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Abstract

By using the semi-discretization technique of differential equations, the discrete analogue of

a kind of cellular neural networks with stochastic perturbations and fuzzy operations is for-

mulated, which gives a more accurate characterization for continuous-time models than that

by Euler scheme. Firstly, the existence of at least one p-th mean almost periodic sequence

solution of the semi-discrete stochastic models with almost periodic coefficients is investi-

gated by using Minkowski inequality, Hölder inequality and Krasnoselskii’s fixed point theo-

rem. Secondly, the p-th moment global exponential stability of the semi-discrete stochastic

models is also studied by using some analytical skills and the proof of contradiction. Finally,

a problem of stochastic stabilization for discrete cellular neural networks is studied.

Introduction

Cellular neural networks (CNNs) [1] have been widely applied in psychophysics, parallel com-

puting, perception, robotics associative memory, image processing pattern recognition and

combinatorial optimization. Most of these applications heavily depend on the (almost) period-

icity and global exponential stability. Specifically, there are many scholars focusing on the

study of the equilibrium points, (almost) periodic solutions and global exponential stability

of CNNs with time delays in literatures [2–7]. For instance, Xu [7] considered the following

CNNs with time delays:

dxiðtÞ
dt
¼ � aiðtÞxiðtÞ þ

Xn

j¼1

bijðtÞfjðxjðtÞÞ þ
Xn

j¼1

cijðtÞgjðxjðt � tijðtÞÞÞ þ IiðtÞ; ð1Þ

where n denotes the number of units in a neural network, xi(t) corresponds to the state of the

ith unit at time t, ai> 0 represents the passive decay rates at time t, fj and gj are the neuronal

output signal functions, bij(t) and cij(t) denote the strength of the jth unit on the ith unit at

time t, Ii(t) denotes the external inputs at time t, the continuous function τij(t) corresponds to

the transmission delay at time t, i, j = 1, 2, . . ., n. In [7], the author studied the existence and

exponential stability of anti-periodic solutions of system (1).
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In real world applications, most of the problems are uncertain. They should be described by

uncertain models and studied by using the research techniques for uncertain models. Stochas-

tic and fuzzy theories are the most general and practical techniques for the research of uncer-

tain models. On one hand, in the actual situations, uncertainties have a consequence on the

performance of neural networks. The connection weights of the neurons depend on certain

resistance and capacitance values that include modeling errors or uncertainties during the

parameter identification process. Therefore, many neural network models described by sto-

chastic differential equations [8, 9] have been widely studied over the last two decades, see

[10–17]. On the other hand, fuzzy theory was conceived in the 1960s by L.A. Zadeh, it took

about 20 years until the broader use of this theory in practice. Fuzzy technology joined forces

with artificial neural networks and genetic algorithms under the title of computational intelli-

gence or soft computing. In recent years, the research on the dynamical behaviours of fuzzy

neural networks has attracted much attention, see [18–22]. To summarize, we consider the fol-

lowing CNNs with stochastic perturbations and fuzzy operations:

dxiðtÞ ¼

"

� aiðtÞxiðtÞ

þ
Xn

j¼1

bijðtÞfjðxjðtÞÞ þ
Xn

j¼1

cijðtÞgjðxjðt � tijðtÞÞÞ þ
n̂

j¼1

aijgjðxjðt � tijðtÞÞÞ

þ

n̂

j¼1

Tijmj þ
_n

j¼1

bijgjðxjðt � tijðtÞÞÞ þ
_n

j¼1

Sijmj þ IiðtÞ

#

dt

þ
Xn

j¼1

dijðtÞsjðxjðt � ZijðtÞÞÞdwjðtÞ;

ð2Þ

where αij, βij, Tij and Sij are elements of fuzzy feedback MIN, MAX template, fuzzy feed for-

ward MIN and MAX template, respectively;
V

and
W

denote the fuzzy AND and fuzzy OR

operation, respectively; dij, ηij and σj are similarly specified as that in system (1), wj is the stan-

dard Brownian motion defined on a complete probability space, i, j = 1, 2, . . ., n.

Periodicity often appears in implicit ways in various natural phenomena. Though one can

deliberately periodically fluctuate environmental parameters in laboratory experiments, fluctu-

ations in nature are hardly periodic. Almost periodicity is more likely to accurately describe

natural fluctuations [23–30]. The concept of mean almost periodicity is important in probabil-

ity especially for investigations on stochastic processes. In particular, mean almost periodicity

enables us to understand the impact of the noise or stochastic perturbation on the correspond-

ing recurrent motions, is of great concern in the study of stochastic differential equations and

random dynamical systems. The notion of almost periodic stochastic process was proposed in

the 1980s and since then almost periodic solutions to stochastic differential equations driven

have been studied by many authors. On the other hand, the problem of stability analysis of

dynamic systems has a rich, long history of literature [31–35]. All the applications of such sto-

chastic dynamical systems depend on qualitative behavior such as stability, existence and

uniqueness, convergence and so on. In particular, exponential stability is a significant one in

the design and applications of neural networks. Therefore, the mean almost periodicity and

moment exponential stability of various kinds of stochastic neural networks has been reported

in [36–41].

The discrete-time neural networks become more important than the continuous-time

counterparts when implementing the neural networks in a digital way. In order to investigate

the dynamical characteristics with respect to digital signal transmission, it is essential to
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formulate the discrete analog of neural networks. A large number of literatures have been

obtained for the dynamics of discrete-time neural networks formulated by Euler scheme [42–

46]. Mohamad and Gopalsamy [47, 48] proposed a novel method (i.e., semi-discretization

technique) in formulating a discrete-time analogue of the continuous-time neural networks,

which faithfully preserved the characteristics of their continuous-time counterparts. In [47],

the authors employed computer simulations to show that semi-discrete models give a more

accurate characterization for the corresponding continuous-time models than that by Euler

scheme. With the help of the semi-discretization technique [47], many scholars obtained the

semi-discrete analogue of the continuous-time neural networks and some meaningful results

were gained for the dynamic behaviours of the semi-discrete neural networks, such as periodic

solutions, almost periodic solutions and global exponential stability, see [49–55]. For instance,

Huang et al. [52] discussed the following semi-discrete cellular neural networks:

xiðkþ 1Þ ¼ e� aiðkÞxiðkÞ þ
1 � e� aiðkÞ

aiðkÞ

Xn

j¼1

bijðkÞfjðxjðkÞÞ þ IiðkÞ

" #

; ð3Þ

where k 2 Z, Z denotes the set of integers, i = 1, 2, . . ., n. In [52], sufficient conditions were

obtained for the existence of a unique stable almost periodic sequence solution of system (3)

under assumption of almost periodicity of coefficients of system (3). Similarly, Ji [55] consid-

ered a kind of semi-discrete Cohen-Grossberg neural networks with delays and the same prob-

lems as that in [52] were studied. In 2014, by using semi-discretization technique [47], Huang

et al. [53] obtained the following semi-discrete models for a class of general neural networks:

xiðkþ 1Þ ¼ e� aiðkÞxiðkÞ þ
1 � e� aiðkÞ

aiðkÞ

Xm

l¼1

Xn

j¼1

bijlðkÞfjðxjðk � tijlÞÞ þ IiðkÞ

" #

; ð4Þ

where k 2 Z, i = 1, 2, . . ., n. The authors [53] derived the existence of locally exponentially

convergent 2N almost periodic sequence solutions of system (4). Kong and Fang [50] in 2018

investigated a class of semi-discrete neutral-type neural networks with delays and some results

are acquired for the existence of a unique pseudo almost periodic sequence solution which is

globally attractive and globally exponentially stable.

