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Abstract: Interleukin 12 (IL-12) is a key cytokine that mediates antitumor activity of immune cells.
To fulfill its clinical potential, the development is focused on localized delivery systems, such as gene
electrotransfer, which can provide localized delivery of IL-12 to the tumor microenvironment. Gene
electrotransfer of the plasmid encoding human IL-12 is already in clinical trials in USA, demonstrating
positive results in the treatment of melanoma patients. To comply with EU regulatory requirements
for clinical application, which recommend the use of antibiotic resistance gene-free plasmids, we
constructed and developed the production process for the clinical grade quality antibiotic resistance
gene-free plasmid encoding human IL-12 (p21-hIL-12-ORT) and its ortholog encoding murine IL-
12 (p21-mIL-12-ORT). To demonstrate the suitability of the p21-hIL-12-ORT or p21-mIL-12-ORT
plasmid for the first-in-human clinical trial, the biological activity of the expressed transgene, its
level of expression and plasmid copy number were determined in vitro in the human squamous
cell carcinoma cell line FaDu and the murine colon carcinoma cell line CT26. The results of the
non-clinical evaluation in vitro set the basis for further in vivo testing and evaluation of antitumor
activity of therapeutic molecules in murine models as well as provide crucial data for further clinical
trials of the constructed antibiotic resistance gene-free plasmid in humans.

Keywords: interleukin 12; gene electrotransfer; antibiotic resistance gene-free plasmid; non-clinical evaluation

1. Introduction

Interleukin 12 (IL-12) is one of the most potent proinflammatory cytokines in the
mediation of the antitumor activity of immune cells. It has long been studied as a potential
immunotherapeutic for cancer based on its ability to engage multiple effector mechanisms
and reverse tumor-induced immunosuppression [1]. Among its pleiotropic effects, IL-12
induces Th1 cell differentiation, increases activation and cytotoxicity of T lymphocytes and
natural killer (NK) cells and inhibits immunosuppressive cells, such as tumor-associated
macrophages or myeloid-derived suppressor cells [1]. Most of the IL-12-induced effects are
mediated by the secretion of interferon gamma (IFNγ), which itself exerts cytostatic and an-
tiangiogenic activities and upregulates the major histocompatibility complex (MHC) I and
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MHC II expression on tumor cells for enhanced recognition and lysis. Consequently, IL-12
has demonstrated a significant antitumor activity against a wide range of malignancies in
preclinical models and a strong immunostimulatory potential in humans. Nevertheless,
despite the encouraging results of the IL-12 therapy, systemic administrations of recom-
binant IL-12 incurs exceeding toxicity. To overcome the limitations of systemic delivery,
novel delivery techniques have emerged, which provide more effective and less toxic
IL-12 delivery to the tumor microenvironment. One of them is electrically mediated gene
delivery of the plasmid coding for IL-12. Gene electrotransfer (GET) is a well-established
electroporation-based gene delivery method that can be used to deliver plasmid DNA into
target cells or tissues. Among the non-viral delivery methods, GET is considered to be one
of the more efficient, low-cost and reproducible [2]. As a therapeutic application, GET has
mostly been used as DNA vaccination for infectious diseases and in gene therapy for the
treatment of cancer [3,4].

The first studies involving GET of the plasmid coding for IL-12 (GET IL-12) were
performed on healthy non-tumor-bearing mice, evaluating the effect of GET IL-12 after
transfection of the skin and muscles [5,6]. The efficiency of GET IL-12 was successfully
demonstrated by increased systemic concentrations of IL-12 and its effector molecule IFNγ.
Furthermore, the antitumor effectiveness of GET IL-12 was confirmed with intratumoral
injections of plasmid DNA encoding IL-12 delivered by GET [7], resulting in significant
inhibition of the growth of treated tumors and, additionally, the growth of untreated
distant metastases. Afterwards, the feasibility of GET IL-12 was further tested in various
tumor models, such as models of murine squamous cell carcinoma, melanoma, colorectal
carcinoma, kidney cancer, lymphoma, breast carcinoma and sarcoma [8].

Preclinical studies on murine tumor models have shown that GET IL-12 is specifically
successful in the treatment of skin tumors and their metastases [8]. Therefore, due to
its remarkable antitumor activity at the preclinical level, GET IL-12 has progressed to a
number of clinical trials in both human and veterinary medicine, mainly for the treatment
of skin cancers. Several canine clinical studies have explored GET IL-12 in companion dogs
with naturally occurring tumors [1]. In one such study, GET IL-12 resulted in a notable
reduction in the mast cell tumor volume, with increased inflammatory cell infiltration of
the treated tumors and a decreased number of malignant mast cells [9]. Another study
investigated GET IL-12 in the combination with electrochemotherapy and cytoreductive
surgery for the treatment of canine oral malignant melanoma [10]. The therapy resulted in
a 67% objective response rate accompanied by a decrease in the percentage of regulatory T
cells in the peripheral blood. The effects were ascribed to a systemic antitumor response to
GET IL-12.

Several human clinical trials in the USA, mainly against advanced melanoma, have
addressed the safety and efficiency of GET IL-12. The first clinical study on GET IL-12 was
published in 2008. The study included 24 patients with skin metastatic melanoma. The
plasmid encoding human IL-12 under the control of the cytomegalovirus (CMV) promoter
and with a gene for resistance to kanamycin as the selection gene was used. Gene therapy
was performed three times on each tumor, resulting in a good local clinical response of the
treated tumors and in a systemic antitumor effect on the distant non-treated nodules in
53% of the patients [11]. In a Phase II study, where 29 melanoma patients were treated, an
objective response rate of 33% with 11% complete responses was achieved. The treatment
was found to increase the presence of NK cells both intratumorally and systemically, induce
a systemic T cell response and recruit T cells to the tumor microenvironment [12]. The
treatment was well-tolerated without any observed serious adverse effects.

Despite the encouraging results, the plasmids used in the described studies contain an
antibiotic resistance gene serving as a selection marker for the production of plasmid DNA.
The presence of antibiotic resistance genes raises safety concerns, often pointed out by the
regulatory authorities [13]. To comply with the European Union’s regulatory requirements
for clinical application, in our previous study, a human IL-12-encoding plasmid devoid of
an antibiotic resistance gene (p21-hIL-12-ORT, phIL12) was constructed [14]. Additionally,
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to further improve the safety profile and achieve a more controllable expression, the
promoter driving the expression of IL-12 was switched from a constitutive one to the
tumor-specific and genotoxic stress-inducible promoter of the cyclin-dependent kinase
inhibitor 1 (CDKN1a) gene, more commonly known as p21 [14–19]. An advantage of this
promotor is that, due to its endogenous origin, it is not prone to transcriptional inactivation,
as it is often the case with the virus-derived promoters [20]. The promoter provides low
basal expression in normal cells and high basal expression in the tumor cells. Expression
can be further increased by different treatment-induced stresses, making it ideal for a
combinational therapy with a conventional cancer treatment such as radiotherapy or
chemotherapy planned in the future. For this study, a murine ortholog of the phIL12
plasmid was also constructed since human IL-12 is not active in mice (p21-mIL-12-ORT,
pmIL12).

