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Abstract

Background

Few studies have quantified aerosol concentrations of SARS-CoV-2 in hospitals and long-

term care homes, and fewer still have examined samples for viability. This information is

needed to clarify transmission risks beyond close contact.

Methods

We deployed particulate air samplers in rooms with COVID-19 positive patients in hospital

ward and ICU rooms, rooms in long-term care homes experiencing outbreaks, and a correc-

tional facility experiencing an outbreak. Samplers were placed between 2 and 3 meters from

the patient. Aerosol (small liquid particles suspended in air) samples were collected onto

gelatin filters by Ultrasonic Personal Air Samplers (UPAS) fitted with <2.5μm (micrometer)

and <10 μm size-selective inlets operated for 16 hours (total 1.92m3), and with a Coriolis

Biosampler over 10 minutes (total 1.5m3). Samples were assayed for viable SARS-CoV-2

virus and for the viral genome by multiplex PCR using the E and N protein target sequences.

We validated the sampling methods by inoculating gelatin filters with viable vesicular stoma-

titis virus (VSV), and with three concentrations of viable SARS-CoV-2, operating personal

samplers for 16hrs, and quantifying viable virus recovery by TCID50 assay.

Results

In total, 138 samples were collected from 99 rooms. RNA samples were positive in 9.1% (6/

66) of samples obtained with the UPAS 2.5μm samplers, 13.5% (7/52) with the UPAS 10μm

samplers, and 10.0% (2/20) samples obtained with the Coriolis samplers. Culturable virus
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was not recovered in any samples. Viral RNA was detected in 15.1% of the rooms sampled.

There was no significant difference in viral RNA recovery between the different room loca-

tions or samplers. Method development experiments indicated minimal loss of SARS-CoV-

2 viability via the personal air sampler operation.

Background

SARS-CoV-2, the virus that causes COVID-19, predominantly spreads during close contact

between shedding individuals and susceptible persons. The virus spreads mainly by inhalation

of small respiratory particles, including from asymptomatic or pre-symptomatic individuals

[1–3]. Transmission is most likely to occur during close, sustained contact in indoor environ-

ments with a person who is in the early stages of infection, where viral concentrations in the

air are highest [4–6]. Once expelled, larger respiratory droplets stay aloft for relatively short

periods of time, and typically travel short distances (0 to 2m) while smaller particles (aerosols)

stay aloft for longer and are able to cover larger distances [7]. Although transmission during

close contact is believed to predominate, aerosol transmission has been reported to occur

beyond close contact (e.g., greater than 2m), when infectious respiratory particles are able to

accumulate to levels that can cause infection, such as in indoor environments with inadequate

ventilation or filtration [1, 8]. Actions such as coughing, talking and breathing generate respi-

ratory particles of various sizes, including high numbers of particles smaller than 5–10μm in

diameter [5, 9, 10]. Particles up to 100μm may remain suspended in aerosols, accumulating

and spreading through an indoor space, again particularly in the absence of adequate ventila-

tion or filtration [7]. Particles less than 5–10μm in diameter, which may remain airborne for

extended periods [11–13], have been shown to contain infectious particles of SARS, MERS,

and H1N1 [14]. Indeed, tiny aerosolized particles <1μm may remain airborne for upwards of

12 hours [15]. In addition to aerosols, fomites may contribute to transmission, as the virus can

remain viable on various surfaces for prolonged periods [16–18]. Additional data specific to

SARS-CoV-2 will help address uncertainties about viral concentrations in aerosols, and

whether aerosolized virus is infectious [13, 15, 19, 20].

Evidence from outbreak investigations supports the view that aerosol transmission beyond

close contact occurs in certain circumstances (e.g., when ventilation is inadequate); the fre-

quency of this transmission remains unclear, though it is likely to play a role in super-spread-

ing events [8, 21, 22]. Moreover, modelling studies show that even during close contact

interactions, aerosols, rather than larger ballistic droplets, drive viral exposures, as droplets are

relatively unlikely to land on a mucus membrane, compared to the higher likelihood of inhal-

ing aerosols [23].

Research studies mainly rely on molecular detection of the SARS-CoV-2 genome to deter-

mine viral presence in aerosol samples. However, genome (RNA) presence alone is often seen

as insufficient evidence that aerosol transmission risk is present, as it does not indicate the

presence of viable virus [24–26]. In patient swabs, viable SARS-CoV-2 virus is generally

detected only within eight days of symptom onset, while viral RNA persists long beyond infec-

tivity [24, 27]. As such, to determine viral infectivity, culturing samples in susceptible cells or

animal hosts is needed. Persons that are infected with variants such as B.1.1.7 may shed virus

for longer, contributing to higher rates of transmission [28, 29].

