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The tumor microenvironment has been identified as one of the driving factors of tumor progression and invasion. Inside this

microenvironment, cancer-associated fibroblasts (CAFs), a type of perpetually activated fibroblasts, have been implicated to

have a strong tumor-modulating effect and play a key role in areas such as drug resistance. Identification of CAFs has typically

been carried based on the expression of various “CAF markers”, such as fibroblast activation protein alpha (FAP) and alpha

smooth muscle actin (αSMA), which separates them from the larger pool of fibroblasts present in the body. However, as

outlined in this Review, the expression of various commonly used fibroblast markers is extremely heterogeneous and varies

strongly between different CAF subpopulations. As such, novel selection methods based on cellular function, as well as further

characterizing research, are vital for the standardization of CAF identification in order to improve the cross-applicability of

different research studies in the field. The aim of this review is to give a thorough overview of the commonly used fibroblast

markers in the field and their various strengths and, more importantly, their weaknesses, as well as to highlight potential

future avenues for CAF identification and targeting.

Background
According to the Oxford Concise Medical Dictionary, cancers
are malignant neoplasms (including both carcinoma and sar-
coma), which arise from the abnormal and uncontrolled divi-
sion of cells and which invade and destroy the surrounding
tissue.1 Over the past decade, however, a new paradigm has
started to arise in tumor research. One that sees cancer, not as

a disease solely focused on the core population of malignant
neoplastic cells, but rather a condition characterized by a
fundamental misalignment of the entire cellular milieu.

This tumor-surrounding environment, termed the tumor
microenvironment (TME), has been shown to play a seemingly
ever-increasing role in tumor development, especially in rela-
tion to tumor initiation and metastasis. Numerous different
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types of cells and factors have been described to play a role in
the TME, ranging from immune cells, such as T, B and natural
killer (NK) cells,2 to wider environmental factors, such as extra-
cellular matrix (ECM) stiffness,3 hypoxia4 and interstitial pres-
sure.5 Amongst all these various microenvironmental players,
fibroblasts have been suggested to play a key role in tumor devel-
opment.6 Despite being one of the most well-studied cell types in
biology, there is still much that remains unknown about the role
and behavior of fibroblasts in the tumor. Fibroblasts greatly influ-
ence the tumor environment via the secretion of cytokines and
chemokines, such as vascular endothelial growth factor A
(VEGFA)7 and C-X-C Motif Chemokine Ligand 12 (CXCL12).8

It has been hypothesized that cross-talk between tumorigenic
cells and fibroblasts (Fig. 1) may be responsible for the emer-
gence of a subpopulation of hyper-activated fibroblasts that are
present in the TME, called cancer-associated fibroblasts (CAFs).9

These CAFs are highly heterogeneous and have been shown to
enhance cellular migration and alter metabolism of epithelial
tumor cells,10,108 display elevated pro-angiogenic cytokine
signaling,11,12 regulate the plasticity of cancer stem cells,79 play
a significant role in the development of drug resistance,89,94 and
facilitate inflammation (Fig. 1).13,74

The presence of CAFs is an effective predictor of tumor
reoccurrence in colorectal cancer patients and has been
highlighted as a significant prognostic factor in a number of
tumor types.14,15,78 CAFs have also been suggested to potentially
play a tumor-suppressive role via the I kappa B kinase/nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB)
pathway, lowering hepatocyte growth factor (HGF) secretion and
reducing tumor size and metastasis.16 All of this only serves to
demonstrate the large number of vital roles that these cells play in
the tumor microenvironment and underline the necessity of fully
elucidating the function and behavior of CAFs within tumors.

However, due to their extremely heterogeneous nature and
high plasticity, variation within CAF populations is extensive
(Fig. 2). As such, the difference between a CAF and a normal
fibroblast in the tumor microenvironment is often considered
functional, rather than defined by the specific expression of a
certain biological marker or easily definable feature. That is not
to say that fibroblast- and CAF-associated markers have not
been identified (Table 1). A number of markers, such as αSMA,
PDGFRα and FAP, are highly expressed in CAFs and have been
widely used in order to isolate CAF populations. However, many
of these markers come with their own set of downsides, such as
low specificity, and questions have been raised on whether or not
such markers can identify all cancer-associated fibroblasts, or
merely a specific subset of fibroblasts within the wider CAF pop-
ulation. This review aims to give an overview of the markers that
are currently used for fibroblast and CAF identification and to
discuss their various advantages and disadvantages.

