. In this work,
polypropylene (PP)/inorganic particle composites were fabricated by a solid-state die drawing
process to investigate the effects of drawing parameters, such as inorganic particles types, drawing
temperature, and drawing speed, on the thermal properties, microstructure, and mechanical behavior
of the drawn composites. The mechanical properties of the material were significantly improved
through this processing method. For the drawn PP/inorganic particle composites with 45 wt%
CaCO3, when the drawing speed was 2.0 m/min and the drawing temperature was 110 ◦C, the
density of the drawn composites reached the lowest at 1.00 g/cm3. At this time, the tensile strength,
flexural strength, and impact strength of the drawn composites were 128.32 MPa, 77.12 MPa, and
170.42 KJ/m2, respectively. This work provides a new strategy for the preparation of lightweight
and high-strength PP-based composites, which have broad application prospects in the field of
engineering and structural materials.

Keywords: solid-state die-drawing; PP; inorganic particles; mechanical properties

1. Introduction

PP is a semi-crystalline thermoplastic, which is one of the most widely used plastics in
the world [1–3]. It has the characteristics of light weight, good heat and corrosion resistance,
and easy processing, and it is widely used in packaging, electronic and electrical appliances,
automobiles, textiles, and the food industry [4–6]. However, its low strength and modulus,
poor impact resistance, and large molding shrinkage also make it difficult to be used as
engineering and structural materials [7].

In order to achieve the high performance of PP, researchers have carried out a large
number of works on the inorganic particles filling modification of PP [8–10]. By introduc-
ing rigid inorganic particles, it can not only improve the stiffness and heat resistance of
polymer but also reduce the production cost. Talc powder (Talc) [11], calcium carbonate
(CaCO3) [12,13], and glass beads [14] are generally used for filling modification, and some
aspects of the performance of the PP composite modified by filling have been improved [15].
However, they are still insufficient as structural materials. The reason for this is that the
flexible polymer chains of PP are entangled and not fully stretched, and the crystalline
region forms a “spherulitic” structure [16–18]. The “spherulite” structure is surrounded
by the amorphous phase and connected by the intergranular connecting tie molecules
(TMs) [19,20]. The strength and modulus of PP are determined by the structure of TMs
and the strength and modulus of the amorphous phase [21]. This leads to the fact that the
potential mechanical strength of the material itself cannot be fully displayed.
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The concept of consciously controlling the orientation and crystallization of polymer
molecular chains in the molding process to improve the mechanical properties of polymers
has long been put forward as so-called “self-reinforced composites” [22,23]. However,
it is difficult for the molecular chains of polymers to form a highly oriented structure
during traditional extrusion or the injection melting processing [24,25]. The molecular
chains’ orientation of the polymer can be performed by introducing external stress during
processing [26].

Solid-state die drawing of polymer was an effective way to achieve molecular chain
disentanglement and orientation, which was first proposed by Coates and Ward [27,28].
During the die drawing, the polymer billet was heated to below the melting temperature
(Tm) and passed through die under the drawing load, where the flow channels converge.
The molecular chains can be oriented under the combined action of axial load and the
inner wall of the flow channel. A spherulite structure would deform and reorient along the
drawing direction to form “string crystal” or “micro fiber crystal” structure [2].

The results of many studies have shown that composite material after inorganic filling
had obvious mechanical performance improvement under the combined action of the
drawing load at the free end [29,30]. Wu et al. [31] studied the properties of PP/multi-wall
carbon nanotube composites under the die drawing method and showed that the tensile
strength increased by 550% after drawing. Lin et al. [32] investigated the performance of
porous tape prepared by solid-state drawn PP/Talc composites, and the results showed that
the porosity increased with the increase in the drawing ratio. Rane et al. [30] studied the
crystal orientation and microstructure development of PP/Talc composites under different
tensile ratios. As far as the current research is concerned, there are few studies on the effect
of drawing process parameters on the properties of PP/inorganic particle composites.