Although cellular assays are required to establish viral infectivity, air sampling campaigns

using size-selective inlets have rarely employed these methods for SARS-CoV-2, given
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technical challenges in viral sampling [13]. Several hospital air monitoring studies found the

genome of SARS-CoV-2, without culturing the virus [11, 20, 30, 31]. Sampling using a size

selective inlet and outfitted with a gelatin filter, Liu et al. found that the highest concentration

of viral RNA was present in the size fraction <2.5μm, which could remain suspended over

long periods [11]. Likewise, SARS-CoV-2 RNA has been found on surfaces far from infected

individuals, including on exhaust outlets and ceiling fans where only fine, aerosolized particles

would be likely to reach [32]. These studies indicate that RNA is present in airborne particles

[13, 25]. To determine infectiousness, Lednicky et al. measured virus concentrations inside the

car of a person with COVID-19. They sampled in multiple size fractions and cultured for via-

bility, finding viable virus present only in the 0.25–0.5μm size fraction, which also had the

highest concentration of viral RNA [12]. It is possible that larger size fractions were preferen-

tially filtered out by the vehicle’s ventilation system.

Lab-based studies generated viable aerosols of<5μm of SARS-CoV-2 that had a half-life of

greater than one hour while airborne [18]. Once airborne, virus viability is reduced by several

environmental pressures, including sunlight, temperature, and relative humidity, while venti-

lation and filtration reduce risks of transmission beyond close contact [33].

The size of a virus-containing particle may also affect infectivity. One study demonstrated

that macaques infected by the aerosol route had more severe disease compared to the intratra-

cheal/intranasal route [34]. Submicron particles are able to penetrate more deeply into the

lungs, depositing in the alveolar region where immune responses may be evaded [15]. Also, in

the alveolar region the ACE-2 receptors that the SARS-CoV-2 virus binds to are more accessi-

ble, possibly increasing the likelihood of infection [15, 19]. This underlines the importance of

sampling for viable virus in fine size fractions.

Organizations including the WHO, REHVA (the Federation of European Heating, Ventila-

tion and Air Conditioning Associations) and ASHRAE (the American Society of Heating,

Ventilating, and Air-Conditioning Engineers) have recognized the potential hazard of aerosol

transmission indoors [4, 5, 35]. As such, expert organizations are recommending COVID-19

specific control measures, including increased ventilation rates, avoiding air recirculation,

using air cleaning and disinfection devices, and reducing the number of occupants [4, 35, 36].

Our study objective was to quantify the concentration of SARS-CoV-2 RNA and viable

virus in aerosols collected greater than two meters from patients with COVID-19 infection,

specifically in the<2.5um and<10um size fractions. In order to examine the presence of

SARS-CoV-2 in a wide range of high-risk environments, we conducted air monitoring in hos-

pital rooms, long-term care facility rooms, penitentiary cells and personal residences housing

people with recently diagnosed, active COVID-19 disease.

Methods and materials

Cell culture

African green monkey VeroE6 cells (ATCC CRL 1586; American Type Culture Collection,

Manassas, VA, United States) were maintained at 37˚C+5% CO2 in Cell Culture Medium

(CCM) consisting of Dulbecco’s modified Eagle cell culture medium (DMEM; Hyclone

SH3024302) supplemented with 10% Fetal Bovine Serum (FBS; Gibco 12484028) and 10 units

per ml of Penicillin/Streptomycin (PS, Gibco 10378016). Virus Culture Medium (VCM) con-

sisted of DMEM supplemented with 2% FBS and 10 units per ml of PS.

Virus viability and titration

VeroE6 cells were seeded the day prior in 96-well plates to attain 80% confluence on the day of

titrations [37]. Media from the previously seeded plates was aspirated and replaced with 150μL
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of fresh VCM prior to the addition of the sample inoculum. Samples being titrated for viable

virus were 10-fold serially diluted in VCM with 50μL inoculum overlaid onto Vero E6 cells in

replicates of 5 per dilution series. Plates were incubated at 37˚C +5% CO2 for 5–7 days and

examined for CPE where virus titers were calculated via Reed-Muench procedure [37].

For qualitative detection of the presence of viable virus (safety testing), media from previ-

ously seeded 6-well plates was aspirated and 4 mls of fresh VCM was added. To this, 500μl of

sample was added and incubated at 37˚C +5% CO2 for 5–7 days. Wells were examined, com-

pared to a negative control for CPE, and scored positive or negative based on evident CPE in

the cell monolayer.

UPAS method validation using surrogate virus (VSV)

We evaluated the ability of the gelatin filters to maintain virus viability following a 16-hour

sampling period. Vesicular stomatitis virus (VSV) was diluted to 105-106TCID50 /ml in a tri-

partite soil load and spotted onto gelatin filters over 5 different spots in 2μL volumes [38].

Three filters were used as a positive control and processed immediately, three others were kept

overnight in the Biosafety Cabinet (BSC), and three gelatin filters were placed in a UPAS sam-

pler where it was left running for 16 hours. The following morning, we inoculated an addi-

tional 3 gelatin filters and set a sampling time for 4 hours. After sampling times were complete,

2mLs of pre-warmed VCM was added to gelatin filters and incubated for 10 minutes, followed

by centrifugation and titration.