However, the disquisitive models in literatures [49–55] are deterministic. Stimulated by this

point, we should consider random factors in the studied models, such as system (2). By using

the semi-discretization technique [47], Krasnoselskii’s fixed point theorem and stochastic the-

ory, the main aim of this paper is to establish some decision theorems for the existence of p-th

mean almost periodic sequence solutions and p-th moment global exponential stability for the

semi-discrete analogue of uncertain system (2). The work of this paper is a continuation of

that in [52–55] and the results in this paper complement the corresponding results in [52–55].

The main contributions of this paper are summed up as: (1) The semi-discrete analogue is

established for stochastic fuzzy CNNs (2); (2) A Volterra additive equation is derived for the

solution of the semi-discrete stochastic fuzzy CNNs; (3) The existence of p-th mean almost

periodic sequence solutions is obtained; (4) A decision theorem is acquired for the p-th

moment global exponential stability; (5) A problem of stochastic stabilization for discrete

CNNs is proposed and researched.

Throughout this paper, we use the following notations. Let R denote the set of real num-

bers. Rn
denotes the n-dimensional real vector space. Let ðO;F ; PÞ be a complete probability

space. Denote by BCðZ; LpðO;RnÞÞ the vector space of all bounded continuous functions

from Z to LpðO;Rn
Þ, where LpðO;Rn

Þ denotes the collection of all p-th integrable Rn
-valued

random variables. Then BCðZ; LpðO;Rn
ÞÞ is a Banach space with the norm kXkp ¼ supk2ZjXjp,

Semi-discrete random cellular neural networks with fuzzy operations
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jXjp ¼ max1�i�nðEjxiðkÞj
p
Þ

1
p, 8X ¼ fxig≔ ðx1; x2; . . . ; xnÞ

T
2 BCðZ; LpðO;RnÞÞ, where p> 1

and E(�) stands for the expectation operator with respect to the given probability measure

P. Set �f ¼ sup
k2Z
jf ðkÞj and f ¼ inf

k2Z
jf ðkÞj for bounded real function f defined on Z.

½a; b�Z ¼ ½a; b� \ Z, 8a; b 2 R.

Discrete analogue and preliminaries

The semi-discretization model

For the sake of gaining the discrete analogue of system (2) with the semi-discretization tech-

nique [47], the following uncertain CNNs with piecewise constant arguments corresponding

to system (2) have been taken into account:

dxiðtÞ ¼

"

� aið½t�ÞxiðtÞ þ
Xn

j¼1

bijð½t�Þfjðxjð½t�ÞÞ þ
Xn

j¼1

cijð½t�Þgjðxjð½t� � tijð½t�ÞÞÞ

þ

n̂

j¼1

aijgjðxjð½t� � tijð½t�ÞÞÞ þ
n̂

j¼1

Tijmj þ
_n

j¼1

bijgjðxjð½t� � tijð½t�ÞÞÞ

þ
_n

j¼1

Sijmj þ
Xn

j¼1

dijð½t�Þsjðxjð½t� � Zijð½t�ÞÞÞDwjð½t�Þ þ Iið½t�Þ

#

dt;

where [t] denotes the integer part of t, i = 1, 2, . . ., n. Here the discrete analogue of the stochas-

tic parts of system (2) is obtained by Euler scheme, i.e., dwj(t) = Δwj([t])dt = [wj([t] + 1) −
wj([t])]dt, j = 1, 2, . . ., n. For each t, there exists an integer k such that k� t< k + 1. Then the

above equation becomes

dxiðtÞ ¼

"

� aiðkÞxiðtÞ þ
Xn

j¼1

bijðkÞfjðxjðkÞÞ þ
Xn

j¼1

cijðkÞgjðxjðk � tijðkÞÞÞ

þ

n̂

j¼1

aijgjðxjðk � tijðkÞÞÞ þ
n̂

j¼1

Tijmj þ
_n

j¼1

bijgjðxjðk � tijðkÞÞÞ

þ
_n

j¼1

Sijmj þ
Xn

j¼1

dijðkÞsjðxjðk � ZijðkÞÞÞDwjðkÞ þ IiðkÞ

#

dt;

where i = 1, 2, . . ., n. Integrating the above equation from k to t and letting t! k + 1, we

achieve the discrete analogue of system (2) as follows:

xiðkþ 1Þ ¼ e� aiðkÞxiðkÞ

þ
1 � e� aiðkÞ

aiðkÞ

"
Xn

j¼1

bijðkÞfjðxjðkÞÞ þ
Xn

j¼1

cijðkÞgjðxjðk � tijðkÞÞÞ

þ

n̂

j¼1

aijgjðxjðk � tijðkÞÞÞ þ
n̂

j¼1

Tijmj þ
_n

j¼1

bijgjðxjðk � tijðkÞÞÞ

þ
_n

j¼1

Sijmj þ
Xn

j¼1

dijðkÞsjðxjðk � ZijðkÞÞÞDwjðkÞ þ IiðkÞ

#

;

ð5Þ

where k 2 Z, i = 1, 2, . . ., n.
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Volterra additive equation for the solution of system (5)

Lemma 1. X = {xi} is a solution of system (5) if and only if

xiðkÞ ¼
Yk� 1

s¼k0

e� aiðsÞxiðk0Þ þ
Xk� 1

v¼k0

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ

"
Xn

j¼1

bijðvÞfjðxjðvÞÞ

þ
Xn

j¼1

cijðvÞgjðxjðv � tijðvÞÞÞ þ
n̂

j¼1

aijgjðxjðv � tijðvÞÞÞ

þ

n̂

j¼1

Tijmj þ
_n

j¼1

bijgjðxjðv � tijðvÞÞÞ þ
_n

j¼1

Sijmj

þ
Xn

j¼1

dijðvÞsjðxjðv � ZijðvÞÞÞDwjðvÞ þ IiðvÞ

#

;

ð6Þ

where k0 2 Z, k 2 ½k0 þ 1;þ1ÞZ, i = 1, 2, . . ., n.

Proof. Let

Fiðk; xÞ

≔
Xn

j¼1

bijðkÞfjðxjðkÞÞ þ
Xn

j¼1

cijðkÞgjðxjðk � tijðkÞÞÞ

þ

n̂

j¼1

aijgjðxjðk � tijðkÞÞÞ þ
n̂

j¼1

Tijmj þ
_n

j¼1

bijgjðxjðk � tijðkÞÞÞ þ
_n

j¼1

Sijmj

þ
Xn

j¼1

dijðkÞsjðxjðk � ZijðkÞÞÞDwjðkÞ þ IiðkÞ; k 2 Z; i ¼ 1; 2; . . . ; n:

Assume that X = {xi} is a solution of system (5). By Δ[u(k)v(k)] = [Δu(k)]v(k) + u(k + 1)[Δv(k)]

and system (5), it gets

D

"
Yk� 1

s¼0

eaiðsÞxiðkÞ

#

¼
Yk

s¼0

eaiðsÞ½1 � e� aiðkÞ�

aiðkÞ
Fiðk; xÞ; k 2 Z; i ¼ 1; 2; . . . ; n:

So

Xk� 1

v¼k0

D

"
Yv� 1

s¼0

eaiðsÞxiðvÞ

#

¼
Xk� 1

v¼k0

Yv

s¼0

eaiðsÞ½1 � e� aiðvÞ�

aiðvÞ
Fiðv; xÞ

is equivalent to

Yk� 1

s¼0

eaiðsÞxiðkÞ ¼
Yk0� 1

s¼0

eaiðsÞxiðk0Þ þ
Xk� 1

v¼k0

Yv

s¼0

eaiðsÞ½1 � e� aiðvÞ�

aiðvÞ
Fiðv; xÞ;

where i = 1, 2, . . ., n, k 2 Z. By the above equations, we can easily derive (6).