In this work, we used our self-designed die to carry out solid-state die drawing on
composite materials to prepare lightweight and high-strength PP-based thermoplastic
composites. CaCO3 and Talc of different contents were used to fill PP to study the influence
of different types and contents of inorganic particle filler on the mechanical properties of
composites, and a suitable material system was selected for the solid-state die-drawing
research. In the process of drawing, the effects of different drawing temperatures and
speeds on the properties of the final product were also included to study their influence
on the mechanical behavior and micromorphology of materials. The research content of
this work can guide the optimal material system and drawing process conditions for the
preparation of inorganic particle-filled PP matrix composites by die drawing.

2. Materials and Methods
2.1. Materials

The polymer material used in this work was random copolymer polypropylene
(6D83K, PP) that was purchased from Braskem Petrochemical Company, Sao Paulo, Brazil.
The PP had a melt flow index (MFI) of 1.9 g/10 min at 230 ◦C/2.16 kg and a density
of 0.90 g/cm3. The Talc with 1250 mesh was supplied by Shandong Xinruli Chemical
Technology Co., Ltd., Jinan, China. The CaCO3, which was also 1250 mesh, was purchased
from Zhongshan Laipeng New Material Co., Ltd., Zhongshan, China. The polymer and
inorganic filler were dried at 100 ◦C for 4 h in blast drying oven before use. The polyethy-
lene (PE) wax with a molecular weight of 2000–2500 was kindly provided by Qingdao
Haihao Chemical Co., Ltd., Qingdao, China. The calcium stearate (CaSt) was purchased
from Hebei Langfang Pengcai Fine Chemical Co., Ltd., Langfang, China. Particularly, PE
wax and CaSt played the lubricating role in the PP/inorganic particle composite in order
to promote extrusion and obtain a smooth surface. Table 1 presents the proportion of raw
materials for solid-state die drawing in this work.
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Table 1. Proportion of raw materials for solid-state die drawing.

Samples PP (wt%) CaCO3
(wt%) Talc (wt%) PE Wax

(wt%) CaSt (wt%)

Ca-30 68.5 30 - 1% 0.5%
Ca-35 63.5 35 - 1% 0.5%
Ca-40 58.5 40 - 1% 0.5%
Ca-45 53.5 45 - 1% 0.5%
Ta-30 68.5 - 30 1% 0.5%
Ta-35 63.5 - 35 1% 0.5%
Ta-40 58.5 - 40 1% 0.5%
Ta-45 53.5 - 45 1% 0.5%

2.2. Preparation Procedure

The PP, inorganic filler, and corresponding additives were weighed according to the
proportion. The raw materials were dried and mixed evenly in a high-speed mixer. After
mixing, the above raw materials were added to the twin-screw extruder for pelletizing
and then were fed to the single-screw extruder for extruding. The inorganic particle-filled
polypropylene composite billets, with a cross-section of 18 mm × 12 mm, were obtained
by extrusion. Then, the billet was put into the preheating device and heated for 1 h
before drawing. Under the action of the tractor, the drawn samples with a cross-section
of 12.2 mm × 4 mm were obtained through the drawing die, and the drawing ratio was
4.4. The drawing ratio was the ratio of the billet size to the section at the die exit [32].
The preheating temperature was the same as the drawing temperature. The detailed
preparation procedure is shown in Figure 1.
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Figure 1. Diagram of the preparation of inorganic particle-filled PP composites by solid-state die drawing.