UPAS method validation using SARS-C0V-2

To determine technical limits of detection of viable SARS-CoV-2 using UPAS sampling, and

to correlate viable particles with genomic detection, we spiked gelatin filters with 10μL of

SARS-CoV-2 diluted to 103, 104, or 105 TCID50 units/mL over five different spots as described

above (3 filters per each of the three dilutions). After a brief drying period under a biosafety

cabinet, filters were loaded into the UPAS and run under typical conditions (16hrs at 2 LPM).

The third corresponding filter for each solution was processed at time of UPAS run start, to be

compared with the sampled filters to determine the degree that viability decreases during sam-

pling. Filters were then dissolved into 2 mL of pre-warmed DMEM, and qualitative isolation

and quantitative end-point titration was determined in Vero E6 cells. Concentrations were

selected to reflect the range of viable aerosol SARS-CoV-2 concentrations previously reported

in a hospital room in Florida [39].

Molecular viral load (qRT-PCR)

Molecular viral load was determined by qRT-PCR (QuantStudio 5, Applied Biosytems, USA)

using the Taq Path One-Step multiplex mix (Applied Biosystems A28522) with primers and

probes targeting the SARS-CoV-2 nucleocapsid (N) [40] gene and envelope (E) protein

(Table 1) [41]. Thermal cycling conditions were 53˚C for 10 min for reverse transcription, fol-

lowed by 95˚C for 2 min and then 40 cycles of 95˚C for 2s, 60˚C for 30s. Values are reported as

log genome equivalents per mL based on cycle threshold (Ct) values obtained with a standard

curve of known concentration of viral RNA genome containing both the E and N region.

We considered the E protein concentrations as more reliable than N, because the primer

probe set is much more sensitive than the N. Samples with a Ct values below 36 for either gene

were deemed to be RNA positive. If Ct values were above 36, samples were deemed positive

only if detection was confirmed on both the E and N protein target PCRs, with Ct values up to

40.
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Aerosol field sampling

Respiratory particle samples were collected using Ultrasonic Personal Aerosol Samplers

(UPAS, Access Sensor Technologies, Fort Collins, USA) or a Coriolis μ Biosampler (Mon-

tigny-le-Bretonneux, France).

Within a BSC, sterile 37mm gelatin filter pads (12602-37-ALK, Sartorius, Göttingen, DE)

were placed into UPAS devices affixed with either 2.5μm or 10μm size selective inlets to

exclude larger particles. Separately, Virus transport medium (VTM; Corning 25-500-CM) was

added in volumes of 5ml to sterile Coriolis collection cups. UPAS devices were sealed into

Ziploc bags and transported to collection sites. Collection sites included: Hospital rooms (23

ICU and 92 hospital ward rooms), 8 exhaust (return) air ducts drawing air from inside peni-

tentiary living areas, and 15 in long term care home resident rooms. In total, 66 samples were

taken using the UPAS with the 2.5μm cassette, 52 used the UPAS with the 10 μm cassette, and

20 samples were taken using the Coriolis sampler. Actual or approximate air change rates were

available in 85 rooms. Mean air change rates per hour were 12.6, 7.5, 3.8 for ICUs, hospital

ward rooms, and long term care homes respectively. Estimated air change rate varied from 2

to 16 air changes/hour (mean 8.4, standard deviation [SD] 4.4). No ventilation data was avail-

able for the penitentiary air duct samples.

Data on patient demographics was not obtained, beyond the fact that all had SARS-CoV-

2 infection confirmed by qRT-PCR. Samplers were placed adjacent to COVID-19 con-

firmed-positive patients 2 to 3 m from the patient’s head and 3–5 feet above the floor. UPAS

samplers were operated at 2 LPM (Liters per minute) (filter face velocity of 0.031 m/s), with

either a 2.5μm or 10μm size selective inlet to exclude larger particles or droplets over a

16-hour period sampling a total of 1.92m3 of air. Prior laboratory testing indicated that lon-

ger sampling durations (larger air sample volumes) could lead to cracking of the gelatin filter

membrane. In some cases, field and laboratory blanks were deployed to ensure that samples

were not contaminated. Within 2 hours post-collection, samplers were transported to the lab

and placed in a BSC. Gelatin filters were removed from sampler inlets with sterile forceps,

dissolved into 2mL of pre-warmed (37˚C) Viral Transport Medium (VTM) (HBSS, FBS,

Gentamycin and Amphoteracin B) to maintain viability, and kept at 4˚C until analyzed

[42, 43].

In a subset of locations, we also deployed a Coriolis μ Biosampler (Montigny-le-Breton-

neux, France) at an inlet velocity of 150 LPM for 10 minutes (1.5m3 sample volume). Coriolis

air samples were collected into sterile cones containing 5mL of VTM, which was reduced to

3mL by evaporation during sample collection. The Coriolis sampler collects particles larger

than 0.5μm in size, with no specified cutoff. Clinician partners working in the respective insti-

tutions deployed instruments, pre-programmed to run at a convenient time, when patients

would remain in their rooms.

All samples were collected between September 22, 2020 and January 25, 2021.