Plasmid DNA is generally prepared from Escherichia coli cultures followed by cell
lysis to release the plasmid from cells and different purification strategies depending on
purity requirements. The main challenge is to design a scalable, robust and reproducible
manufacturing process, resulting in a product meeting quality standards. The plasmid
DNA product must be of high purity, essentially in its supercoiled form, and free of host
cell proteins, chromosomal DNA, RNA and endotoxins. Unit operations are well-known
and were described previously in detail [21,22].

According to the European Medical Agency (EMA) guideline on the quality, non-
clinical and clinical aspects of gene therapy medicinal products (EMA/CAT/80183/2014)
and the International Council for Harmonisation of Technical Requirements for Pharmaceu-
ticals for Human Use (ICH) guideline Q6B “Specifications: Test Procedures and Acceptance
Criteria for Biotechnological/Biological Products” (CPMP/ICH/365/96), acceptance crite-
ria for drug substances and drug products are not predefined. Acceptance criteria should be
established and justified based on the data obtained from the lots used in preclinical and/or
clinical studies. Extensive characterization should be performed in the development phase
while also following significant process changes. The United States Pharmacopeia, on the
other hand, clearly defines specifications for plasmid DNA drug products.

The aim of this study was to develop plasmid production in a clinical grade quality
process and evaluate the in vitro effects of the phIL12 and pmIL12 plasmids in the human
squamous cell carcinoma cell line FaDu and the murine colon carcinoma cell line CT26,
respectively, according to the guidelines for non-clinical testing of medicines. Therefore, we
aimed to evaluate the level of transgene expression on the mRNA and protein levels, the
biological activity of the produced proteins and the plasmid copy number in the targeted
cells. The results of the study set the basis for in vivo testing and evaluating antitumor
activity of therapeutic molecules in murine models as well as provide the necessary data
for clinical trials using the constructed antibiotic resistance gene-free plasmids for the
treatment of skin tumors in cancer patients.

2. Materials and Methods

The manufacturing process was developed with the goal of producing plasmid DNA
that meets the appropriate quality specifications to enable initiation of a clinical trial. The
production flowchart in Figure 1a shows the main stages of the manufacturing process for
the phIL12 and pmIL12 plasmids including the in-process controls for quality control check.
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Figure 1. Designated study protocols. (a) Manufacturing process flowchart for phIL12 and pmIL12 production with unit
operations and the in-process control sequence. (b) Timeline of the in vitro experiments.

Fermentation in a bioreactor was performed in a defined animal component-free
medium while all the reagents used in the upstream and downstream processing were
current good manufacturing practice (cGMP)-compliant. The critical steps in the process
that strongly influence plasmid quality and purity were defined and closely monitored
through the in-process control as recommended by the regulatory guidelines.

The production process for clinical grade plasmids was established for phIL12 and
further optimized for pmIL12 production. Special emphasis was placed on robustness of
the production process which will enable production of large quantities of clinical grade
plasmids for future clinical studies. The acceptance criteria for drug products will be
established based on the lots used for non-clinical evaluation.

For the in vitro evaluation of plasmid phIL12, the experiments were performed on the
human squamous cell carcinoma cell line FaDu, which is a well-characterized commercially
available human head and neck cell line. The FaDu cell line is the commercially available
cancer cell line that best resembles tumors to be treated in the proposed clinical trial, which
is basal cell carcinoma of the skin. However, due to the biological inactivity of human IL-12
in mice, we substituted phIL12 with pmIL12, a plasmid DNA encoding murine interleukin
12 (p21-mIL-12-ORT). As a model cell line for the in vivo experiments, we selected a murine
colon carcinoma CT26 tumor cell line due to the lack of commercially available murine
basal cell carcinoma cell lines. To set the basis for further in vivo experiments, all the
in vitro experiments performed on the FaDu cell line were additionally performed on



Pharmaceutics 2021, 13, 1739 5 of 22

the CT26 cell line. Thus, the in vitro studies were performed to determine the biological
activity of both phIL12 and pmIL12, their potency, the level of transgene expression, the
plasmid copy number and the maintenance of the sequence in the transfected cell lines
11 days after transfection (Figure 1b).

The protocol for the evaluation of the prepared plasmids was planned in accordance
with the following EMA guidelines: EMA/CAT/80183/2014, EMA/CAT/852602/2018,
EMEA/CHMP/GTWP/125459/2006, EMA/CPMP/ICH/286/1995, EMA/CHMP/ICH/
646107/2008, EMEA/273974/2005, CPMP/BWP/3088/99, CPMP/SWP/1042/99 (rev. 1,
corr.) and reflection paper “Expectations for Biodistribution (BD) Assessments for Gene
Therapy (GT) Products”. The phIL12 and pmIL12 used to perform the non-clinical evalua-
tion had the same specifications as the phIL12 that will be used in clinical trials.

2.1. Plasmids Construction and Master Cell Bank (MCB) Generation

The plasmids were prepared using the conventional molecular cloning methods of
restriction and ligation coupled with the operator–repressor titration (ORT) technology that
enables the construction of antibiotic resistance gene-free plasmids. All the reagents and kits
used for cloning (GeneJET Plasmid Miniprep Kit, TransformAid Bacterial Transformation
Kit supplied with E. coli strain JM109, FastDigest Restriction Enzymes, Rapid DNA Ligation
Kit, GeneJET Gel Extraction Kit, Sybr Safe and Sybr Gold Gel Stain) were purchased from
Thermo Fisher Scientific, Waltham, MA, USA. The ORT technology using DH1-PEPA and
DH1-ORT E. coli cells (Cobra Biologics, Keele, UK) was used to prepare the final antibiotic
resistance gene-free plasmid. The SnapGene software (GSL Biotech LLC, San Diego,
CA, USA) was used for sequence assembly, cloning planning and simulation of agarose
gel electrophoresis. The murine and human IL-12 fusion genes (p40 and p35 subunits)
originated from the commercially available plasmids: human—from the pORF-hIL-12 G2
plasmid, murine—from pORF-mIL-12 (p40:p35) (both: InvivoGen, Toulouse, France). The
coding sequence for the p21 promoter originated from the WWP-Luc plasmid, which was
a gift from Bert Vogelstein (Addgene, Watertown, MA, USA; Adgene plasmid No. 16451,
www.addgene.org/16451/) [23]. Additionally, the pCR-blunt psiCAT plasmid (Cobra
Biologics) was used as a vector to prepare the antibiotic resistance gene-free plasmids.