FAP
Fibroblast Activation Protein α, or FAP as it is more com-
monly known, is a type II integral membrane protein that

belongs to the membrane-bound serine protease family. FAP
has traditionally been associated with tissue repair, fibrosis
and extracellular matrix degradation by fibroblasts due to its
dipeptidyl peptidase and collagenase activity,17 but has also
been shown to be upregulated in fetal mesenchymal tissues
and during embryogenesis.18 It is one of the most strongly
expressed genes in the tumor stroma and is upregulated in
over 90% of epithelial carcinomas.19

Due to its high expression in the tumor stroma, numerous
studies have used FAP as a marker of activated cancer-associated
fibroblasts.14,63–65 This has resulted in the widespread use of FAP
as an identifier of potential CAF populations, typically in combi-
nation with negative epithelial markers such as epithelial cell
adhesion molecule (EPCAM). FAP is also widely considered
one of the most viable CAF-markers for potential clinical
application. Depletion of the FAP-positive fibroblast popula-
tion in transgenic mice led to cytokine-mediated hypoxic
necrosis of both the tumor and the stroma,20 and FAP-based
therapies, such as FAP-inhibitors and FAP-targeting mono-
clonal antibodies, have been submitted for clinical trials.21,22

However, no proposed FAP-based therapy has yet proven
to be effective in clinical application, as both Talabostat
(a small molecule FAP-inhibitor) and Sibrotuzumab (a FAP-
targeting monoclonal antibody) were incapable of successfully
passing Phase II trials, as neither therapy could demonstrate
efficacy in colorectal cancer patients.21,22 While these results
were initially perplexing, other studies over the last couple of
years have raised considerable questions about the viability of
FAP as a clinical CAF marker. In their recent study, Li et al.
used single-cell sequencing to characterize the transcriptome
of the TME and demonstrated that only a certain sub-population
of CAFs within the tumor microenvironment actually expressed
FAP and that FAP-expression was completely absent in the other
identified tumor fibroblast sub-population.23 Similar heterogene-
ity of FAP expression can also be observed when immunofluo-
rescence staining of FAP is carried out on primary colon cancer
fibroblasts (Fig. 3).

In addition, numerous studies have shown that epithelial
cells undergoing epithelial-mesenchymal transition (EMT)
also express elevated levels of FAP,24–26 raising doubts about
the specificity of FAP in the tumor microenvironment. In
light of these results, it would not be surprising if the lack of
clinical significance shown by FAP-targeted therapies were
due to the heterogeneous expression of FAP across CAF
populations and other cell types. As such, due to the existence
of non-FAP expressing CAF sub-populations, it is unlikely
that FAP is applicable as a singular marker for CAF identifica-
tion in the tumor microenvironment.

αSMA
Alpha-smooth muscle actin (αSMA), also known as smooth
muscle aortic alpha-actin (ACTA2), is a member of the actin
family, a highly conserved group of proteins that play an
important role in cell motility, structure and integrity. αSMA
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is best known for its role in wound healing, where it is one of
the major causes of myofibroblast contractility, via microfila-
ment bundle and stress fiber regulation. This αSMA-induced
mechanical stress plays a considerable role in the contraction
and maturation of the granulation tissue—new connective tis-
sue that forms on the wound surface during the injury healing
process.27 As the number of myofibroblasts is much higher in
the tumor microenvironment, αSMA has become one of the
go-to markers for identifying CAF populations.28,29

In addition to its role as a marker for cancer-associated
fibroblasts, αSMA has also been identified as a prominent
prognostic factor in tumor patients. αSMA expression corre-
lates strongly with a higher risk of recurrence in colon cancer
patients and higher expression of αSMA-positive fibroblasts
has been strongly linked to lower overall survival in breast30

and colon cancer.31 Myofibroblasts have also been suggested
to play a role in both the secretion of cytokines, such as CXCL12
and Interleukin 6 (IL-6), as well as the physical remodeling of