Table 1. SARS-CoV-2 qRT-PCR primers and probes.

Oligonucleotide Sequence 5’ to 3’ Volume

E_Sarbeco_F ACAGGTACGTTAATAGTTAATAGCGT 20uM

E_Sarbeco_P1 ACACTAGCCATCCTTACTGCGCTTCG (FAM) 10uM

E_Sarbeco_R ATATTGCAGCAGTACGCACACA 20uM

2019-nCoV_N1-F GAC CCC AAA ATC AGC GAA AT 25uM

2019-nCoV_N1-R TCT GGT TAC TGC CAG TTG AAT CTG 25uM

2019-nCoV_N1-P ACC CCG CAT TAC GTT TGG TGG ACC-(VIC) 6.25uM

https://doi.org/10.1371/journal.pone.0258151.t001
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Aerosol sample processing and cleaning

Samples taken within the Winnipeg region were taken to the NML (National Microbiology

Laboratory, Winnipeg) within 2 hours post sampling, while samples from the Ottawa area

were shipped overnight to the NML in 2mLs of VTM at 4˚C. VTM was pre-warmed at 37˚C

and incubated for 10 minutes to dissolve the gelatin filters. Of the resulting solution, 500μL

was aspirated into 6 well tissue culture plates for safety testing to detect viable virus, and 140μL

supernatant was used for viral genome detection using the QIAmp Viral RNA minikit, as per

the manufactures protocol. In control trials, we found that keeping the dissolved filter at 4˚C

overnight did not reduce viability or nucleic acid detection, compared with immediate

processing.

To ensure that no contaminated instrumentation was re-deployed, after sampling the

UPAS and filter cartridges were thoroughly cleaned and sterilized with 70% ethanol and wiped

before being used again. Prior to loading the gelatin filters, the UPAS filter cartridges and size

selective inlets were washed in D.I. water, dipped in 70% ethanol, and air-dried before assem-

bly. All positive UPAS filters and Coriolis collection cups that were positive previously were

negative in subsequent deployments indicating cleaning and sterilization was sufficient in

removing potential carryover in subsequent sampling events.

Statistical analysis

Data was tabulated in Excel spreadsheets and analyzed using SPSS version 27 (IBM corpora-

tion). One sample had a borderline Ct, and was included as a “positive” sample in the analyses.

Descriptive statistics were performed. Differences in proportions between groups were evalu-

ated using Chi-square for large tables. Predictors of viral RNA detection were analyzed using

Binomial Logistic Regression. As it was unclear which sized particles were most likely to con-

tain viral or viral RNA, if any sampler in a given room was positive for virus, the room was

considered to have aerosol virus/viral RNA. Differences between room types for continuous

variables were evaluated using One-Way Analysis of Variance. Probability values (p) less than

0.05 were considered statistically significant.

Ethics

The following Research Ethics Boards were engaged prior to sampling: Health Canada/Public

Health Agency of Canada, Children’s Hospital of Eastern Ontario; The Ottawa Hospital; and

the Winnipeg Hospital. The boards each determined that formal approval was not required for

this study, because sampling was environmental in nature, we did not propose to collect per-

sonal information such as time of symptom onset or current symptomatology, and given the

urgent need for this data. Moreover, as personal information was not being collected, the

boards felt that patient consent was not required.

Results

Method validation experiments

VSV method validation. Results of the VSV experiment are shown in Fig 1. Of 5 logs of

viable VSV inoculated onto the surface of the gelatin filters, 3 logs of viable virus remained

after both 4 hours and 16 hours of drying without any air movement. For the filters that under-

went 16 hours of air sampling, 3.5 logs of viable VSV remained, demonstrating that drawing

air through the filter did not further reduce viability. It was thus determined that 16 hours

would be the optimal sample duration, reflecting the maximum volume of air that could be
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drawn through the gelatin filter without leading to excessive drying and cracking, or other

damage to the gelatin filter.

SARS-CoV-2 method validation. Fig 2 shows that the amount of viable SARS-CoV-2

virus recovered from the gelatin filters was only minimally impacted by sampling in the UPAS

for 16 hours (~2m3 sample volume). Similarly, there was minimal loss of viable SARS-CoV-2

when comparing filters processed immediately after inoculation versus those held in VTM at

4˚C overnight (Fig 2). Therefore, we are confident in the ability of the UPAS to maintain via-

bility of SARS-CoV-2 once collected into the sampler even at low titers of virus. Furthermore,

we compared recovery from samples either processed immediately after dissolving or after dis-

solved media was placed at 4˚C overnight and found no substantial difference.

Interestingly, SARS-CoV-2 maintained much more viability in the experiments compared

to VSV, with the latter undergoing a reduction of over 90% over the sampling period. As such,

method development experiments are required to quantify the ability of this sampling method

to maintain viability for other viruses of concern.