If X = {xi} satisfies (6), then

xiðkÞ ¼
Yk� 1

s¼k0

e� aiðsÞxið0Þ þ
Xk� 1

v¼k0

Yk� 1

s¼vþ1

eaiðsÞ½1 � e� aiðvÞ�

aiðvÞ
Fiðv; xÞ;

Semi-discrete random cellular neural networks with fuzzy operations
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which implies that

xiðkþ 1Þ ¼
Yk

s¼k0

e� aiðsÞxið0Þ þ
Xk

v¼k0

Yk

s¼vþ1

eaiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ
Fiðv; xÞ

¼ e� aiðkÞ

"
Yk� 1

s¼k0

e� aiðsÞxið0Þ

þ
Xk� 1

v¼k0

Yk� 1

s¼vþ1

eaiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ
Fiðv; xÞ

#

þ
1 � e� aiðkÞ

aiðkÞ
Fiðk; xÞ

¼ e� aiðkÞxiðkÞ þ
1 � e� aiðkÞ

aiðkÞ
Fiðk; xÞ;

where i = 1, 2, . . ., n, k 2 Z. Therefore, X = {xi} is a solution of system (5). This completes the

proof.

Some lemmas

Lemma 2. ([56]) (Minkowski inequality) Assume that p� 1, E|ξ|p<1, E|η|p<1, then

ðEjxþ ZjpÞ1=p � ðEjxjpÞ1=p þ ðEjZjpÞ1=p:

Lemma 3. ([56]) (Hölder inequality) Assume that p> 1, then

X

k

jakbkj �
X

k

jakj

" #1� 1=p
X

k

jakjjbkj
p

" #1=p

:

If p = 1, then ∑k|akbk|� (∑k|ak|)(supk |bk|).

Lemma 4. ([9]) Suppose that g 2 L2ð a; b½ �;RÞ, then

E sup
t2 a;b½ �

�
�
�
�
�

Z t

a
gðsÞdoðsÞ

�
�
�
�
�

p" #

� CpE
Z b

a
jgðtÞj2dt

� �p
2

;

where

Cp ¼

ð32=pÞp=2
; 0 < p < 2;

4; p ¼ 2;

ppþ1

2ðp� 1Þðp� 1Þ

h ip
2

; p > 2:

8
>>>>><

>>>>>:

Lemma 5. Assume that fxðkÞ : k 2 Zg is real-valued stochastic process and w(k) is the stan-

dard Brownian motion, then

EjxðkÞDwðkÞjp � CpEjxðkÞj
p
; k 2 Z;

where Cp is defined as that in Lemma 4, p> 0.

Semi-discrete random cellular neural networks with fuzzy operations
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Proof. By Lemma 4, it follows that

EjxðkÞDwðkÞjp ¼ E
�
�
�
�

Z kþ1

k
xðkÞ dwðsÞ

�
�
�
�

p

� CpE
�
�
�
�

Z kþ1

k
x2ðkÞ ds

�
�
�
�

p
2

� CpEjxðkÞj
p
;

where k 2 Z. This completes the proof.

Lemma 6. ([57]) Suppose X = {xi} and Y = {yi} are two states of system (5), then we have

�
�
�
�

n̂

j¼1

aijfjðxjÞ �

n̂

j¼1

aijfjðyjÞ

�
�
�
� �

Xn

j¼1

jaijjjfjðxjÞ � fjðyjÞj

and

�
�
�
�

_n

j¼1

bijfjðxjÞ �
_n

j¼1

bijfjðyjÞ

�
�
�
� �

Xn

j¼1

jbijjjfjðxjÞ � fjðyjÞj; i ¼ 1; 2; . . . ; n:

p-th mean almost periodic sequence solution

Definition 1. ([8]) A stochastic process X 2 BCðZ; LpðO;RnÞÞ is said to be p-th mean almost

periodic sequence if for each � > 0, there exists an integer l(�)> 0 such that each interval of

length l(�) contains an integer ω for which

jXðkþ oÞ � XðkÞjp ¼ max
1�i�n
ðEjxiðkþ oÞ � xiðkÞj

p
Þ

1
p < �; 8k 2 Z:

A stochastic process X, which is 2-nd mean almost periodic sequence will be called square-

mean almost periodic sequence. Like for classical almost periodic functions, the number ω will

be called an �-translation of X.

Lemma 7. ([58]) Assume that Λ is a closed convex nonempty subset of a Banach spaceX.

Suppose further that B and C map Λ into X such that

1. B is continuous and BL is contained in a compact set,

2. x, y 2 Λ implies that Bxþ Cy 2 L,

3. C is a contraction mapping.

Then there exists a z 2 Λ such that z ¼ Bz þ Cz.

Throughout this paper, we always assume that the following conditions are satisfied:

(H1) ai > 0, i = 1, 2, . . ., n.

(H2) There are several positive constants Lf
j , L

g
j and Lsj such that

jfjðuÞ � fjðvÞj � Lf
j ju � vj; ð7Þ

jgjðuÞ � gjðvÞj � Lg
j ju � vj; ð8Þ

jsjðuÞ � sjðvÞj � Lsj ju � vj; ð9Þ

8u; v 2 R, where j = 1, 2, . . ., n.

Semi-discrete random cellular neural networks with fuzzy operations
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Define

�a ≔ max
1�i�n

�ai; a ≔ min
1�i�n

ai; D� ≔ max
1�i�n

Xn

j¼1

f�bijL
f
j þ ðjaijj þ jbijj þ �cijÞL

g
j g;

K� ≔ max
1�i�n

Xn

j¼1

�dijL
s

j ; rp ≔
ð1 � e� �aÞ

að1 � e� aÞ

�

D� þ K�C
1
p
p

�

; bp ≔
ap

1 � rp
;

ap ≔
ð1 � e� �aÞ

að1 � e� aÞ
max
1�i�n

Xn

j¼1

�bijjfjð0Þj þ �cijjgjð0Þj
� �

"

þ
Xn

j¼1

jaijj þ jbijj
� �

jgjð0Þj þ
Xn

j¼1

jTijj þ jSijj
� �

jmjj þ
�I i þ

Xn

j¼1

�dijsjð0ÞC
1
p
p

#

:

Theorem 1. Assume that all coefficients in system (5) excluding the Brownian motions are
almost periodic sequences, (H1)-(H2) hold and the following condition is satisfied:

(H3) rp< 1, where p> 1.

Then there exists a p-th mean almost periodic sequence solution X of system (5) with
kXkp� βp.

Proof. Let L � BCðZ; LpðO;Rn
ÞÞ be the collection of all p-th mean almost periodic

sequences X = {xi} satisfying kXkp� βp.

Firstly, X = {xi} is described by

xiðkÞ ¼
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

Xn

j¼1

bijðvÞfjðxjðvÞÞ

"

þ
Xn

j¼1

cijðvÞgjðxjðv � tijðvÞÞÞ þ
n̂

j¼1

aijgjðxjðv � tijðvÞÞÞ þ
n̂

j¼1

Tijmj

þ
_n

j¼1

bijgjðxjðv � tijðvÞÞÞ þ
_n

j¼1

Sijmj

þ
Xn

j¼1

dijðvÞsjðxjðv � ZijðvÞÞÞDwjðvÞ þ IiðvÞ

#

;

ð10Þ

where i = 1, 2, . . ., n, k 2 Z. Obviously, (10) is well defined and satisfies (6). So we define

FXðkÞ ¼ BXðkÞ þ CXðkÞ, where

FXðkÞ ¼ ððFXÞ
1
ðkÞ; ðFXÞ

2
ðkÞ; . . . ; ðFXÞnðkÞÞ

T
;

ðFXÞiðkÞ ¼ ðBXÞiðkÞ þ ðCXÞiðkÞ; ð11Þ

Semi-discrete random cellular neural networks with fuzzy operations

PLOS ONE | https://doi.org/10.1371/journal.pone.0220861 August 7, 2019 8 / 27

https://doi.org/10.1371/journal.pone.0220861


ðBXÞiðkÞ ¼
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

Xn

j¼1

bijðvÞfjðxjðvÞÞ

"

þ
Xn

j¼1

cijðvÞgjðxjðv � tijðvÞÞÞ þ
n̂

j¼1

aijgjðxjðv � tijðvÞÞÞ

þ

n̂

j¼1

Tijmj þ
_n

j¼1

bijgjðxjðv � tijðvÞÞÞ

þ
_n

j¼1

Sijmj þ IiðvÞ

#

;

ð12Þ

ðCXÞiðkÞ ¼
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

Xn

j¼1

dijðvÞsjðxjðv � ZijðvÞÞÞDwjðvÞ; ð13Þ

where i = 1, 2, . . ., n, k 2 Z.