The construction of the p21-hIL-12-ORT plasmid was described in our previous pa-
per [14]. To prepare the murine ortholog p21-mIL-12-ORT, the p21 sequence from the
p21-hIL-12-ORT plasmid was ligated to the murine IL-12 gene from the pORF-mIL-12
(p40:p35) plasmid and cloned to the pCR-blunt psiCAT plasmid. The resulting recom-
binant plasmid with the murine IL-12 fusion gene under the transcriptional control of
the p21 promoter (still containing the antibiotic resistance gene) was transformed into
the DH1-PEPA E. coli cells, and the transformed bacteria were selected on selective LB
agar plates with chloramphenicol (Merck Millipore, Burlington, MA, USA). To confirm the
presence of the transformed plasmid, miniprep isolations were performed, and the clones
were confirmed using restriction analysis. The aliquots of the confirmed clone were stored
in 20% glycerol at −80 ◦C for future use. The isolated plasmid was further transformed
into the DH1-ORT E. coli cells, in which the antibiotic resistance gene was excised by Xer
recombination [24]. Transformation was followed by selection of the clones that contained
the antibiotic resistance gene-free version of the plasmid by replica-streaking on gridded
agar plates with and without the selection antibiotic. From the positive clones, a single
clone was selected that gave the highest yields according to the miniprep isolations and
the highest supercoiled ratio according to electrophoretic separation on agarose gel (Sup-
plementary Figure S1). The selected clone was confirmed by restriction analysis. Finally,
the plasmid was confirmed by full-length plasmid sequencing and an annotated plasmid
map was created based on the sequencing results (Figure 2).

www.addgene.org/16451/
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Figure 2. Construction and confirmation of the p21-mIL-12-ORT plasmid. (a) Cloning plan created using the SnapGene
software: the expression cassette carrying the murine IL-12 sequence under the EF1/HTLV promoter was cut out of the
pORF-mIL-12 (p40:p35) plasmid with the NotI and SwaI (blunt end) restriction enzymes and ligated to the pCR-blunt
psiCAT plasmid cut with NotI and PmlI (blunt end). In the resulting plasmid, the promoter region was replaced with the
p21 promoter from the p21-hIL-12-ORT plasmid using the NotI and SalI restriction enzymes. The chloramphenicol antibiotic
resistance gene (CmR) was then removed from the p21-mIL-12-Xmark plasmid using the ORT technology, resulting in
the p21-mIL-12-ORT plasmid. (b) Annotated plasmid map: p21 promoter–promoter region from the native human p21
(CDKN1A) gene, mIL-12 (p40:p35) murine IL-12 intronless open reading frame consisting of the IL-12b (p40, beta subunit)
and IL-12a (p35, alpha subunit) genes, SV40 polyA-simian virus 40 late polyadenylation signal, ORI-E. coli origin of
replication, LacP lactose operon promoter with the lacO operator. (c,d) Restriction analysis: (c) the plasmid was cut with
different combinations of restriction enzymes and its identity was confirmed by positive matching of the pattern of bands
on the electrophoresis gel to the expected (d) pattern obtained by means of a simulation experiment using the SnapGene
software. For the uncut plasmid, the simulated band pattern differs from the actual pattern because simulation can only
be done for a supercoiled monomer, while other forms (supercoiled dimer, open circular, linear, nicked) can also be seen
on the electrophoretic gel. Electrophoresis details: 1% agarose (Sigma-Aldrich), run for 45 min at 100 V/cm, stained in
1× Sybr Gold (Thermo Fisher Scientific). LL (linear DNA ladder): GeneRuler™ 1 kb Plus DNA Ladder (Thermo Fisher
Scientific), lane 1: HindIII + MunI (2338 bp, 1792 bp, 1338 bp, 409 bp, 79 bp, 19 bp), lane 2: HindIII (3130 bp, 2338 bp, 409 bp,
79 bp, 19 bp), lane 3: KpnI (3936 bp, 2039 bp), lane 4: NcoI + Alw44I (3633 bp, 2342 bp), lane 5: BamHI + XbaI (3150 bp,
1652 bp, 1173 bp), lane 6: KpnI + Alw44I (3936 bp, 1314 bp, 725 bp), lane 7: NotI + Alw44I (4787 bp, 1188 bp), lane 8: uncut
(supercoiled 5975 bp), SC (supercoiled DNA ladder): Supercoiled DNA Ladder (New England BioLabs, Ipswich, MA, USA).

The MCB was prepared by means of isolation of a single colony that was grown in
50 mL LB Broth (Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C in a 250 mL shaker flask at
180 rpm. When an OD600 of 0.6 was reached, glycerol (Sigma-Aldrich) was added to the
culture (20% v/v), and aliquots of 1 mL were frozen at −80 ◦C, forming the MCB. Plasmid
identity was confirmed by restriction analysis.

2.2. Production of Plasmids of Clinical Grade Quality

Both plasmids, p21-hIL-12-ORT and p21-mIL-12-ORT, were produced using the iden-
tical manufacturing process steps.

2.2.1. Fermentation

The inoculum of the fermenter consisted of a shake flask culture. One vial of the MCB
was transferred into a shake flask containing 100 mL of a defined medium consisting of a
C-source glucose (Sigma-Aldrich), a macroelements solution and a trace elements solution.
The culture was grown for approximately 16 h at 30 ◦C and 200 rpm. This culture was
inoculated into a Minifors 2 benchtop fermenter with a working volume of 3 L (Infors HT,
Bottmingen, Switzerland) containing 1000 mL of the defined medium with the EX-CELL or



Pharmaceutics 2021, 13, 1739 8 of 22

Poly (propylene glycol) antifoaming agent (both: Sigma-Aldrich). During fermentation,
pH was controlled at 7.0 with 10% NH4OH (Honeywell, Charlotte, NC, USA). Air inflow
in the range of 0.1–1.5 L/min and agitation speed in the range of 300–1000 rpm were
automatically feedback-controlled based on dissolved oxygen (DO) at a set point of 20%.

2.2.2. Harvest and Lysis

The cells were harvested using a custom-made tangential flow filtration system
equipped with a hollow fiber 500 kDa cartridge with a membrane area of 420 cm2 (GE
Healthcare, Chicago, IL, USA). The cells were concentrated from 2.5 L to 0.5 L. The harvest
pool was exchanged for sterile buffer A (50 mM Tris HCl, pH 8.0, 10 mM EDTA). Lysis was
performed at room temperature by adding 1.0 L of sterile buffer B (1% SDS, 0.2 M NaOH)
and mixing. Five min after lysis, the cellular debris, the genomic DNA (gDNA) and the
proteins were precipitated by gently adding and mixing 0.5 L of cooled (4–10 ◦C) buffer
C (3 M potassium acetate, pH 5.5). After 3 min of mixing, the lysate was filtered through
Sartoclear® Maxicap® 5” (Sartorius, Göttingen, Germany). The cleared lysate was adjusted
to 0.75 M CaCl2 by adding 4 M CaCl2 and stored at 2–8 ◦C for 15 min followed by filtration
through Sartopore® 2 0.45 µm, MidiCaps (Sartorius).

2.2.3. Purification

Plasmid purification was performed by means of two-step purification on anion
exchange and hydrophobic interaction chromatography columns. The cleared lysate was
adjusted to 40.0 ± 2.0 mS/cm and loaded on CIMmultus™ DEAE–8 mL (BIA Separations,
Ajdovscina, Slovenia) equilibrated with 200 mM Tris, 10 mM EDTA, pH 8.0. Plasmid DNA
was separated from the host cell protein and RNA in step gradient of NaCl and eluted with
200 mM Tris, 10 mM EDTA, 1.0 M NaCl, pH 8.0. The eluted fraction containing plasmid
DNA was adjusted to 3.0 M ammonium sulphate (AS, Merck Millipore) and loaded on
a CIMmultus™ C4 HLD–8 mL (BIA Separations) column equilibrated with 50 mM Tris,
10 mM EDTA, 2.0 M AS, pH 7.2. Supercoiled plasmid DNA (Sc) was separated from the
open circular plasmid DNA (Oc) and gDNA in step gradient of AS and eluted with 50 mM
Tris, 10 mM EDTA, 1.0 M AS, pH 7.2 [25]. The eluted fraction containing plasmid DNA was
exchanged to 0.9% NaCl with diafiltration on Pellicon® XL, Ultracel 30 with a membrane
area of 50 cm2 (Merck Millipore). In the p21-hIL-12-ORT production process, diafiltration
consisted of two repetitions (10-fold dilution and concentration), while three repetitions
were performed in the p21-mIL-12-ORT production process. Finally, the solution was
filtered through a 0.22 µm filter, aliquoted to cryovials and stored at −80 ◦C until use.