Air sampling for SARS-CoV-2

Samples were collected from 99 rooms located in ICUs, hospital ward rooms, rooms in long-

term care facilities and at a correctional institute, and a total of 138 samples were obtained. Of

the samples, 23 (16.7%) were obtained in ICU rooms, 92 (66.7%) from hospital ward rooms,

15 (10.9%) from rooms in long-term care facilities, and 8 (5.8%) in the correctional institute.

66 samples (47.8%) were obtained using the UPAS 2.5μm sampler, 52 (37.7%) using the UPAS

Fig 1. Impact of air sampling on VSV recovery from gelatin filters.

https://doi.org/10.1371/journal.pone.0258151.g001
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10μm sampler, and 20 (14.5%) with the Coriolis sampler. In accordance with our procedure,

data on patient demographics was not obtained, beyond the fact that all had SARS-CoV-2

infection confirmed by qRT-PCR. Given that symptoms in COVID-19 patients take time to

develop and worsen, we expect that symptom duration was shortest in patients in long-term

care home and correctional facilities, longer in patients admitted to hospital ward rooms, and

longest in patients residing in intensive care. Actual or approximate air change rates were

available in 85 rooms. The mean air change rate/hour was 12.6 in ICU rooms, 7.5 on ward

rooms, and 3.8 in long term care rooms. Estimated air change rate varied from 2 to 16 air

changes/hour (mean 8.4, standard deviation [SD] 4.4).

In all, samples were positive for viral RNA in 15 (15.1%) of rooms sampled, though no via-

ble virus was detected in any air samples. Among samples we considered positive for our anal-

yses, Ct values for N protein ranged between 30.17 and 37.96, with a mean of 35.53 (n = 11, SD

2.06) (S1 Table). For the E protein, Ct ranged from 27.03 to 36.89, with a mean of 33.61

(n = 15, SD 2.33) (Tables 2 and 3). Mean RNA copy numbers for the E protein was 941.6 copy

numbers/mL (range 61.3–11,462; standard error [SE] 752.4) and mean RNA concentration in

the air was 1202.4 copy numbers/m3 (range 63.8–11939.9; SE 977.2). The highest concentra-

tion was observed in a long-term care room, though positive samples generally showed low air

concentrations.

RNA samples were positive in 17.4% of ICU rooms (4/23), 7.6% of ward rooms (7/92), 20%

of long-term care rooms (3/15) and 12.5% of correctional facility rooms (1/8). There was no

Fig 2. Impact of air sampling on SARS-CoV-2 recovery from gelatin filters. Inocula (A), (B) and (C) were intended to consist

of approximately 3.5, 2.5, and 1.5 Log TCID50 of SARS-CoV-2/mL, respectively, with (A) undiluted (neat), and (B) and (C)

diluted from the initial Liquid Inoculum. Following one hour of drying, inoculated filters were either placed in UPAS units for 16

hours (Air Sampler), dissolved in VTM and processed immediately (Control), or dissolved at placed at 4˚C overnight prior to

processing (4˚C). Results represent viable virus recovered in VeroE6 cells by TCID50 assay. Whiskers represent standard

deviation of replicate samples.

https://doi.org/10.1371/journal.pone.0258151.g002
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significant difference in positivity rates between the different locations (Pearson Chi-Square

3.33; p = 0.34). The mean concentration of the E protein in the air was 234.2 (SD 219.0; range

74.6–551.8) copies/m3 in ICU rooms, 139.9 (SD 93.4; range 63.8–287.5) copies/m3 in ward

rooms, 4133.7 (SD 6761.8; range 92.7–11939.9) copies/m3 in long-term care rooms, and 394.6

copies/m3 in one correctional facility return duct. We also sampled the cold air return that ser-

viced all the inmate’s cells and living areas twice, and did not find viral RNA.

RNA samples were positive in 9.1% (6/66) of samples obtained with the UPAS 2.5 samplers,

13.5% (7/52) with the UPAS 10 samplers, and 10.0% (2/20) samples obtained with the Coriolis

samplers (Table 4). There was no significant difference in positivity rates with the different

samplers (Pearson Chi-Square 0.59, p = 0.74). However, sampling results should not be

directly compared between the UPAS and Coriolis, because they were deployed for very differ-

ent durations. A logistic regression was performed to ascertain the effects of room and sampler

type and estimated air change rate on the likelihood that a positive RNA result would be

observed. The logistic regression model was not statistically significant (Table 5; p value for

each independent variable > 0.15). There was no significant different in E protein copy num-

ber, Ct value, or copy aerosol concentration in the various room types.

Discussion

COVID-19 infection due to the novel SARS-CoV-2 virus has caused a global pandemic, with

over 225 million cases reported worldwide, and over 4.6 million deaths at the time of this writ-

ing [44]. Furthermore, respiratory morbidity, activity limitation, and mental health conditions

are prevalent, among other complications [45]. Previous studies have suggested aerosol trans-

mission is occurring beyond close contact, as per evidence from super spreading events, trans-

mission occurrences between adjacent rooms, viable virus measurements in air, and animal

studies [8]. Our data suggests that SARS-CoV-2 RNA virus may be present at low levels in

aerosols <10um in diameter, >2 m from COVID-19 patients in a variety of settings, but viable

virus appears to be uncommon, as has been described elsewhere [6].