Let X0 ¼ fx0
i g be defined as

x0
i ðkÞ ¼

Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

Xn

j¼1

bijðvÞfjð0Þ

"

þ
Xn

j¼1

cijðvÞgjð0Þ þ

n̂

j¼1

aijgjð0Þ þ

n̂

j¼1

Tijmj

þ
_n

j¼1

bijgjð0Þ þ
_n

j¼1

Sijmj þ
Xn

j¼1

dijðvÞsjð0ÞDwjðvÞ þ IiðvÞ

#

;

where i = 1, 2, . . ., n, k 2 Z. By Minkoswki inequality in Lemma 2, we have

kX0kp

� max
1�i�n

sup
k2Z

("

E
�
�
�
�

Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

Xn

j¼1

bijðvÞfjð0Þ þ cijðvÞgjð0Þ
� ���

�
�

p
#1

p

þ

"

E
�
�
�
�

Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

n̂

j¼1

aij þ
_n

j¼1

bij

 !

gjð0Þ

�
�
�
�

p
#1

p

þ

"

E
�
�
�
�

Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

n̂

j¼1

Tij þ
_n

j¼1

Sij

 !

mj

�
�
�
�

p
#1

p

þ

"

E
�
�
�
�

Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

Xn

j¼1

dijðvÞsjð0ÞDwjðvÞ
�
�
�
�

p
#1

p

þ

"

E
�
�
�
�

Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ
IiðvÞ

�
�
�
�

p
#1

p
)

:
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From Lemma 6 and Hölder inequality in Lemma 3, it gets from the above inequality that

kX0kp � max
1�i�n

sup
k2Z

(
ð1 � e� �aÞ

að1 � e� aÞ

"
Xn

j¼1

�bijjfjð0Þj þ �cijjgjð0Þj
� �

þ
Xn

j¼1

ðjaijj þ jbijjÞjgjð0Þj þ
Xn

j¼1

ð
Xn

j¼1

jTijj þ jSijjÞjmjj þ
�I i

#

þ
Xn

j¼1

�dijsjð0Þ

"
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ 1 � e� aiðvÞ½ �

aiðvÞ

#1� 1
p

�

"
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ
EjDwjðvÞj

p

#1
p
)

�
ð1 � e� �aÞ

að1 � e� aÞ
max
1�i�n

"
Xn

j¼1

�bijjfjð0Þj þ �cijjgjð0Þj
� �

þ
Xn

j¼1

jaijj þ jbijj
� �

jgjð0Þj

þ
Xn

j¼1

jTijj þ jSijj
� �

jmjj þ
�I i þ

Xn

j¼1

�dijsjð0ÞC
1
p
p

#

≔ ap:

ð14Þ

It follows from (11), (12) and (13) that

kFX � X0kp

� max
1�i�n

sup
k2Z

Xn

j¼1

�bijL
f
j

(

E

"
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ
jxjðvÞj

#p)1
p

þmax
1�i;j�n

sup
k2Z

D��i

(

E

"
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ
jxjðv � tijðvÞÞj

#p)1
p

þmax
1�i;j�n

sup
k2Z

K�
(

E

"
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ
jxjðv � ZijðvÞÞDwjðvÞj

#p)1
p

;

which yields from Lemma 3 that

kFX � X0kp

� max
1�i�n

sup
k2Z

Xn

j¼1

�bijL
f
j

("
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ

#p� 1

�
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ
EjxjðvÞj

p

)1
p

þmax
1�i;j�n

sup
k2Z

D��i

("
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ

#p� 1

�
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ
Ejxjðv � tijðvÞÞj

p

)1
p

þmax
1�i;j�n

sup
k2Z

K�
("
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ

#p� 1

�
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aiðsÞ½1 � e� aiðvÞ�

aiðvÞ
Ejxjðv � ZijðvÞÞDwjðvÞj

p

)1
p

;

ð15Þ
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where D��i ¼ D� �
Pn

j¼1
�bijL

f
j , i = 1, 2, . . ., n. Applying Lemma 5 to the above inequality, it

derives

kFX � X0kp �
ð1 � e� �aÞ

að1 � e� aÞ

n
D� þ K�C

1
p
p

o
kXkp ¼ rpkXkp �

rpap

1 � rp
: ð16Þ

Hence, 8X = {xi} 2 Λ, it leads from (14) and (16) to

kFXkp � kX0kp þ kFX � X0kp � ap þ
rpap

1 � rp
¼

ap

1 � rp
≔ bp: ð17Þ

Similar to the argument as that in (17), it is easy to verify that BL is uniformly bounded

and continuous. Together with the continuity of B, for any bounded sequence {φn} in Λ, we

know that there exists a subsequence fφnk
g in Λ such that fBðφnk

Þg is convergent in BðLÞ.
Therefore, B is compact on Λ. Then condition (1) of Lemma 7 is satisfied.

The next step is proving condition (2) of Lemma 7. Now, we consist in proving

the p-th mean almost periodicity of BXð�Þ and CXð�Þ. Since X(�) is a p-th mean almost

periodic sequence and all coefficients in system (5) are almost periodic sequences, for any

� > 0 there exists l� > 0 such that every interval of length l� > 0 contains a ω with the prop-

erty that

½Ejxiðkþ oÞ � xiðkÞj
p
�

1
p < �; jaiðkþ oÞ � aiðkÞj < �;

jbijðkþ oÞ � bijðkÞj < �; jcijðkþ oÞ � cijðkÞj < �; jdijðkþ oÞ � dijðkÞj < �;

jtijðkþ oÞ � tijðkÞj < �; jZijðkþ oÞ � ZijðkÞj < �; jIiðkþ oÞ � IiðkÞj < �;

where i, j = 1, 2, . . ., n, k 2 Z. By (12), (13) and (H2), we could easily find a positive constant

M such that

½EjðBXÞiðkþ oÞ � ðBXÞiðkÞj
p
�

1
p � Mmax

1�i�n
sup
k2Z
½Ejxiðkþ oÞ � xiðkÞj

p
�
1
p < M�; ð18Þ

½EjðCXÞiðkþ oÞ � ðCXÞiðkÞj
p
�
1
p � Mmax

1�i�n
sup
k2Z
½Ejxiðkþ oÞ � xiðkÞj

p
�

1
p < M�; ð19Þ

where i = 1, 2, . . ., n, k 2 Z. From (18) and (19), BXð�Þ and CXð�Þ are p-th mean almost peri-

odic processes. Further, by (17), it is easy to obtain that BX þ CY 2 L, 8X, Y 2 Λ. Then con-

dition (2) of Lemma 7 holds.
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Finally, 8X = {xi}, Y = {yi} 2 Λ, from (13), it yields

kCX � CYkp �
½1 � e� �a �

a
max
1�i�n

sup
k2Z

(

E

"
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� a

�
Xn

j¼1

dijðvÞðsjðxjðv � ZijðvÞÞÞ � sjðyjðv � ZijðvÞÞÞÞDwjðvÞ

#p)1
p

�
½1 � e� �a �

a
max
1�i;j�n

sup
k2Z

K�
("
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� a

#p� 1

�
Xk� 1

v¼� 1

Yk� 1

s¼vþ1

e� aEj½xjðv � ZijðvÞÞ � yjðv � ZijðvÞÞ�DwjðvÞj
p

)1
p

�
K�C

1
p
pð1 � e� �aÞ

að1 � e� aÞ
kX � Ykp

� rpkX � Ykp:

ð20Þ

In view of (H3), C is a contraction mapping. Hence condition (3) of Lemma 7 is satisfied.