2.2.4. Plasmid DNA Qualification

Qualification of pDNA was carried out using an in-house developed method on a high-
performance liquid chromatography (HPLC) system Prominence (Shimadzu, Kyoto, Japan)
and a CIMac™ pDNA-0.3 Analytical Column (BIA Separations). Twenty µL of the sample
containing plasmid DNA were injected at a flow rate of 1 mL/min. As the equilibration
buffer, 200 mM Tris (pH 8.0) were used. Elution of plasmid DNA and impurities was
achieved by applying the linear gradient of the elution buffer (200 mM Tris, 1.0 M NaCl,
pH 8.0). Detection was carried out at a wavelength of 260 nm.

2.2.5. Host Cell Protein Quantification

A specialized bicinchoninic acid assay version for low protein concentrations Micro
BCA Protein Assay Kit from Thermo Fischer Scientific (Waltham, MA, USA) was used to
measure the residual protein impurities in accordance with the manufacturer’s instruc-
tions. The calibration curve with seven different concentrations including the blank was
constructed with the BSA protein standard, and the absorbance at 562 nm was measured in
triplicates on a Synergy H1 Hybrid Reader (BioTek Instruments, Winooski, VT, USA). The
absorbance for the plasmid samples was measured in duplicates with additional duplicates
for spike recovery calculations. The acceptance criteria for spike recovery were determined



Pharmaceutics 2021, 13, 1739 9 of 22

in order to avoid erroneous results. The averaged values were used to form a standard
curve from which the host cell protein concentration in the plasmid sample was calculated.

2.3. Cell Cultures

The human squamous cell carcinoma cell line FaDu (obtained from ATCC; ATCC®

HTB43™) and the murine colon carcinoma CT26.WT (hereinafter referred to as CT26) tumor
cell line (obtained from ATCC, Manassas, VA, USA; ATCC® CRL-2638™) were cultured
in the ATCC-suggested cell culture mediums. The FaDu cells were cultured in Advanced
Dulbecco’s Modified Eagle’s Medium (A-DMEM, Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) and the CT26 cells were cultured in Advanced RPMI-1640 (A-RPMI, Gibco), both
supplemented with 2 mM L-glutamine (Gibco), 5% (v/v) fetal bovine serum (FBS, Gibco),
GlutaMAX (Gibco) and 1% (v/v) Penicillin–Streptomycin (stock solution, 10,000 U/mL,
Gibco). Additionally, HEK-Blue™ IL-12 cells (IL-12 reporter cells) (InvivoGen) were used
to determine the biological activity and potency of phIL12 and pmIL12. The HEK-Blue™ IL-
12 cells were cultured in A-DMEM (Gibco) supplemented with 2 mM L-glutamine (Gibco),
5% (v/v) FBS (Gibco) and 1% (v/v) Penicillin–Streptomycin (stock solution, 10,000 U/mL,
Gibco). After the second passage, the 1× HEK-Blue™ Selection (InvivoGen) was added to
the growth medium. The cells were handled according to the supplier’s instructions and
cultured in a 5% CO2 humidified incubator at 37 ◦C. For the experiments, the cells were
maintained in monolayers until they reached 70–80% confluence.

2.4. Gene Electrotransfer (GET)

In the proposed clinical trial, electroporation, i.e., GET, will be used to transfect tumors
with phIL12. Therefore, electroporation was also used to transfect the cells in vitro. For
this purpose, a suspension of the FaDu or CT26 cells in the exponential growth phase
was trypsinized and prepared in a cold electroporation buffer (EP buffer; 125 mM su-
crose, 10 mM K2HPO4, 2.5 mM KH2PO4, 2 mM MgCl2 × 6 H2O) with a concentration of
25 × 106 cells/mL. Then, 40 µL of the cell suspension were mixed with 10 µL of phIL12 or
pmIL12 (both at the concentration of 1 mg/mL), and the mixture was pipetted between
stainless steel electrodes 2 mm apart followed by the delivery of electric pulses. The same
electric pulse protocol (eight electric pulses, voltage-to-distance ratio of 1300 V/cm, pulse
duration of 100 µs, frequency of 5 kHz) was applied as it will be used in the proposed
exploratory clinical trial according to the updated standard operating procedure for the use
of electrochemotherapy in the clinical settings [26–28]. Immediately after pulse delivery
(<5 s), the mixture was transferred in a 24-well ultralow attachment plate (Corning, New
York, NY, USA) [29]. Five min after GET, 1 mL of an appropriate cell culture medium
was added, and the resulting suspension of the cells was transferred to an appropriate
cell culture flask with a filter cap (T25 for 24 h and 48 h incubation; T75 for 72 h and 96 h
incubation) and an additional cell culture medium was added. The cells were then grown
in a humidified incubator at 37 ◦C and 5% CO2 until further processing.

An electrical pulse generator CLINIPORATORTM (IGEA S.p.A., Carpi, Italy) holding
authorization for the use in the clinical environment for electrochemotherapy and gene
therapy was used to deliver the pulses. The choice of the pulse parameter protocol was
supported by publications describing gene therapy studies with similar plasmid coding for
IL-12 performed in the US. The pulse protocol using six 100 µs pulses with the voltage-to-
distance ratio of 1300 V/cm was used in published preclinical and clinical studies [11,30].
To our best knowledge, gene therapy studies with CliniporatorTM and these specific param-
eters have not been published yet. Therefore, we performed some preliminary experiments
shown in Figure 3 with plasmid pEGFP-N1 (BD Biosciences, Clontech, Palo Alto, CA,
USA) as well as with phIL12 in the FaDu cells to confirm that the 5 kHz pulse protocol
results in an adequate transfection efficiency compared to the 1 Hz protocol delivered
by CliniporatorTM and also compared to the 1 Hz protocol delivered by pulse generator
BetaTech (LEROY Biotech, Saint-Orens-de-Gameville, France), the electroporation device
that was also used in our preclinical studies [31,32]. In the clinical setting, the 5 kHz



Pharmaceutics 2021, 13, 1739 10 of 22

protocol is used for better patient’s compliance as it causes less discomfort to the patient
than 1 Hz pulses.
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2.5. Timeline of the Experiment and Sample Collection

The level and persistence of transgene expression was determined by means of quan-
titative real-time PCR (qRT-PCR) at the level of mRNA and using an enzyme-linked
immunosorbent assay (ELISA) at the protein level [33,34]. As IL-12 is a secreted cytokine,
the protein level was determined in the cell culture medium collected from the FaDu or
CT26 cells after GET. To determine the kinetics of IL-12 expression after GET, the samples
were collected 24, 48, 72 and 96 h after GET and, additionally, 7, 9, and 11 days after GET.
Since the plasmid DNA copy number in the transfected cells rapidly decreased below the
detection point, the copy number was determined only after 24, 48, 72 and 96 h after GET.