Table 3. Positive SARS-CoV-2 RNA samples by room type, including Ct values for N target.

Location Number of

Samples

N target: mean Ct (SD) for positive

samples

N target: Ct range for positive

samples

ICU 23 35.7 (1.4) 34.3–37.1

Ward 92 36.4 (0.4) 36.0–37.0

Long-term

care

15 34.3 (3.9) 30.2–38.0

Correctional 8 35.5 35.5

Facility

https://doi.org/10.1371/journal.pone.0258151.t003

Table 2. Positive SARS-CoV-2 RNA samples by room type, including Ct values for E target.

Location Number of

Samples

Mean Air

Exchange

Rate

Number

(%)

positive

Mean (SD) Air

concentration

(copies/M3) (E target)

Range of air

concentrations

(copies/M3) (E target)

Mean (SD)

copy number

(E target):

Range of copy

numbers/mL

(E target):

Mean (SD)

of Ct value

(E target):

Range of

Ct values

(E target)

ICU 23 12.8 4 (17%) 234.2 (219.0) 74.6–551.8 224.8 (210.2) 71.6–529.7 33.0 (1.4) 31.2–34.3

Ward 92 8.4 7 (8%) 139.9 (93.4) 63.8–287.5 134.3 (89.6) 61.3–276.0 35.0 (1.2) 33.3–36.89

Long-term

care

15 3.85 3 (20%) 4133.7 (6761.8) 92.7–11939.9 3968.3

(6491.3)

89.0–11462.3 31.6 (4.1) 27.0–35.0

Correctional 8 n/a 1 (13%) 394.6 n/a 378.9 378.9 32.4 32.4

Facility

https://doi.org/10.1371/journal.pone.0258151.t002
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In classical terms, respiratory viruses have been considered to be spread by droplets. Large

droplets (e.g., > 5 microns in diameter) were believed to contaminate the immediate environ-

ment of an infectious patient, including the air within 2m, leading to infection by direct depo-

sition of virus onto mucosal surfaces. In addition, large droplets settle in the proximal (within

2m) environment, leading to fomite transmission where contaminated surfaces are contacted

by another person prior to touching their face thereby acquiring infection. In classical terms,

aerosol (or “airborne”) spread occurs via small droplets (e.g., < 5μm) that can remain sus-

pended in air more than 2m from a patient, leading to infection of susceptible people, via inha-

lation at a distance [46]. Historically, most respiratory pathogens are thought to be spread

through larger droplets and fomites, with the exceptions of tuberculosis and the measles and

varicella viruses, which are known to exhibit distal aerosol spread [47]. There is also evidence

that influenza virus may be spread through the aerosol route [19, 47]. However, the distinction

between droplet and aerosol spread is fairly artificial, whereas in actuality, aerosols and drop-

lets may both cause transmission within close contact where they are in highest concentra-

tions, and particles many times larger than the presumed > 5μm cut-off, and perhaps up to

100μm, can remain suspended in air for longer durations and distances [25]. Moreover, inha-

lation of aerosols may be an important, even dominant transmission mode both within and

beyond close contact [8, 23].

Table 4. SARS-CoV-2 RNA sample results by location, sampler type.

Location Total number of

Collection events

Sampler Number of samples

by sampler type (n)

Number (%)

Positive by

sampler

Mean Ct for positive

samples (E target)

Range of Ct for

positive samples (E

target):

Mean Ct for positive

samples (N target):

ICU 12 2.5

Micron

11 2 (18%) 32.75 32.75 37.06

10

Micron

1 0 n/a n/a n/a

Coriolis 11 2 (18%) 32.5 31.23–33.77 34.96

Ward 51 2.5

Micron

49 4 (8%) 35.29 33.71–36.89 36.48

10

Micron

34 3 (9%) 34.60 33.30–35.61 36.23

Coriolis 9 0 n/a n/a n/a

Long-term

Care

15 2.5

Micron

2 0 n/a n/a n/a

10

Micron

13 3 (23%) 31.59 27.03–35 34.30

Coriolis 0 n/a n/a n/a n/a

Correctional 8 2.5

Micron

4 0 n/a n/a n/a

Facility 10

Micron

4 1 (25%) 32.44 32.44 35.47

Coriolis 0 n/a n/a n/a n/a

https://doi.org/10.1371/journal.pone.0258151.t004

Table 5. Logistic regression results showing likelihood of positive RNA by air exchange rate, room type, and sample type.

B S.E. Wald df Sig. Exp(B)

Air Change Rate -.039 .128 .090 1 .764 .962

Room Type 3.749 2 .153

Sampler Type .238 2 .888

Constant -1.096 1.141 .922 1 .337 .334

https://doi.org/10.1371/journal.pone.0258151.t005
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We sampled indoor air for viral RNA and viable SARS-CoV-2 virus in a large number of

rooms in a variety of settings and with a variety of room air change rates. We were careful to

always sample two or more meters from COVID-19 patients, to ensure that we were detecting

virus only at distances traditionally considered to be consistent with airborne transmission.