Therefore, all conditions in Lemma 7 hold. By Lemma 7, system (5) has a p-th mean almost

periodic sequence solution. This completes the proof.

p-th moment global exponential stability

Suppose that X = {xi} with initial value φ = {φi} and X� ¼ fx�i g with initial value φ� ¼ fφ�i g are

arbitrary two solutions of system (5). For convenience, let

gp ¼ max1�i�n sups2½� m0 ;0�Z
fðEjφiðsÞ � φ�i ðsÞj

p
Þ

1
pg, m0 ¼ max1�i;j�nf�t ij; �Z ijg.

Definition 2. ([9]) System (5) is said to be p-th moment global exponential stability if there

are positive constants k0, M and λ such that

jXðkÞ � X�ðkÞjp ¼ max
1�i�n
ðEjxiðkÞ � x�i ðkÞj

p
Þ

1
p < Mgpe

� lk; 8k > k0; k 2 Z:

The 2-nd moment global exponential stability will be called square-mean global exponential

stability.

Theorem 2. Assume that (H1)-(H3) hold, then system (5) is p-th moment globally exponen-
tially stable, p> 1.

Proof. By Lemma 1, it follows that

jxiðkÞ � x�i ðkÞj

�
Yk� 1

s¼0

e� aiðsÞjφið0Þ � φ�i ð0Þj þ
ð1 � e� �aÞ

a

Xk� 1

v¼0

Yk� 1

s¼vþ1

e� aiðsÞ
Xn

j¼1

(

�bijL
f
j jxjðvÞ � x�j ðvÞj

þð�cij þ jaijj þ jbijjÞL
g
j jxjðv � tijðvÞÞ � x�j ðv � tijðvÞÞj

þ�dijLsj jxjðv � ZijðvÞÞ � x�j ðv � ZijðvÞÞjjDwjðvÞj

)

� e� akjφið0Þ � φ�i ð0Þj þ
ð1 � e� �aÞ

a

Xk� 1

v¼0

e� aðk� v� 1Þ
Xn

j¼1

(

�bijL
f
j jxjðvÞ � x�j ðvÞj

þð�cij þ jaijj þ jbijjÞL
g
j jxjðv � tijðvÞÞ � x�j ðv � tijðvÞÞj

þ�dijLsj jxjðv � ZijðvÞÞ � x�j ðv � ZijðvÞÞjjDwjðvÞj

)

;

ð21Þ
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where i = 1, 2, . . ., n, k 2 ½1;þ1ÞZ. For convenience, let a0 ¼
1� e� �a

a and Z(k) = {zi(k)},

ziðkÞ ¼ xiðkÞ � x�i ðkÞ, i = 1, 2, . . ., n, k 2 Z. By Lemmas 2 and 3, it gets from (21) that

jZðkÞjp ¼ jXðkÞ � X�ðkÞjp
� e� akgp

þmax
1�i�n

Xn

j¼1

a0
�bijL

f
j

("
Xk� 1

s¼0

e� aðk� s� 1Þ

#p� 1

Xk� 1

s¼0

e� aðk� s� 1ÞEjxjðsÞ � x�j ðsÞj
p

)1
p

þmax
1�i�n

Xn

j¼1

a0ð�cij þ jaijj þ jbijjÞL
g
j

("
Xk� 1

s¼0

e� aðk� s� 1Þ

#p� 1

�
Xk� 1

s¼0

e� aðk� s� 1ÞEjxjðs � tijðsÞÞ � x�j ðs � tijðsÞÞj
p

)1
p

þmax
1�i�n

Xn

j¼1

a0
�dijL

s

j

("
Xk� 1

s¼0

e� aðk� s� 1Þ

#p� 1

�
Xk� 1

s¼0

e� aðk� s� 1ÞEj½xjðs � ZijðsÞÞ � x�j ðs � ZijðsÞÞ�DwjðsÞj
p

)1
p

� e� akgp þmax
1�i�n

Xn

j¼1

a0
�bijL

f
j

("
Xk� 1

s¼0

e� aðk� s� 1Þ

#p� 1
Xk� 1

s¼0

e� aðk� s� 1ÞjZðsÞjpp

)1
p

þmax
1�i�n

Xn

j¼1

a0ð�cij þ jaijj þ jbijjÞL
g
j

("
Xk� 1

s¼0

e� aðk� s� 1Þ

#p� 1

Xk� 1

s¼0

e� aðk� s� 1ÞjZðs � tijðsÞÞj
p
p

)1
p

þmax
1�i�n

Xn

j¼1

a0C
1
p
p
�dijL

s

j

("
Xk� 1

s¼0

e� aðk� s� 1Þ

#p� 1

Xk� 1

s¼0

e� aðk� s� 1ÞjZðs � ZijðsÞÞj
p
p

)1
p

:

ð22Þ

Be aware of (H3) in Theorem 1, there exists a constant λ> 0 small enough such that

max
1�i�n

Xn

j¼1

ela0

1 � e� ða � 2plÞ

h
�bijL

f
j þ em0lð�cij þ jaijj þ jbijjÞL

g
j þ em0lC

1
p
p
�dijL

s

j

i
¼
def
r � 1:

Next, we claim that there exists a constant M0 > 1 such that

jZðkÞjp � M0gpe� lk; 8k 2 ½� m0;þ1ÞZ: ð23Þ
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If (23) is invalid, then there must exist k0 2 ð0;þ1ÞZ such that

jZðk0Þjp > M0gpe� lk0 ð24Þ

and

jZðkÞjp � M0gpe� lk; 8k 2 ½� m0; k0ÞZ: ð25Þ

In view of (22), it follows from (25) that

jZðk0Þjp � e� ak0gp

þmax
1�i�n

Xn

j¼1

a0
�bijL

f
j M0gp

("
Xk0 � 1

s¼0

e� aðk0 � s� 1Þ

#p� 1
Xk0 � 1

s¼0

e� aðk0 � s� 1Þe� pls

)1
p

þmax
1�i�n

Xn

j¼1

a0M0gp

"

ð�cij þ jaijj þ jbijjÞL
g
j þ C

1
p
p
�dijL

s

j

#

�

("
Xk0� 1

s¼0

e� aðk0 � s� 1Þ

#p� 1
Xk0 � 1

s¼0

e� aðk0 � s� 1Þe� plðs� m0Þ

)1
p

� e� ak0gp

þmax
1�i�n

Xn

j¼1

a0
�bijL

f
j M0gpe

� lk0el
"

1 � e� ak0

1 � e� a

#1� 1
p
"
Xk0 � 1

s¼0

e� ða � plÞðk0 � s� 1Þ

#1
p

þmax
1�i�n

Xn

j¼1

a0M0gp

"

ð�cij þ jaijj þ jbijjÞL
g
j þ C

1
p
p
�dijL

s

j

#

�e� lk0eðm0þ1Þl

"
1 � e� ak0

1 � e� a

#1� 1
p
"
Xk0 � 1

s¼0

e� ða � plÞðk0 � s� 1Þ

#1
p

� e� ak0gp þmax
1�i�n

Xn

j¼1

a0M0gpe
� lk0

"

�bijL
f
j þ em0lð�cij þ jaijj þ jbijjÞL

g
j

þem0lC
1
p
p
�dijLsj

#

el
"

1 � e� ak0

1 � e� a

#1� 1
p
"

1 � e� ða � plÞk0

1 � e� ða � plÞ

#1
p

� M0gpe� lk0

(
1

M0

e� ða � lÞk0 þmax
1�i�n

Xn

j¼1

a0

"

�bijL
f
j

þem0lð�cij þ jaijj þ jbijjÞL
g
j þ em0lC

1
p
p
�dijLsj

#
el½1 � e� ða � lÞk0 �

1 � e� ða � plÞ

� M0gpe� lk0

(

e� ða � lÞk0 þ r½1 � e� ða � lÞk0 �

)

� M0gpe� lk0 :

ð26Þ
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In the fourth inequality from the bottom of (26), we use the fact ½1 � e� ak0 �
1� 1

p½1 � e� ða � plÞk0 �
1
p �

1 � e� ða � lÞk0 and ½1 � e� a�
1
p � ½1 � e� ða � plÞ�

1
p. (26) contradicts (24). Hence, (23) is satisfied.