On the day of cell processing, the cell culture medium was collected, divided into
aliquots and stored at −80 ◦C. One fraction was used for testing the biological activity
and potency of phIL12 or pmIL12 and the other for quantification of the secreted hIL-12
or mIL-12 with an ELISA assay. The attached cells were counted and divided into two
fractions; half of the cells were processed for quantification of transgene expression with
qRT-PCR, the other half—for the determination of the copy number of plasmid DNA with
qRT-PCR. The details of the abovementioned tests are given below.
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2.6. Level of Transgene Expression and Plasmid Copy Number
2.6.1. Total RNA Isolation and cDNA Reaction

In order to determine the level of transgene expression after GET, total RNA from the
FaDu and CT26 cells was isolated. Isolation of total RNA was performed with a peqGOLD
Total RNA Kit (VWR International, Radnor, PA, USA) according to the manufacturer’s
instructions, including a DNA digestion step in order to digest the remaining plasmid DNA.
The isolated RNA was stored at −80 ◦C until further use. Prior to reverse transcription
into cDNA, the quantity and purity of the isolated RNA was determined using a Qubit
4 Fluorometer (Invitrogen, Thermo Fisher Scientific). Next, 1000 ng of the isolated RNA
were reverse-transcribed into cDNA with a SuperScript VILO cDNA synthesis kit (Thermo
Fisher Scientific) according to the manufacturer’s instructions. A thermal cycler (Primus
25 advanced® Thermocycler, VWR) was used for reverse transcription with the following
settings: incubation at 25 ◦C for 10 min, incubation at 42 ◦C for 60 min and termination of
reaction at 85 ◦C for 5 min. The undiluted cDNA was stored at −80 ◦C until further use.

2.6.2. Total DNA Isolation

In order to determine the plasmid copy number after GET, total DNA from the FaDu
and CT26 cells was isolated. Isolation of total DNA was performed using a DNeasy Blood
& Tissue Kit (Qiagen, Hilden, Germany). Before the isolation, the cells were resuspended in
2 mL of Hanks’ Balanced Salt Solution (HBSS) (with Mg2+ and Ca2+; Gibco), and plasmid
DNA associated with the plasma membrane was digested with DNase I (168.1 U/µL,
Invitrogen). The mixture was incubated at 37 ◦C for 10 min in Eppendorf ThermoMixer
C (Eppendorf, Hamburg, Germany) at 300 rpm. After incubation, 200 µL of 0.5 M EDTA
(Sigma-Aldrich) were added and slowly mixed by pipetting to deactivate DNase I. The cell
suspension was then centrifuged for 5 min at 470× g. The supernatant was removed and the
cells were resuspended in 200 µL of the PBS. The samples were then lysed using Proteinase
K and RNA digested by adding RNase A (concentration, 7000 units/mL) (Qiagen). After
2 min incubation, a lysis buffer was added to the sample followed by 10 min incubation
at 56 ◦C in Eppendorf Thermomixer C at 300 rpm. When incubation was finished, 200 µL
of ethanol were added and thoroughly vortexed. The mixture was pipetted to a DNeasy
Mini spin column and centrifuged for 1 min at 6500× g. The DNeasy Mini spin column
was placed into a new collection tube and 500 µL AW1 buffer was added following
centrifugation at 6500× g for 1 min. The DNeasy Mini spin column was transferred to
a new collection tube and 500 µL of the AW2 buffer were added and centrifugation at
20,000× g was performed for 3 min. The DNeasy Mini spin column was transferred to a
new 1.5 mL tube and 50 µL of the elution buffer were added following 1 min incubation at
room temperature. After incubation, centrifugation at 6500× g was performed for 1 min.
The last step was repeated once. The isolated DNA was stored at −80 ◦C until further use.
The quantity and purity of the isolated DNA was determined with a Qubit 4 Fluorometer.

2.6.3. qRT-PCR

For the qRT-PCR assay, SYBR Green chemistry was used, which enables relative as
well as absolute quantification of the target sequence in the investigated sample. Relative
quantification was used to determine the expression level of the transgene in the FaDu
and CT26 cells after GET where the untreated cells were used as a reference sample. We
designed the primers specific for our transgene that would not amplify endogenous IL-12
mRNA of either human or murine origin (Integrated DNA Technologies; IDT, Newark, NJ,
USA; primer details are in Table 1) or any other known double-stranded (ds) DNA sequence.
Additionally, absolute quantification was used to determine the plasmid copy number
in both cell lines after GET, where the standard curve method was used to calculate the
plasmid copy number based on the serial dilution series of synthetic dsDNA (gBlocks, IDT).
For this part, we designed a different set of primers specific for the phIL12 plasmid and the
pmIL12 plasmid that do not amplify any other known dsDNA sequence (primer details are
in Table 1). No template control (NTC) including all the PCR reagents with the exception
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of the template (cDNA) was used as the negative control for the qRT-PCR reaction. All
the samples were run in technical duplicates. As the internal/housekeeping control in the
samples isolated from the murine CT26 cells, β-actin (IDT) was used, while the expression
of the β-glucuronidase (GUSB, IDT) gene was followed in the samples isolated from the
human FaDu cells (primer details in Table 1). For the experiments evaluating the pulse
parameter protocols (Figure 3c,d), the relative expression of transgene GFP or hIL-12 was
normalized to β2-microglobulin (primer details in Table 1).

Table 1. Details of the primers used for qRT-PCR.

Primer Primer Details Sequence

hIL-12, forward Expression primer: specific for the linker region
between the p40 and p35 IL-12 subunits (phIL12) CTGCAGTGTTCCTGGAGTAG

hIL-12, reverse Expression primer: specific for the linker region
between the p40 and p35 IL-12 subunits (phIL12) GAACATTCCTGGGTCTGGAG

mIL-12, forward Expression primer: specific for the linker region
between the p40 and p35 IL-12 subunits (pmIL12) CCGATCGGTTCCTGGAGTA

mIL-12, reverse Expression primer: specific for the linker region
between the p40 and p35 IL-12 subunits (pmIL12) GGGACTGGCTAAGACACCT

phIL12 and pmIL12 copy number, forward Copy number primer: specific for the plasmid
backbone (ori) GCAGAGCGCAGATACCAAATA

phIL12 in pmIL12 copy number, reverse Copy number primer: specific for the plasmid
backbone (ori) GCGCCTTATCCGGTAACTATC

hGUSB, forward Human internal/housekeeping expression control AGGTGATGGAAGAAGTGGTG
hGUSB, reverse Human internal/housekeeping expression control AGGATTTGGTGTGAGCGATC

mβ-actin, forward Murine internal/housekeeping expression control CTGTGCTGTCCCTGTATGC
mβ-actin, reverse Murine internal/housekeeping expression control GGCACAGTGTGGGTGAC

Synthetic dsDNA (gBlocks)