2.3. Mechanical Properties Testing

The mechanical properties of the samples were determined using a universal test-
ing machine (Instron 5566, Instron Corporation, Boston, MA, USA). The samples were
machined to testing size before measurement. The tensile strength of the samples was
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measured according to ISO 527-2012. The sample size was 150 mm × 12.2 mm × 4 mm, and
the test speed was 10 mm/min. The flexural strength and modulus of the samples were
tested based on ISO 178-2010. The sample size was 80 mm × 10 mm × 4 mm, and the span
was 64 mm. The impact strength of the samples was tested by a pendulum impact testing
machine (CEAST 9050, Instron Corporation, Boston, MA, USA), according to ISO 179-2010.
The sample size was 80 mm × 10 mm × 4 mm, and the span was 70 mm. Before testing,
a side-edge notch with a depth of 2 mm was machined on each sample. The pendulum
speed was 3.5 m/s. Five specimens of each composite were tested, and the average value
is reported.

2.4. Density Testing

The density of the billet and solid-state drawn samples were tested. The multifunc-
tional solid density volume tester (AKD-310A) was used for density testing, which was
purchased from Yangzhou Accurate Instrument Co., Ltd., Yangzhou, China. Five samples
of each composites were measured to calculate the average as reliable results.

2.5. Thermal Properties Measurement

The Vicat softening temperature (VST) of the samples was measured by using a
thermal deformation Vicat softening point temperature determination kit (ZB-909B, Jiangsu
Zhengrui Taibang Electronic Technology Co., Ltd., Yangzhou, China) following ISO 306-2013.
The size of the rectangular specimen was 80 mm × 10 mm × 4 mm, and the heating rate
was 50 ◦C/h.

2.6. Scanning Electron Microscopy

Fractured surfaces of the prepared samples were observed after fracturing the samples
along the drawing direction in liquid nitrogen. The cross-section of the sample was treated
by spraying gold, then a scanning electron morphology (SEM) study was carried out using
an electron microscope (S-4700, Hitachi, Tokyo, Japan).

3. Results and Discussion
3.1. Comparison of the Composites’ Properties before and after Drawing

Solid-state die drawing is an effective method for enhancing the mechanical properties
of polymer materials. CaCO3 and Talc with different contents were used to investigate
the effect of the content on the properties of the drawn composites. Figure 2a presents the
PP/inorganic particle composite samples before, after drawing, and during die drawing.
During the drawing process, the color of the sample gradually became lighter and finally
changed from the original dark gray to light white. It seemed like the PP and the inorganic
filler in the composites were pulled apart, which is illustrated by the following results.

The inorganic particle content was a significant factor affecting the properties of the
composites. Under the conditions of a given drawing rate of 2 m/min and a 140 ◦C drawing
temperature, the properties of PP/inorganic particle composites with different inorganic
particle contents before and after drawing were studied. Figure 2b shows the densities of
PP/inorganic particle composites before and after drawing. It can be seen from the figure
that with the increase of inorganic particles content, the densities of PP/Talc and PP/CaCO3
composites before and after drawing were gradually increasing. After drawing, the density
of the composites had decreased, and the more the content of inorganic particles, the
greater the decrease in density. When the inorganic particles content reached 45 wt%, the
density of PP/CaCO3 composites and PP/Talc composites decreased by 10.4% and 10.2%,
respectively. The lowest density of the drawn composites was PP/CaCO3 composites and
can reach 1.07 g/cm3.
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3.2. Effect of Inorganic Particle Contents