Therefore, system (5) is p-th moment globally exponentially stable. This completes the proof.

Together with Theorem 1, we have

Theorem 3. Assume that all conditions in Theorem 1 hold, then system (5) admits a p-th
mean almost periodic sequence solution, which is p-th moment globally exponentially stable. Fur-
ther, if all coefficients in system (5) are periodic sequences, then system (5) admits at least one p-
th mean periodic sequence solution, which is globally exponentially stable.

Proof. The result can be easily obtained by Theorem 2, so we omit it. This completes the

proof.

In system (5), if we remove the effects of uncertain factors, then the following deterministic

model is obtained:

xiðkþ 1Þ ¼ e� aiðkÞxiðkÞ þ
1 � e� aiðkÞ

aiðkÞ

"
Xn

j¼1

bijðkÞfjðxjðkÞÞ

þ
Xn

j¼1

cijðkÞgjðxjðk � tijðkÞÞÞ þ IiðkÞ

#

;

ð27Þ

where k 2 Z, i = 1, 2, . . ., n.

Define

r̂ ≔ max
1�i�n

ð1 � e� �aiÞ

aið1 � e� aiÞ

Xn

j¼1

ð�bijL
f
j þ �cijL

g
j Þ:

Corollary 1. Assume that (H1) and (7) and (8) in (H2) hold. Suppose further that all of coeffi-
cients of model (27) are almost periodic sequences, and r̂ < 1, then model (27) admits at least
one almost periodic sequence solution, which is globally exponentially stable. Moreover, if all of
coefficients of model (27) are periodic sequences, then model (27) admits at least one periodic
solution, which is globally exponentially stable.

Remark 1. In literature [52], Huang et al. studied model (27) with cij� 0(i, j = 1, 2, . . ., n)

and obtained some sufficient conditions for the existence of a unique almost periodic sequence

solution which is globally attractive. In [53], they considered system (4) and studied the

dynamics of 2N almost periodic sequence solutions. But neither of them considered the

uncertain factors. Therefore, the work in this paper complements the corresponding results in

[52, 53].

Remark 2. Assume that X(k) = (x1(k), x2(k), . . ., xn(k)) is a solution of (27), the length of

X(k) is usually measured by kXk1 ¼ supk2Rmax1�i�n jxiðkÞj. However, if X(k) is a solution of

stochastic system (5), its length should not be measured by kXk1 because X(k) is a random

variable. In this paper, we use norm kXkp ¼ max1�i�nsupk2ZðEjxiðkÞj
p
Þ

1
p ðp > 1Þ for random

variable X(k). Owing to the expectation E and order p in kXkp, the computing processes of this

paper are more complicated than that in literatures [49–55]. It is worth mentioning that Min-

koswki inequality in Lemma 2 and Hölder inequality in Lemma 3 are crucial to the computing

processes. The facts above are obvious from the computations of (14), (15), (22) and (26) in

Theorems 1 and 2. Further, the stochastic term dijσjΔwj(i, j = 1, 2, . . ., n) in system (5) also

increases the complexity of computing. This point is also clear from the computations of (20)

and (22) in Theorems 1 and 2.
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Stochastic stabilization

In this section, we consider the following stochastic cellular neural networks:

dxiðtÞ ¼

"

� aiðtÞxiðtÞ þ
Xn

j¼1

bijðtÞfjðxjðtÞÞ þ IiðtÞ

#

dt þ kxiðtÞdwðtÞ; ð28Þ

where w(t) is a standard Brownian motion, t 2 R, i = 1, 2, . . ., n.

Let κ = 0 in system (28), the following deterministic cellular neural networks is derived:

dxiðtÞ
dt
¼ � aiðtÞxiðtÞ þ

Xn

j¼1

bijðtÞfjðxjðtÞÞ þ IiðtÞ; ð29Þ

where t 2 R, i = 1, 2, . . ., n. Noting that the unique distinction between (28) and (29) is the sto-

chastic disturbance.

The semi-discretization models of systems (28) and (29)

Regarding the following stochastic differential equations (SDEs):

duðtÞ ¼ � aðtÞuðtÞdt þ Fðt; uðtÞÞdt þ kuðtÞdwðtÞ; t 2 R;

which yields the following SDEs with piecewise constant arguments:

duðtÞ ¼ � að½t�ÞuðtÞdt þ Fð½t�; uð½t�ÞÞdt þ kuðtÞdwðtÞ;

where t 2 R, [t] denotes the integer part of t. For each t 2 R, there exists an integer k 2 Z
such that k� t< k + 1. Then the above equation becomes

duðtÞ ¼ � aðkÞuðtÞdt þ Fðk; uðkÞÞdt þ kuðtÞdwðtÞ; t 2 R; k 2 Z: ð30Þ

Let zk(t) = a(k)t + 0.5κ2t − κw(t), 8t 2 R, k 2 Z. By using Itô formula and formula of inte-

gration by parts in stochastic theory, it obtains from (30) that

dðezkðtÞuðtÞÞ ¼ uðtÞdezkðtÞ þ ezkðtÞduðtÞ þ ðdezkðtÞÞ � ðduðtÞÞ

¼ ðaðkÞ þ 0:5k2ÞuðtÞezkðtÞdt � kuðtÞezkðtÞdwðtÞ

þ0:5k2uðtÞezkðtÞdt þ ezkðtÞduðtÞ � k2uðtÞezkðtÞdt

¼ ezkðtÞFðk; uðkÞÞdt; t 2 R; k 2 Z:

Integrating the above equation from k to t and letting t! k + 1, the following equation is

obtained:

uðkþ 1Þ ¼ epðkÞuðkÞ þ e� zkðkþ1ÞFðk; uðkÞÞ
Z kþ1

k
ezkðsÞds

� epðkÞuðkÞ þ
ð1 � e� aðkÞ� 0:5k2

ÞekDwðkÞ

aðkÞ þ 0:5k2
Fðk; uðkÞÞ;

ð31Þ

where p(k) = −a(k) − 0.5κ2 + κΔw(k), Δw(k) = w(k + 1) − w(k), k 2 Z. In (31), we use the fact
R kþ1

k ezkðsÞds � e� kwðkÞ
R kþ1

k eaðkÞsþ0:5k2sds, k 2 Z.
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By a similar discussion as that in system (31), we gets the semi-discrete analogue for system

(28) as follows:

xiðkþ 1Þ ¼ epiðkÞxiðkÞ

þ
ð1 � e� aiðkÞ� 0:5k2

ÞekDwðkÞ

aiðkÞ þ 0:5k2

�
Xn

j¼1

bijðtÞfjðxjðtÞÞ þ IiðkÞ
�

;
ðSMÞ

where pi(k) = −ai(k) − 0.5κ2 + κΔw(k), Δw(k) = w(k + 1) − w(k), k 2 Z, i = 1, 2, . . ., n.