Despite this variety of indoor environments, viral RNA was detected infrequently. Only 15.1%

of rooms contained viral RNA, and while detection rates were highest in ICU rooms and

rooms in long-term care facilities, the differences between room types were not statistically sig-

nificant. Differences in detection rates likely reflect a multiplicity of factors, including each

patient’s infectivity and duration of illness, room size, and ventilation rates [24]. No viable

virus was found. This likely reflects the same factors. In addition, Ct values were high, and

there is good evidence that detection of viable virus is unlikely when the Ct value is greater

than 24 [27]. Our mean Ct values were just over and under 34 for the N and E proteins, respec-

tively. The Ct value was under 34 for the N protein in only one room, and under 34 for the E

protein in eight rooms. This difference may relate to different efficiencies of the two primers

in the PCR reaction, where the E primer probe set is more efficient than the N primer probe

set. We did not observe a significant difference of RNA positivity rates using samplers captur-

ing larger (10μm) or smaller particles (2.5μm) or non-sized particles, suggesting viral RNA

may be present in a range of particle sizes. Within the potential limitations of our methodol-

ogy, our results suggest that aerosol transmission risk beyond 2m was low in hospital rooms, at

the time of our sampling. While hospitalization is more likely to occur later in the disease

course, when infectivity is lower, caution is still warranted.

Expert groups have examined the plausibility of aerosol spread of SARS-CoV-2 virus to

beyond 2m, with some groups reporting that such spread was likely or occurring [5, 8, 46–48].

However, air sampling data supporting this assertion is limited, and as such, a recent WHO-

funded panel maintains that additional air sampling data is needed to draw conclusions, due

to the lack of viable SARS-CoV-2 detected in air [26]. Reports in the literature present contra-

dicting data points but all agree that there is detectable virus within aerosol samples. Liu and

colleagues reported finding SARS-CoV-2 RNA in several aerosol samples in hospitals in

China, including a patient toilet room and isolation anterooms where personal protective

equipment was doffed, although resuspension of contaminated surfaces can’t be excluded [11].

In contrast, Cheng and colleagues did not detect viral RNA very close to patients in isolation

rooms with an air change rate of 12 air changes per hour [49]. Razzini and coworkers obtained

five air samples and detected viral RNA in converted negative pressure operating room air and

a corridor [50]. Chia found viral RNA in two of three air samples from airborne isolation

rooms in a hospital in Singapore, including particles 1 to 4 and> 4 microns in size [30]. An

air exhaust vent and many room surfaces had RNA present [30]. Santarpia detected viral RNA

in a biocontainment unit in Nebraska, USA in an air handling grate, 58.3% of corridor sam-

ples, and a sample at a doorway over 2m from a patient receiving oxygen by nasal cannula.

Some evidence for viable virus was detected [51]. Numerous room surfaces also had viral

RNA. However, in a small study of 6 hospital patient rooms in this unit, viral RNA was

detected at the foot of each patient’s bed, and 3/18 samples had culturable virus, including 2 of

the 1–4 micron samples [52]. Similarly, in a small study of 2 patients in hospital in Florida,

USA where sampling was designed to prevent any damage to virions, Lednicky and coworkers

observed viral RNA and viable virus 2 to 4.8 m away from both patients. The air change rate

was 6 air changes per hour [39]. Lednicky also reported finding viable virus in particles 0.25–

0.5 microns about 1 m from a patient with minimal symptoms, inside her car [12]. In a larger

study of 20 patient rooms in North Carolina, USA where the air change rate was about 14 air

changes per hour, viral RNA was found in three rooms (15%): particles < 4 microns about 1.4

and 2.2 meters from the head of the bed, and over 4 microns 2.2 meters from the head of the
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bed, respectively. No viable virus was detected. Hallway and clinician work stations did not

have detectable virus [53]. Similarly, a study of 22 patient rooms in Quebec, Canada found

viral RNA in six rooms (27.2%), but no viable virus. Rooms had a mean air change rate of 4.85

air changes per hour, and samplers were located at a window, an unspecified distance from the

patient’s head [54]. These studies were generally limited by small sample sizes, inadequate

description of the distance between the patient and the sampler, inconsistent methodologies

and reporting, and lack of determination whether viable virus was present [26].

The UPAS sampler was appropriate for use in this study, and provided flexibility for collect-

ing aerosol samples in multiple environments. It is compact, lightweight and quiet, so it is eas-

ily deployable and suitable for personal monitoring. In addition, its internal pump, internal

battery, and lack of protruding pieces or external tubing made it more acceptable for sampling

in clinical environments, where clinicians have limited time, and would be averse to deploying

samplers that may increase contamination risks or disturb patients. Its main benefit for this

study was that it can be fitted with validated size-selective inlets, which allowed us to collect

only respiratory particles in the size fractions conventionally defined as aerosols.