GTAACTGGCTTCAGCAGAGCGCAGATACC
AAATACTGTTCTTCTAGTGTAGCCGTA

GTTAGGCCACCACTTCAAGAACTC
TGTAGCACCGCCTACATACCTCGCTCT
GCTAATCCTGTTACCAGTGGCTGCTGC
CAGTGGCGATAAGTCGTGTCTTACCGG

GTTGGACTCAAGACGATAGTTACCGGAT
AAGGCGCAG

CGGTCGGGCTGAACGG-GGGGTTC

GFP Predesigned expression primer for GFP Mr04097229_mr, Thermo Fisher Scientific
hβ2-microglobulin, forward Human internal/housekeeping expression control GGCATTCCTGAAGCTGACAG
hβ2-microglobulin, reverse Human internal/housekeeping expression control TGGATGACGTGAGTAAACCTG

For each qRT-PCR reaction, 20 µL of the reaction mixture containing 10 ng of the
cDNA or 10, 1 or 0.1 ng of total DNA was used. The working concentration of the primers
was 200 nM. A PowerUPTM SYBRTM Green Master Mix (2×) (Thermo Fisher Scientific)
was used according to the manufacturer’s instructions. The reactions were run in 96-well
PCR plates on QuantStudio 3 (Thermo Fisher Scientific). The thermal cycling conditions
for the determination of gene expression levels were as follows: 2 min at 50 ◦C, 2 min at
95 ◦C, 40 cycles of 15 s at 95 ◦C, 1 min at 60 ◦C; for the melting curve determination, 15 s at
95 ◦C, 1 min at 60 ◦C, 15 s at 95 ◦C. The thermal cycling conditions for the determination of
the plasmid copy number were as follows: 2 min at 50 ◦C, 2 min at 95 ◦C, 40 cycles of 15 s
at 95 ◦C, 30 s at 58 ◦C and 30 s at 72 ◦C; for the melting curve determination, 15 s at 95 ◦C,
1 min at 60 ◦C, 15 s at 95 ◦C.

After the qRT-PCR run, the data were analyzed with the QuantStudio’s software. The
Ct values were determined for each primer set and each sample. Relative quantification
of transgene expression was expressed as the relative quantity of the transgene (IL-12)
compared to the quantity of the housekeeping gene. Absolute quantification of the plasmid
copy number in the cells after GET was based on the serial dilution series of gBlocks, which
was used to determine the standard curve.
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2.7. ELISA Assay

For the ELISA assay (Human IL-12 p70 Quantikine ELISA Kit, R&D Systems, Min-
neapolis, MN, USA, or Mouse IL-12 p70 Quantikine ELISA Kit, R&D), the cell culture
medium from the FaDu and CT26 cells was collected at different timepoints after GET
designated in Figure 1. The cell culture medium was centrifuged and the supernatant was
then divided to aliquots and stored at −80 ◦C. All the samples, standards and controls were
assayed in duplicate. The ELISA assay was performed according to the manufacturer’s
instructions. Within 30 min after the end of the assay, optical density (OD) for each well
was measured using a spectrophotometer (Cytation 1, BioTek Instruments) at 450 and
570 nm. The reading value at 570 nm was subtracted from the 450 nm value to correct
for optical imperfections in the plate. The duplicate readings for each standard, control
and sample were averaged and then the average zero standard optical density (OD) was
subtracted from them. The standard curve was created by reducing the data to generate a
four-parameter logistic (4-PL) curve fit according to the manufacturer’s instructions. The
obtained equation was then used to calculate the concentration of hIL-12 p70 or mIL-12
p70 in the samples. For each sample, the total concentration of the protein in the cell media
was indicated as the average OD value × volume of cell media/number of cells.

2.8. Biological Activity and Potency

The cell culture medium was collected one day after GET to determine the biological
activity and potency of the transgene (secreted IL-12) in both the FaDu and CT26 cell lines.
Biological activity and potency were additionally confirmed 48 h after the transfection
of target cells with lipofection. One day before lipofection, 0.85 × 105 FaDu or 0.5 × 105

CT26 cells were seeded per each well in a 24-well plate. On the day of transfection, 1 µL of
Lipofectamine 3000 (Thermo Fisher Scientific) was diluted in 25 µL Opti-MEM medium
(Thermo Fisher Scientific). In a separate tube, the mixture of 0.5 µL of plasmid DNA at
a concentration of 1 mg/mL, 25 µL Opti-MEM medium and 1 µL of the P3000 reagent
was prepared. Next, the dilution of plasmid DNA and the dilution of Lipofectamine 3000
were combined at a 1:1 ratio. The mixture was gently mixed and incubated for 15 min at
room temperature. After incubation, 50 µL of the mixture were transferred to the cells; 48 h
after the transfection, the cell media were removed to determine the biological activity and
potency of pmIL12 and phIL12.

The biological activity and potency were tested using HEK-Blue™ IL-12 cells, which
were designed to detect bioactive human and murine IL-12 by monitoring the activation
of the STAT4 pathway through the detection of produced secreted alkaline phosphatase
(SEAP). SEAP in the supernatant of the HEK-Blue™ IL-12 cells was detected using a
Phospha-Light™ SEAP Reporter Gene Assay System (Thermo Fisher Scientific). Briefly,
a suspension of HEK-Blue™ IL-12 was prepared in a prewarmed growth medium with
1× HEK-Blue™ Selection (InvivoGen) at a concentration of 280,000 cells/mL. The HEK-
Blue™ IL-12 cell suspension (180 µL (~50,000 cells)) was added to each well in a 96-well
plate. The cell culture medium (20 µL) collected after GET was added to the cell suspension.
In separate wells, 20 µL of the recombinant human IL-12 standard (WHO Reference Reagent
Interleukin 12, National Institute for Biological Standards and Control, Hertfordshire, UK)
prepared in different dilutions were added to the cell suspension in order to construct a
standard curve. The plates were incubated overnight at 37 ◦C in 5% CO2. The next day, a
Phospha-Light™ SEAP Reporter Gene Assay System (Thermo Fisher Scientific) was used
according to the manufacturer’s instructions. The emitted luminescence was measured
with spectrophotometer Cytation 1, and the biological activity/potency of the transgene
was expressed as “equal to the quantity of recombinant hIL-12 in international units (IU)”
extrapolated from the constructed standard curve obtained from the WHO standard.

2.9. Statistical Analysis

For statistical analysis and graphical representation, GraphPad Prism 9 (GraphPad
software, San Diego, CA, USA) was used. Since the data were normally distributed, the
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significance was determined using the two-tailed t-test or one-way ANOVA test; p < 0.05
was considered statistically significant.

3. Results
3.1. Production Process

Several production processes were run to prepare a sufficient amount of plasmid
DNA for in vitro and in vivo non-clinical trials. For the p21-hIL12-ORT production, two
fed-batch fermentations were processed, resulting in 31 ± 3 g of dry cell weight (DCW)
per liter containing 21.3 ± 9.5 mg of plasmid DNA/L fermentation broth. The purified
plasmid from both batches was pooled and the sterile final product was prepared with
the final concentration of 1.93 mg/mL. In total, 9.6 mg of plasmid p21-hIL12-ORT were
prepared for in vitro studies. The drug product was characterized using the established
methods (Figure 4, Table 2).
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Table 2. Specification of plasmid DNA used for in vitro studies.