Let κ = 0 in system (SM), the semi-discrete analogue for system (29) is obtained as follows:

xiðkþ 1Þ ¼ e� aiðkÞxiðkÞ þ
1 � e� aiðkÞ

aiðkÞ

�
Xn

j¼1

bijðtÞfjðxjðtÞÞ þ IiðkÞ
�

; ðDMÞ

where k 2 Z, i = 1, 2, . . ., n. Also, the unique difference between (SM) and (DM) is the stochas-

tic disturbance.

Stability analysis of systems (SM) and (DM)

Assume that X = {xi} with initial value X0 ¼ fxi0g 2 R
n

and X� ¼ fx�i g with initial value

X�
0
¼ fx�i0g 2 R

n
are arbitrary two solutions of system (SM) or (DM).

Definition 3. ([9]) System (SM) or (DM) is said to be exponential stability if

lim
k!þ1

ln
�
Pn

i¼1
jxiðkÞ � x�i ðkÞj

�

k
< 0; 8X0;X

�

0
2 Rn:

System (SM) or (DM) is said to be exponential instability if

lim
k!þ1

ln
�
Pn

i¼1
jxiðkÞ � x�i ðkÞj

�

k
> 0; 8X0;X

�

0
;X0 � X�

0
2 Rnnf0g:

Lemma 8. ([9]) Assume that w is a standard Brownian motion, then w(0) = 0 and

lim
t!1

wðtÞ
t
¼ 0, a.s‥

Theorem 4. Assume that (H2) holds. Suppose further that

(H4) Y ¼ max1�i�n

�

e� a�i � 0:5k2

þ 1

aiþ0:5k2

Xn

j¼1

�bijL
f
j

�

< 1, where a�i ¼ mink2ZaiðkÞ, i = 1,

2, . . ., n.

Then system (SM) is exponentially stable.

Proof. From (SM), it gets

jxiðkþ 1Þ � x�i ðkþ 1Þj

� epiðkÞjxiðkÞ � x�i ðkÞj þ
ð1 � e� aiðkÞ� 0:5k2

ÞekDwðkÞ

aiðkÞ þ 0:5k2

Xn

j¼1

�bijL
f
j jxjðkÞ � x�j ðkÞj

� YekDwðkÞmax
1�i�n
jxiðkÞ � x�i ðkÞj; i ¼ 1; 2; . . . ; n;

which derives

max
1�i�n
jxiðkÞ � x�i ðkÞj � Y

kekwðkÞmax
1�i�n
jxið0Þ � x�i ð0Þj; k 2 Z;
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which implies

ln
�

max1�i�njxiðkÞ � x�i ðkÞj
�

k
� lnYþ

jkwðkÞj
k
þ
ln g0

k
; k 2 ½1;þ1ÞZ:

From Lemma 8, it leads to

lim
k!þ1

ln
�

max1�i�njxiðkÞ � x�i ðkÞj
�

k
� lnY < 0:

Then system (SM) is exponential stability. This completes the proof.

Let κ = 0 in Theorem 4, it has

Theorem 5. Assume that (H2) holds. Suppose further that

(H5) max1�i�n

�

e� a�i þ 1

ai

Xn

j¼1

�bijL
f
j

�

< 1.

Then system (DM) is exponentially stable.

Similar to the argument as that in Theorem 4, the exponential instability of system (DM) is

easily derived as follows:

Theorem 6. Assume that (H2) holds. Suppose further that

(H6) min1�i�n

�

e� aþi � 1

ai

Xn

j¼1

�bijL
f
j

�

> 1, where aþi ¼ maxk2Z aiðkÞ, i = 1, 2, . . ., n.

Then system (DM) is exponentially instable.

Definition 4. ([9]) Assume that system (DM) is exponential instability and there exists a

suitable stochastic disturbance coefficient κ ensuring that system (SM) is exponential stable,

then system (SM) is a stochastic stabilization system of system (DM).

Together with Theorems 4 and 6, it gains

Theorem 7. Assume that (H2), (H4) and (H6) are satisfied. Then system (SM) is a stochastic
stabilization system of system (DM).

Remark 3. If (H6) is valid, (DM) is exponentially instable. Meanwhile, (H5) is invalid. By

viewing (H4), one could select a suitable stochastic disturbance coefficient κ ensuring that (H4)

is satisfied, which yields system (SM) is exponentially stable. Therefore, stochastic disturbance

could be a useful method, which brings unstable system to be stable. More details could be

observed in Example 2.

Examples and computer simulations

Example 1. Consider the following continuous-time uncertain cellular neural networks with

random perturbations and fuzzy operations:

dx1ðtÞ ¼
�

� x1ðtÞ þ 0:01 sin ð
ffiffiffi
5
p

tÞ sin ðx1ðtÞÞ þ 0:05 sin ð
ffiffiffi
7
p

tÞ cos ðx2ðt � 1ÞÞ

þ

2̂

j¼1

0:1xjðt � 1Þ þ
_2

j¼1

0:02xjðt � 1Þ þ 0:01 cos2 ð
ffiffiffiffiffi
17
p

tÞ
�

dt

þ0:01 cos ð
ffiffiffi
3
p

tÞdwðtÞ;

dx2ðtÞ ¼
�

� 0:2x2ðtÞ þ 0:02 cos ð
ffiffiffi
5
p

tÞ cos ðx2ðtÞÞ þ 0:03 cos ð
ffiffiffi
2
p

tÞ sin ðx1ðt � 1ÞÞ

þ

2̂

j¼1

0:04xjðt � 1Þ þ
_2

j¼1

0:2xjðt � 1Þ � 0:02j sin ð
ffiffiffiffiffi
33
p

tÞj
�

dt

þ0:01 sin ð
ffiffiffi
2
p

tÞdwðtÞ; 8t 2 R:

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð32Þ
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(1) Semi-discrete model: base on model (32), we obtain the following semi-discrete model

by using the semi-discretization technique:

x1ðkþ 1Þ ¼ e� 1x1ðkÞ þ ð1 � e� 1Þ

�

0:01 sin ð
ffiffiffi
5
p

kÞ sin ðx1ðkÞÞ

þ0:05 sin ð
ffiffiffi
7
p

kÞ cos ðx2ðk � 1ÞÞ þ

2̂

j¼1

0:1xjðk � 1Þ

þ
_2

j¼1

0:02xjðk � 1Þ þ 0:01 cos ð
ffiffiffi
3
p

kÞDwðkÞ þ 0:01 cos2 ð
ffiffiffiffiffi
17
p

kÞ
�

;

x2ðkþ 1Þ ¼ e� 0:2x2ðkÞ þ
1 � e� 0:2

0:2

�

0:02 cos ð
ffiffiffi
5
p

kÞ cos ðx2ðkÞÞ

þ0:03 cos ð
ffiffiffi
2
p

kÞ sin ðx1ðk � 1ÞÞ þ

2̂

j¼1

0:04xjðk � 1Þ

þ
_2

j¼1

0:2xjðk � 1Þ þ 0:01 sin ð
ffiffiffi
2
p

kÞDwðkÞ � 0:02j sin ð
ffiffiffiffiffi
33
p

kÞj
�

;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð33Þ

where k 2 Z.