It is worth noting that aerosol sampling, and subsequent culturing, may not be a necessary

indicator of whether or not a virus is spread through aerosols. Infectious and non-infectious

virus are expelled by the respiratory tract via similar mechanisms, so the presence of RNA in

air may indicate that aerosol transmission is possible. Indeed, recognized airborne diseases

such as measles and tuberculosis have never been successfully cultured from indoor air [8].

Our study had several limitations, which may have affected our ability to detect airborne

viral RNA and viable virus. In accordance with REB requirements, no direct sampling of

patients was performed to determine their infectiousness, and we did not have access to patient

history, including demographics or symptoms, or illness duration. Almost all hospitalized

patients were admitted at least five days after symptom onset, when they are less likely to be

shedding infectious virus, though they may still shed non-infectious RNA [24]. Studies have

shown that patients shed viable virus for a fairly short period of time (on average for several

days before the onset of symptoms, and for 8 days or less after symptom onset), and it is possi-

ble that sampling earlier in the course of these patients’ illness would have had a higher positiv-

ity rate [55]. Also, viral shedding may not be a continuous event, even during the infectious

stage. It is possible that shedding is intermittent, and our 16hr sampling may have missed

these events. Furthermore, the amount of shedding varies substantially between people, and

we may not have sampled near high-emitters [6, 56]. Our data is consistent with observations

that the window of time where infectious aerosol may be present is generally short [55]. While

no viable virus was detected, we believe that if sampling was conducted earlier in the course of

infection, it would be more likely that viable virus would be detected, as viable virus is present

in the same size fraction as the non-infectious virus we detected, occasionally in high concen-

trations [12]. However, sampling was also conducted near penitentiary prisoners many of

whom were asymptomatic when diagnosed or were within a day or two of symptoms; and in

LTC and ward patient rooms identified through routine testing as part of an outbreak. Viable

virus was not detected in those samples. Unexpectedly, higher rates of viral RNA detection did

not occur during sampling in rooms in several long-term care facilities and in penitentiary

cells during institutional outbreaks, despite these patients being in early stages of infection,

when they were asymptomatic or had likely only recently developed symptoms. Moreover,

these sampling events took place in locations where room air changes rates were either known

or presumed to be lower than hospital settings. Room ventilation data was obtained by hospital

facilities management departments; in many cases, these were measured directly in study

rooms, but in other cases, only data from “typical” or similar rooms in the facility were

available.
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Several issues could have affected our ability to capture viable virus beyond close contact.

The vast majority of our collections took place in well-ventilated environments, where it is less

likely to find aerosols. It remains possible that the act of sample collection (i.e., initial path of

virus through size-selective inlet and into sampler) could reduce virus viability, as we could

not test this experimentally. However, Lednicky et al., successfully captured viable SARS-CoV-

2 using a similar size selective inlet in similar conditions [12]. Also, if the samplers led to frag-

mentation of virus, we should have observed relatively large quantities of fragmented RNA,

which was not the case. To mitigate this risk, we chose a gelatin filter to collect any virus

drawn into the samplers, to maximize viability of the virus. We confirmed through method

validation experiments that SARS-CoV-2 viability would be preserved on the gelatin media.

Given the low Ct values of viral RNA we observed, it was unlikely we would observe viable

virus, as has been observed elsewhere [13, 57]. Specifically, Bullard et al. reported that no viral

growth was observed when the Ct was greater than 24 [24]. It is possible that our airborne sam-

pling degraded virus making the detection of viable virus unlikely, but we confirmed that our

samplers preserved the viability of a surrogate virus, and if we captured viable virus that had

disintegrated during capture in our samplers, we would expect low Ct values reflecting large

amount of fragmented viral RNA.

Conclusions

This study carefully assessed whether infectious SARS-CoV-2 virus is present in indoor air at

distances felt to be compatible with aerosol transmission of virus. In generally well-ventilated

spaces, we found only low concentrations of viral RNA at>2m distance, and we did not detect

viable virus. Concentrations in the air averaged 1202 copies/m3 and ranged up to 11939 cop-

ies/m3. Previous studies found viable SARS-CoV-2 aerosols in samples with similar RNA con-

centrations [12, 39].

Restricting the sampling to the<2.5μm and<10μm size fractions ensured that only viruses

present in aerosols were captured, and provided additional information on the size fractions

containing the virus. Together with the field data collection, our method development experi-

ments demonstrate that conventional air sampling equipment (i.e., personal air sampling

equipment) may be used for the purpose of virus sampling, with the support and expertise on

particle capture from the aerosol sciences, and lab analysis and interpretation from virology

and medicine.

The information present here on levels of virus in respiratory particles, their presence in

aerosols >2 metres from patients, and their size, may support infection control measures and

PPE guidelines in buildings preparing for re-occupancy, medical facilities, long term care facil-

ities, and other common spaces. Our data are consistent with existing public health guidance

to maintain physical distance, wash hands, wear high quality and well-fitted masks, avoid

crowded and confined indoor spaces, and ensure indoor spaces are well-ventilated.
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