Method Specification p21-hIL-12-ORT p21-mIL-12-ORT

pDNA
Oc

HPLC
<3% 2.4% 2.56%

Ln <3% 0.16% 0.43%

Sc >94% 97.47% 97.00%

pDNA concentration A 260 1.8–2.0 mg/mL 1.93 mg/mL 1.99 mg/mL

RNA AGE Not visible on
agarose gel

Not visible on
agarose gel

Not visible on
agarose gel

gDNA qPCR <20 µg/mg pDNA 11.8 µg/mg pDNA 10.4 µg/mg pDNA

Host cell proteins microBCA <3 µg/mg pDNA 7.0 µg/mg pDNA 0.72 µg/mg pDNA

Endotoxin According to Ph. Eur.
2.6.14., USP <85> <10 EU/mg pDNA 2.9 EU/mg pDNA 0.03 EU/mg pDNA

Sterility According to Ph. Eur.
2.6.1., USP <71> Negative Negative Negative

pH pH-meter 5.8–6.3 6.3 5.9

Appearance According to Ph. Eur.
2.9.20.

Clear/transparent
solution

Clear/transparent
solution

Clear/transparent
solution

AGE, agarose gel electrophoresis; gDNA, genomic DNA, HPLC, high-performance liquid chromatography; Ln, linear; Oc, open circular;
Ph. Eur., European Pharmacopoeia; EU, endotoxin unit; Sc, supercoiled; USP, United States Pharmacopeia.
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For the p21-mIL12-ORT production, more batches were required in order to test
process robustness and produce drug products for both in vitro and in vivo studies. Three
complete productions from fed-batch fermentation to final product formulation were
performed. In order to achieve higher purity in terms of HCP impurities, an additional
run of diafiltration was implemented before sterile filtration of the final drug product
which resulted in an additional 10-fold decrease in the HCP content compared to the
final p21-hIL12-ORT product. Robustness of the production process for clinical grade
plasmid production can be recognized by comparing fermentation yields and drug product
characterization: fermentation processes resulted in 28 ± 6 g of DCW per liter containing
10.0 ± 3.1 mg of plasmid DNA/L fermentation broth. The final product characterization
resulted in 98.3 ± 1.1% Sc isoform, 12 ± 3 ng gDNA/mg pDNA, 0.6 ± 0.2 µg HCP/mg
pDNA, 0.1 ± 0.2 EU/mg pDNA. Three lots of the plasmid resulted in the production of
38.6 mg total plasmid mass with the final concentration of 1.95 mg/mL ± 0.04. However,
only one lot was used for in vitro studies (Figure 4, Table 2).

3.2. GET of phIL12 in the FaDu Cell Line

GET of phIL12 resulted in the production of biologically active IL-12 in the FaDu
cells. The expression of human IL-12 was confirmed both at the mRNA and protein
levels. Briefly, the IL-12 mRNA expression reached the maximum 1 day after GET and
steadily decreased with time (Figure 5a). Expression of the transgene IL-12 mRNA in
the control samples was not detected. Protein expression showed maximal increase in
the hIL-12 levels in the first 4 days post-treatment, followed by the decrease until day
9 until it reached the control values (Figure 5b). Minimal amounts of the IL-12 protein
in the control cells were detected due to endogenous IL-12. GET of phIL12 resulted in
the average of 44 copies of plasmid DNA per cell detected 1 day post-treatment. The
DNA plasmid copy number exponentially decreased with time in the observed 4-day
period (Figure 5c). The biological activity and potency of hIL-12 after phIL12 GET was
determined using HEK-Blue™ IL-12 cells. Secreted human IL-12 in the cell media of the
transfected FaDu cells successfully activated the STAT4 pathway, leading to increased
SEAP production compared to the control group. The measured biological activity of
hIL-12 was 2.3 ± 0.5 × 105 IU/µg. The biological activity and potency of hIL-12 expressed
from plasmid phIL12 were additionally confirmed after lipofection for every batch of
phIL12 used in the experiments and was 1.3 ± 0.9 × 104 IU/µg (Figure 5d). The values
of biological activity of the produced proteins are in the range of commercially available
hIL-12 recombinant proteins (from 1 × 103 to >2 × 104 IU/µg) [35,36].
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each of them including two separate biological replications.

3.3. GET of pmIL12 in the CT26 Cell Line

Similarly to phIL12, GET of pmIL12 resulted in the production of biologically active
murine IL-12 in the CT26 cells. Its expression was confirmed both at the mRNA and
protein levels, with slightly different expression dynamics compared to the expression of
human IL-12 in the FaDu cells. The relative murine mRNA levels reached the maximum
1 day after GET and then rapidly decreased until day 4 post-treatment (Figure 6a). The
expression of IL-12 mRNA in the control samples was not detected. Protein expression
showed maximal increase in the mIL-12 levels already 1 day post-treatment, followed by a
steady decrease in the protein levels until day 11 (Figure 6b). GET of pmIL12 resulted in
the average of 32 copies of plasmid DNA per cell, detected 24 h post-treatment (Figure 6c).
Similarly to phIL12, the pmIL12 DNA plasmid copy number exponentially decreased in
the observed 4-day period. The biological activity and potency of secreted murine IL-12
were confirmed 24 h after GET as well after lipofection for every batch of pmIL12 used in
the experiments. The biological activity of murine IL-12 was 1.9 ± 0.8 × 103 IU/µg after
GET and 6.4 ± 0.4 × 103 IU/µg after lipofection (Figure 6d).
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4. Discussion

Gene electrotransfer of the plasmid encoding IL-12 (GET IL-12) holds a great poten-
tial in cancer immunotherapy. This application is already in clinical trials in the USA,
demonstrating encouraging results in the treatment of melanoma patients [37]. Intratu-
moral GET IL-12 has proven safe and efficient, having good local tumor control, and some
evidence indicates abscopal effect. To comply with the EU regulatory requirements for
clinical application, in our previous study, we constructed plasmids devoid of the antibiotic
resistance gene encoding human or murine IL-12 under the transcriptional control of the
p21 promoter. This promoter was proven useful for controlling transgene expression in
a tumor-specific manner and is inducible by genotoxic stress [15,38], making it attractive
for combination with cancer treatments that are known to induce genotoxic stress, such as
radiotherapy or electrochemotherapy. In this combination, local ablative treatment could
act as in situ vaccination, releasing tumor antigens from the therapy- killed tumor cells,
and IL-12 GET as an immunological adjuvant, boosting the primed immune response [39].

Moreover, to comply with the guideline on quality, non-clinical and clinical require-
ments for investigational advanced therapy medicinal products in clinical trials, we had
to prepare a murine ortholog of plasmid phIL12 since human IL-12 is not active in mice.
Plasmid pmIL12 encoding murine IL-12 was thus constructed.

A manufacturing process compliant with the EMA, the USP and the ICH was devel-
oped and optimized for both plasmids. The process is amenable for scale-up and cGMP
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production. The plasmids produced are of high quality, meeting all the required specifi-
cations for plasmid identity, quality and purity. Fermentation process yields resulted in
less than 30 mg pDNA/L fermentation broth which is low compared to the established
plasmid production platforms. Different plasmid production yields were reported, ranging
from 100–250 mg pDNA/L fermentation broth [21] to as high as 2600 mg pDNA/L [40].
A vast set of parameters influence fermentation yields which can be divided in two main
groups: fermentation strain design and process-specific parameters, both of them exploited
for plasmid production optimization [40,41].