Figure 3a–d present the SEM micrograph of PP/CaCO3 composites and PP/Talc
composites before and after drawing, respectively. It can be seen that the orientation
structure of PP was indeed formed after solid-state die drawing and micropores were
also formed in the both PP/Talc and PP/CaCO3 composites. Inorganic particles played
role in inducing micropore forming in the composites. The micropore size of PP/CaCO3
composites was relative larger than that of PP/Talc composites after drawing, owing to the
spherical particle morphology of CaCO3 and flaky particle morphology of Talc. This also
explained why the density of the PP/CaCO3 composites was lower than that of PP/Talc
composites after drawing.
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The mechanical behaviors of PP/inorganic particle composites with different inor-
ganic particle contents before and after drawing are shown in Figure 4. It can be seen
from Figure 4a that with the increase in inorganic particle content, the tensile strength of
PP/inorganic particle composites before and after drawing showed the same downward
trend. When the inorganic particle content was 30 wt%, the tensile strength of the un-
drawn PP/Talc and PP/CaCO3 composites were only 24.53 and 22.69 MPa, respectively.
After drawing, the tensile strength of the PP/Talc and PP/CaCO3 composites reached
89.40 and 85.97 MPa, respectively, which were 264.5% and 219.6% higher than the tensile
strengths of the undrawn samples, respectively. The flexural properties of the samples
showed the same downward trend as the tensile strength, shown in Figure 4b,c. But the dif-
ference was that the flexural strength of the PP/Talc composites after drawing was slightly
higher than that of the PP/CaCO3 composites. For a content of 45 wt% inorganic particles,
the flexural strength of the PP/Talc composites was 59.65 MPa, which was 3.94 MPa higher
than that of the PP/CaCO3 composites. The value of the flexural modulus was not much
different; for 45 wt% inorganic particles, the PP/Talc and PP/CaCO3 composites after
drawing reached 3.48 and 3.43 GPa, respectively. In addition, it was undeniable that the
flexural properties of the samples were greatly improved. Compared with the samples
before drawing, the flexural strength and the modulus of the drawn samples with 45 wt%
content were nearly doubled and tripled. The comparison of the impact strength of the
samples before and after drawing is also shown in Figure 4d. Before drawing, there were
almost no differences in the impact strength under different particle contents; however,
both the PP/Talc and PP/CaCO3 composites showed a downward trend after drawing.
The impact strength of the drawn PP/Talc composites was slightly higher than that of
the drawn PP/CaCO3 composites, which was due to the toughening effect of the Talc’s
flake-shaped structure.
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3.3. Effect of Drawing Temperature

The drawing temperature was also a key process parameter. PP/Talc and PP/CaCO3
composites with a 45 wt% inorganic particle content were chosen in order to study the
properties of high filled composites under different drawn temperatures. The drawing rate
was set as 2.0 m/min.
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Figure 5 shows the density and Vicat softening temperature of the PP/Talc and
PP/CaCO3 composites after drawing under different drawing temperatures. It can be seen
that with the continuous increase in temperature, the density of the PP/Talc and PP/CaCO3
composites after drawing gradually increased. When the drawing temperature was 110 ◦C,
the density of the PP/Talc and PP/CaCO3 composites after drawing reached the lowest,
which were 1.01 g/cm3 and 1.00 g/cm3, respectively. The lower drawing temperature can
promote a larger scale of debonding between PP and inorganic particles and reduce the
density. Figure 5b shows the Vicat softening temperature of the composites with different
drawing temperatures. The Vicat softening temperature of the composites decreased with
the increase in the drawing temperature. In addition, the Vicat softening temperature of
the PP/Talc composites was significantly higher than that of the PP/CaCO3 composites.
Since high drawing temperatures significantly increased the activity of the PP molecular
chain in the drawn composites and weakened the molecular chain orientation and the
regular arrangement of resin molecular chains in the composites, it led to a decrease in the
heat resistance of the drawn composites.
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The mechanical properties of drawn PP/Talc and PP/CaCO3 composites with differ-
ent drawing temperatures are presented in Figure 6. As the drawing temperature increased,
the tensile strength and impact strength of the drawn composites gradually decreased.
When the drawing temperature was 110 ◦C, the tensile strength of the drawn PP/Talc
and PP/CaCO3 composites were 131.12 and 128.32 MPa, which were approximately
7.71 times and 7.76 times higher than that of the undrawn composites, respectively. While
the impact strength of the drawn PP/Talc and PP/CaCO3 composites showed the same
downward trend, reaching the highest value at 110 ◦C, 172.61 kJ/m2, and 170.42 kJ/m2,
respectively. The flexural properties of the drawn composites are shown in Figure 6b.
From 110 to 140 ◦C, the flexural modulus of the drawn PP/Talc and PP/CaCO3 compos-
ites decreased by 29.5% and 30.4%, while the flexural strength decreased by 7.8% and 7.5%.
Thus, with the increase in the drawing temperature, the effect on the flexural strength
of the PP/Talc and PP/CaCO3 composites was not obvious compared with that on the
flexural modulus.