(2) Discrete model formulated by Euler scheme: base on model (32), we obtain the follow-

ing discrete-time model by using Euler method:

x1ðkþ 1Þ ¼ 0:01 sin ð
ffiffiffi
5
p

kÞ sin ðx1ðkÞÞ þ 0:05 sin ð
ffiffiffi
7
p

kÞ cos ðx2ðk � 1ÞÞ

þ

2̂

j¼1

0:1xjðk � 1Þ þ
_2

j¼1

0:02xjðk � 1Þ

þ0:01 cos ð
ffiffiffi
3
p

kÞDwðkÞ þ 0:01 cos2 ð
ffiffiffiffiffi
17
p

kÞ;

x2ðkþ 1Þ ¼ 0:8x2ðkÞ þ 0:02 cos ð
ffiffiffi
5
p

kÞ cos ðx2ðkÞÞ þ 0:03 cos ð
ffiffiffi
2
p

kÞ sin ðx1ðk � 1ÞÞ

þ

2̂

j¼1

0:04xjðk � 1Þ þ
_2

j¼1

0:2xjðk � 1Þ

þ0:01 sin ð
ffiffiffi
2
p

kÞDwðkÞ � 0:02j sin ð
ffiffiffiffiffi
33
p

kÞj;

8
>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>:

ð34Þ

where k 2 Z.

In Figs 1 and 2, we give two plots of numerical solutions which are produced by continu-

ous-time model (32), semi-discrete model (33) and Euler-discretization model (34), respec-

tively. Compared with Euler-discretization model (34), semi-discrete model (33) gives a more

accurate characterization for continuous-time model (32).

Remark 4. In literature [43, 44], the authors discussed the dynamics of periodic solutions of

discrete-time neural networks formulated by Euler scheme. From the above discussion, semi-

discrete stochastic system (5) gives a more accurate and realistic formulation for studying the
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dynamics of discrete-time neural networks. In a way, the work of this paper complements and

improves some corresponding results in [43, 44].

Corresponding to system (5), we have a ¼ 1, �a ¼ 2, Lf
i ¼ Lg

i ¼ Lsi ¼ 1, �bij ¼ 0:02,

�cij ¼ 0:05, α11 = α12 = 0.1, β11 = β12 = 0.02, α21 = α22 = 0.04, β21 = β22 = 0.2, �dij ¼ 0:01, i, j = 1, 2.

Taking p = 2, by simple calculation,

C1=2

2 ¼ 2; D� � 0:74; K� � 0:02; r4 � 0:85 < 1:

According to Theorems 1 and 2, system (32) admits a square-mean almost periodic sequence

solution, which is square-mean globally exponentially stable.

Fig 3 depicts a numerical solution (x1, x2) of semi-discrete stochastic model (33). Observe

that the trajectories of (x1, x2) demonstrate almost periodic oscillations. Figs 4 and 5 display

three numerical solutions of semi-discrete stochastic model (33) at different initial values (1.5,

1.5), (0.5, 2.5) and (0.1, 0.2), respectively. They are shown that semi-discrete stochastic model

(33) is square-mean globally exponentially stable.

Fig 1. Trajectories of state variable x1 in models (32), (33) and (34), respectively.

https://doi.org/10.1371/journal.pone.0220861.g001

Fig 2. Trajectories of state variable x2 in models (32), (33) and (34), respectively.

https://doi.org/10.1371/journal.pone.0220861.g002
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Example 2. Considering the following deterministic cellular neural networks:

_x1ðtÞ ¼ 0:2x1ðtÞ þ 0:01 cos tjx1ðtÞj þ 0:01 sin t sin x2ðtÞ þ sin ð0:1tÞ;

_x2ðtÞ ¼ 0:3x2ðtÞ þ 0:02 sin tjx1ðtÞj þ 0:01 cos ð
ffiffiffi
5
p

tÞ sin x2ðtÞ þ cos t;

(

ð35Þ

where t 2 R. The following semi-discrete model for system (35) is obtained:

x1ðkþ 1Þ ¼ e0:2x1ðkÞ

�
1 � e0:2

0:2

�

0:01 cos kjx1ðkÞj þ 0:01 sin k sin x2ðkÞ þ sin ð0:1kÞ
�

;

x2ðkþ 1Þ ¼ e0:3x2ðkÞ

�
1 � e0:3

0:3

�

0:02 sin kjx1ðkÞj þ 0:01 cos ð
ffiffiffi
5
p

kÞ sin x2ðkÞ þ cos k
�

;

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð36Þ

where k 2 Z. Obviously, system (36) satisfies (H6) in Theorem 6. So system (36) is exponen-

tially instable, see Figs 6 and 7.

Fig 3. Square-mean almost periodicity of state variables (x1, x2)T in model (33).

https://doi.org/10.1371/journal.pone.0220861.g003

Fig 4. Square-mean global exponential stability of state variable x1 of model (33).

https://doi.org/10.1371/journal.pone.0220861.g004
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Similar to the discussion as that in (SM), we consider a random perturbation in system (35)

and a semi-discrete model with random perturbation is achieved as follows:

x1ðkþ 1Þ ¼ ep1ðkÞx1ðkÞ þ
ð1 � e0:2� 0:5k2

ÞekDwðkÞ

� 0:2þ 0:5k2

�

0:01 cos kjx1ðkÞj

þ0:01 sin k sin x2ðkÞ þ sin ð0:1kÞ
�

;

x2ðkþ 1Þ ¼ ep2ðkÞx2ðkÞ þ
ð1 � e0:3� 0:5k2

ÞekDwðkÞ

� 0:3þ 0:5k2

�

0:02 sin kjx1ðkÞj

þ0:01 cos ð
ffiffiffi
5
p

kÞ sin x2ðkÞ þ cos k
�

;

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

ð37Þ

Fig 6. Exponential instability of state variable x1 of system (36).

https://doi.org/10.1371/journal.pone.0220861.g006

Fig 5. Square-mean global exponential stability of state variable x2 of model (33).

https://doi.org/10.1371/journal.pone.0220861.g005
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where p1(k) = 0.2 − 0.5κ2 + κΔw(k), p2(k) = 0.3 − 0.5κ2 + κΔw(k), Δw(k) = w(k + 1) − w(k),

k 2 Z. Here we choose stochastic disturbance coefficient κ = 1. It easily calculate (H4) in Theo-

rem 4 is satisfied. Then system (37) is exponentially stable, see Figs 8 and 9. By Theorem 7, sys-

tem (37) is a stochastic stabilization system of system (36).

Fig 7. Exponential instability of state variable x2 of system (36).

https://doi.org/10.1371/journal.pone.0220861.g007

Fig 8. Exponential stability of state variable x1 of system (37).

https://doi.org/10.1371/journal.pone.0220861.g008
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Conclusions and future works

In this paper, we formulate a discrete analogue of cellular neural networks with stochastic per-

turbations and fuzzy operations by using semi-discretization technique. The existence of p-th

mean almost periodic sequence solutions and p-th moment global exponential stability for the

above models are investigated with the help of Krasnoselskii’s fixed point theorem and sto-

chastic theory. The main results obtained in this paper are completely new and the methods

used in this paper provide a possible technique to study p-th mean almost periodic sequence

solution and p-th moment global exponential stability of semi-discrete models with stochastic

perturbations and fuzzy operations.

With a careful observation of Theorems 1 and 2, it is not difficult to discover that

1. p> 1 is crucial to the p-th mean almost periodicity and moment global exponential stability

of system (5).

2. From Example 2, stochastic disturbance could be a useful method, which brings unstable

system to be stable.

3. The time delays have no effect on the existence of p-th mean almost periodicity and p-th

moment global exponential stability of system (5).

In the future, the following aspects can be explored further:

1. The methods used in this paper can be applied to study other types of neural networks,

such as impulsive neural networks, high-order neural networks, neural networks on time

scales, etc.

2. Other types of fuzzy neural networks could be investigated, such as Takagi-Sugeno fuzzy

neural networks.

Fig 9. Exponential stability of state variable x2 of system (37).

https://doi.org/10.1371/journal.pone.0220861.g009
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3. Other dynamic behaviours of system (5) should be further discussed.

4. The case of p 2 (0, 1] could be further explored.
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