Both plasmids were first evaluated in vitro in CT26 and FaDu cell lines in compliance
with the guidelines and directives for non-clinical evaluation of gene therapy products. The
in vitro evaluation indicated that GET of phIL12 and pmIL12 resulted in the production of
biologically active IL-12 in the FaDu and CT26 cells, respectively. Increased mRNA levels
of mIL-12 and hIL-12 in the transfected cells were detected together with the increased
concentration of secreted IL-12 in cell media. Importantly, although only 0.025‰ of the
initially added plasmid (10 µg) was transferred into the cells, this number of plasmids was
sufficient to expect efficient transgene expression and a notable effect in further in vivo
studies in murine models [42]. Furthermore, the expression could be further increased by
adding a stress stimulus such as irradiation. Based on our previously published data [14],
we believe that a maximum of twofold increase in IL-12 expression could potentially be
achieved if the tumors are irradiated after GET of phIL12.

Importantly, the transgene transcription level as well as the concentration of biologi-
cally active proteins and the plasmid copy number after GET showed a time-dependent
decrease. Indeed, the kinetics of the expression at the mRNA and protein levels between
phIL12 and pmIL12 differed slightly, which is not surprising for the transfection of two
different cell lines. As is well-known from the literature [43], differences in transgene
expression after GET could be assigned to the differences in cell size and shape, doubling
time and other biological characteristics of the electroporated cells.

The aim of in vitro non-clinical evaluation of gene therapy product phIL12 and its
ortholog pmIL12 was to confirm the expression and biological activity of the expressed
transgenes for further in vivo non-clinical studies. The final goal was to implement GET
of phIl12 in the first-in-human clinical trial, evaluating the safety and tolerability of the
constructed plasmid for the treatment of basal cell carcinomas in patients. The results
of the trial will provide valuable data, including for other future and ongoing studies
involving GET IL-12. The perspective of GET IL-12 in cancer therapy lies mostly in
combination approaches combining GET IL-12 with other conventional or experimental
cancer treatments [1]. One such potential approach is the use of GET IL-12 in combination
with radiotherapy. A preclinical study of combined GET of the plasmid encoding mIL-
12 and radiotherapy demonstrated increased intratumoral cytokine levels. In murine
sarcoma tumors, an increased complete response rate with no significant irradiation-
induced damage to the normal tissue was observed after combined treatment [44]. A
good antitumor effect was also demonstrated in a murine adenocarcinoma tumor model
in a study using GET of the p21 promoter-driven IL-12 plasmid in combination with
local tumor irradiation, which was comparable to the same treatment using a constitutive
promoter [15]. Another study on sarcoma models proved the effectiveness of systemic
IL-12 GET administered into the cranial tibial muscle in combination with irradiation of
tumors and lung metastases [45].

Another potential approach is the combination of GET IL-12 with the administration
of chemotherapeutics. We recently proposed a model of in situ vaccination [39] that
includes electrochemotherapy (ECT) boosted with GET IL-12. Unlike the conventional
cancer vaccines, in situ vaccination is based on the activation of the immune system against
the endogenous tumor antigens. In the proposed combination, it was demonstrated how
ECT acts as an in situ vaccine, causing the release of many tumor antigens (TAA) present
at the tumor site, and how IL-12 GET as an immunological adjuvant boosted the primed
immune response against the TAA released from the killed tumor cells [39,46–48]. The



Pharmaceutics 2021, 13, 1739 19 of 22

feasibility of the model was demonstrated in a clinical trial on client-owned dogs with
mast cell tumors, where the combination of electrochemotherapy with IL-12 gene therapy
resulted in a high percentage of cured tumor and prevented recurrence and development
of distant metastases [49–51]. The same effect of in situ vaccination is also expected in
the combination of GET IL-12 with other local therapies such as radiation [44] and other
ablative techniques [1].

In addition to local therapies combined with GET IL-12, combinations of GET IL-
12 with immune checkpoint inhibitors are under investigation. Due to the profound
intratumoral T cell infiltration induced by GET IL-12, the treatment can be expected to
synergize with checkpoint inhibitors, particularly to enhance their efficiency against “cold”
tumors [1]. Currently, there are several studies ongoing in the USA for the treatment
of melanoma, breast cancer and head and neck tumors in combination with immune
checkpoint inhibitors (ClinicalTrials.gov). Lastly, the plasmid encoding IL-12 could also be
used as an adjuvant to enhance the efficiency of DNA vaccines for different diseases. The
efficiency of IL-12 as an immunogenic adjuvant has already been evaluated and confirmed
in preclinical studies in different animal models investigating the effectiveness of HIV/SIV
or hepatitis C vaccines [52,53].

5. Conclusions

In compliance with the EU guidelines on quality, non-clinical and clinical requirements
for investigational advanced therapy medicinal products in clinical trials, antibiotic resis-
tance gene-free plasmids encoding human or murine IL-12 were constructed and evaluated
in vitro. A scalable production process for clinical grade plasmid manufacturing with
relevant analytical methods was established, and thoroughly characterized plasmids were
produced for non-clinical evaluation. The process is amenable to scale-up and cGMP man-
ufacturing. In the described study, GET of phIL12 and pmIL12 was proven as an efficient
delivery method resulting in the production of biologically active IL-12 in the FaDu and
CT26 cells, respectively. The transgene transcription level as well as the biologically active
protein and plasmid copy number after GET showed a time-dependent decrease. Thus,
our results demonstrate that both constructed plasmids are suitable for further in vivo
studies in murine models. Such non-clinical evaluation sets the basis for further evaluation
of gene therapy product phIl12 in human clinical trials. Detailed evaluation of GET IL-12
would therefore contribute to easier translation of the approach in clinic not only as a
monotherapy, but also in combination with other local or systemic cancer treatments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pharmaceutics13101739/s1, Figure S1: Selection of clones containing antibiotic resistance
gene-free version of p21-mIL-12-ORT plasmid. (a) Clone 29 (in bold) was selected for further analysis
based on miniprep isolation yields, restriction analysis and presence of supercoiled monomer band.
Minipreps were performed form 3 ml of overnight single colony culture by GeneJET Plasmid
Miniprep Kit (Thermo Fisher Scientific). (b) Representative example of electrophoretic evaluation
of clones 23, 39, 54 and 29. Isolated plasmids from clones 23, 39, 54 and 29 were loaded onto a
electrophoretic gel either cut with ApaLI and KpnI restriction enzymes or uncut and their identity
was confirmed by positive matching of the band pattern on the electrophoresis gel to the expected
pattern obtained by a simulation experiment using SnapGene software. For the uncut plasmids,
the simulated band pattern differs from the actual pattern, because simulation can only be done for
supercoiled monomer, while other forms (supercoiled dimer, open circular, linear, nicked) can also be
seen on the electrophoretic gel. Electrophoresis details: 1% agarose (Sigma Aldrich), run 45 min at
100 V/cm, stained in 1xSybrGold. LL (Linear DNA ladder): GeneRuler™ 1 kb Plus DNA Ladder
(Thermo Fisher Scientific), SC (Supercoiled DNA Ladder): Supercoiled DNA Ladder (New England
BioLabs).
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