The above results of the mechanical behavior indicate that as the drawing temperature
increased, the tensile strength, flexural strength, and impact strength of the drawn compos-
ites showed a decreasing trend. Since there was a higher drawing temperature, there was
stronger activity of the molecular chains inside the drawn composites; this did not promote
the complete stretching of coiled molecular chains into linear molecular chains. The orienta-
tion degree of the molecular chain was reduced, resulting in the reduction of fiber structure
in the composites along the drawing direction, which weakened the mechanical properties
of the composites. Furthermore, the higher the temperature, the better the intermolecular
compactness of the composites after converging and drawing through the die. Therefore,
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the stress easily concentrated in the dense molecular structure, causing stress cracking and
developing a destructive cracking trend, resulting in the sample’s fracture and reduction
in impact strength [26,33,34]. Thus, the impact strength of the composites after drawing
gradually decreased.
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The micromorphology of the PP/inorganic particle composites prepared under dif-
ferent drawing temperatures is shown in Figure 7. It can be observed that the lower the
drawing temperature, the larger the micropore size under the micropore effect in the
composites. This was because with the gradual decrease in the drawing temperature, the
debonding effect between PP and inorganic particles was more obvious, resulting in an
increase in the number of micropores in the drawn composites and in the length of the
micropores along the drawing direction. This can also explain the trend seen in Figure 5a,
that is, the density of the drawn composites decreased significantly with a decrease in the
drawing temperature.
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3.4. Effect of Drawing Speed

Drawing speed was another key process parameter in the solid-state die drawing.
The undrawn composites with CaCO3 and Talc contents of 45 wt% were selected, and the
drawing temperature was set to 140 ◦C. The changes in the density, mechanical behavior,
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and microstructure of the PP/inorganic particle composites at different drawing speeds
were investigated.

The density and Vicat softening temperature of the PP/CaCO3 and PP/Talc com-
posites under different drawing speeds are shown in Figure 8. It can be obtained from
Figure 8a that as the drawing speed increased, the density of the drawn composites greatly
decreased. When the drawing speed was 2 m/min, the density of the PP/CaCO3 and
PP/Talc composites was at the minimum, which were 1.18 and 1.19 g/cm3, respectively.
Since an increase in the drawing speed, which can promote the generation of voids in the
composite material, and a higher speed can accelerate the debonding of inorganic particles
from the PP matrix, it thereby reduces the density. The Vicat softening temperature of the
composites rose with the increase in the drawing speed, and the Vicat softening temper-
ature of the drawn PP/Talc composites was slightly higher than that of the PP/CaCO3
composites. This was because the molecular chains of the PP composite material were
highly oriented with the increase in the drawing speed, and the fiber bundles generated dur-
ing the orientation process could resist the pressure during the Vicat softening temperature
test and then showed an increase in the Vicat softening temperature.
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The mechanical behaviors of drawn PP/CaCO3 and PP/Talc composites at different
drawing speeds are shown in Figure 9. It can be noted from Figure 9a that as the drawing
speed increased, the impact strength of the PP/inorganic particle composites decreased,
while the tensile strength along the drawing direction showed the opposite trend. When the
drawing speed was 0.4 m/min, the maximum impact strength of the PP/CaCO3 and
PP/Talc composites were 180.1 and 177.51 KJ/m2, respectively. At this time, the tensile
strength reached the minimum: 99.82 MPa and 101.64 MPa, respectively. The maximum
tensile strength of the drawn PP/CaCO3 and PP/Talc composites appeared when the
drawing speed was 2 m/min, which were 120.16 and 121.04 MPa, respectively. The impact
strength was the minimum. The flexural properties of the drawn composites at different
drawing speeds are shown in Figure 9b. The flexural strength and flexural modulus had
the same change trend with the increase in drawing speed. When the drawing speed was
0.4 m/min, the flexural strength of the drawn PP/CaCO3 and PP/Talc composites reached
the maximum, which were 86.46 MPa and 79.41 MPa, respectively. At this time, the flexural
modulus was also at the maximum. Then, with the increase in drawing speed, the flexural
strength and flexural modulus were weakened.
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Figure 9. The mechanical properties of the drawn PP/Talc and PP/CaCO3 composites with differ-ent drawing rates:
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These changes in mechanical behavior can be attributed to the higher crystallinity
and molecular chain orientation at higher drawing speeds. The flexural properties of
the composites at different traction rates are shown in Figure 9b. The flexural strength
and flexural modulus of the PP/CaCO3 and PP/Talc composites both decreased with
the increase in the drawing speed. As the drawing speed increased, the density of the
drawn composites decreased. The increase in the number of internal micropores led to the
decrease in the flexural properties of the drawn composites.

It can be observed that as the drawing speed increased, the fiber bundles inside the
composites increased as illustrated in Figure 10 for the microstructure of the drawn PP/Talc
composites. This indicated a boost in the orientation of the molecular chains within the
material that was similar to the effect of the drawing temperature, where an increase in
orientation could substantially improve the mechanical properties of the material after
drawing. In addition, the debonding effect of the micropores from the PP matrix was
obvious, and the number of micropores increased significantly, and the length along the
fiber orientation direction increased with the rise of the drawing speed, thus reducing the
density of composites.
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The principle of processing CaCO3 or Talc filled PP composites by solid-state die
drawing method is shown in Figure 11, which can well explain the process of micropore
formation, molecular chain orientation, and fibrous structure formation during the drawing
process. However, in this work, the die drawing behaviors of the PP/inorganic particle
composites under different drawing ratios were not studied, only the die with a drawing
ratio of 4.4 was used for investigation. The correlation mechanism between the drawing
ratio and the mechanical properties of the PP/inorganic particle composites is our next
focus of research.
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Figure 11. Schematic diagram of solid-state die drawing molding of CaCO3 or Talc filled PP composites.

4. Conclusions

In this work, the effects of different drawing temperatures, drawing speeds, inor-
ganic particle contents and types on the mechanical behavior and micromorphology of
drawn PP/inorganic particle composites were investigated with the solid-state die drawing
method. The following conclusions were drawn:

(1) Solid-state drawing promoted density reduction, and the value of the density reduc-
tion was larger as the content of inorganic particles increased. The largest decrease
was when the content of inorganic particles was 45%, and the density decreased
by 10.4%. Compared with before drawing, the tensile strength, flexural strength,
flexural modulus, and impact strength were all significantly enhanced, and the best
was when the content of Talc was 30%, respectively, 89.97 MPa, 68.42 MPa, 4.26 GPa,
and 182.62 KJ/m2;

(2) The increase in tensile temperature did not promote the formation of a fibrous struc-
ture of PP in the PP/inorganic particle composites, resulting in the deterioration of
the properties of the composites. When the drawing temperature was 110 ◦C, the
minimum density was 1.00 g/cm3, and the Vicat softening temperature was also the
highest. The tensile strength, flexural strength, and impact strength were 131.12 MPa,
78.95 MPa, and 172.61 KJ/m2, respectively;

(3) The increase in the drawing speed promoted the generation of micropores in the
composites and induced particle debonding. The Vicat softening temperature also
increased with the increase in drawing speed. The tensile strength enhanced with
the increase in drawing speed. When the drawing speed was 2 m/min, the tensile
strength was 121.04 MPa, while the increase in the drawing speed weakened the
flexural performance and impact strength.
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