Figure 1. Molecular crosstalk between CAFs and tumor cells. Secretion of numerous cytokines by both epithelial tumor cells and cancer-
associated fibroblasts forms a complex network of intratumoral crosstalk between the two cell types, affecting numerous different
cellular processes. The list of interactions depicted is not exhaustive. Abbreviations: FAP, fibroblast activation protein α; ACTA2(αSMA),
alpha smooth muscle actin; MFAP5, microfibril-associated protein 5; COL11A1, collagen type XI alpha 1 chain; TNC, tenascin-C;
PDGFRα/β, platelet derived growth factor receptor alpha/beta; VIM, vimentin; S100A4 (FSP1), S100 calcium-binding protein A4; POSTN,
periostin; EPCAM, epithelial cell adhesion molecule; KRT20, keratin 20; WNT7a, Wnt family member 7A; PDGF, platelet derived growth
factor; SHH, sonic hedgehog; IL1β, interleukin 1β; TGF-β, transforming growth factor beta; IL17A, interleukin 17A; WNT10b, Wnt family
member 10B; WNT2, Wnt family member 2; IGF2, insulin like growth factor 2; CXCL6, C-X-C motif chemokine ligand 6; HGF, hepatocyte
growth factor; IL11, interleukin 11; MMPs, matrix metalloproteinases; IL6, Interleukin 6; SDF-1, stromal cell-derived factor 1; CXCL1,
chemokine (C-X-C motif ) ligand 1. [Color figure can be viewed at wileyonlinelibrary.com]
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the extracellular matrix, which has been shown to significantly
alter patient survival rates in esophageal, colorectal and head and
neck cancer.32

However, in a similar manner to FAP and other CAF-
associated markers, such as Transgelin (TAGLN), αSMA has
been suggested to show variable expression between different
CAF subtypes. In a paper published by Öhlund et al. in 2017,
it was demonstrated that αSMA expression drops significantly
in patients and murine-derived CAFs when such cells are
co-cultivated with organoids derived from pancreatic ductal
adenocarcinoma patients. This was found to be due to a transi-
tion from a more myofibroblast-like to a more inflammatory
CAF subtype, caused by paracrine factors, and resulting in a
large drop in αSMA expression.33 Similar results can be seen in
colon cancer, where certain subtypes have been shown to be
characterized by a far lower degree of αSMA expression.23 In
addition, αSMA is also not truly specific for cancer-associated
fibroblasts, as smooth muscle cells and pericytes have also been
demonstrated to express significant levels of the protein.34,35,80

Furthermore, alpha-smooth muscle actin, as a CAF marker, is
also hampered by its intracellular localization, making it unviable

for flow-sorting CAF populations for further functional
assays. All in all, it is difficult to recommend the usage of
αSMA alone as a primary marker for CAF identification, mainly
due to the significant heterogeneity of its expression amongst the
larger CAF population. Primary selection based on αSMA
expression would no doubt result in the loss of large numbers
of cancer-associated fibroblasts that do not express a
myofibroblast-like phenotype.

PDGFRα/β
Platelet-derived growth factor receptors (PDGFRs) are tyro-
sine kinase receptors located on the surface of cells such as
fibroblasts, astrocytes, neuroprogenitors and pericytes36 and
can be divided into two main types—PDGFRα and PDGFRβ.
Both are commonly used as general markers for fibroblasts,
and overexpression of PDGF receptors has been observed in
multiple tumor types, such as glioma, prostate and ovarian
cancer.37 Expression of platelet-derived growth factors
(PDGFs), the ligands of PDGFRs, has also been heavily cor-
related with tumor development and CAF function. For
example, expression of PDGFB has been strongly associated

Figure 2. Subtypes of cancer-associated fibroblasts. An outline of different types of CAFs found in breast, pancreatic, and colon cancer. The
figure does not display an exhaustive list of all CAF subtypes and additional subtypes can be suspected to be present in the TME (and in
other cancer types). Abbreviations: myCAF, myofibroblastic CAF; iCAF, inflammatory CAF; FAP, fibroblast activation protein α; ACTA2 (αSMA),
alpha smooth muscle actin; MMP2, matrix metalloproteinase 2; DCN, decorin; COL1A2, collagen type I alpha 2 chain; PDGFA, platelet derived
growth factor subunit A; TAGLN, transgelin; IL6, interleukin 6; IL11, Interleukin 11; LIF, interleukin 6 family cytokine; CCL11, C-C motif
chemokine ligand 11; CXCL12, C-X-C motif chemokine ligand 12; CD29, integrin beta-1. [Color figure can be viewed at wileyonlinelibrary.com]
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with tumor stroma formation in melanoma,38 while PDGFA
has been shown to promote the recruitment of PDGFRα+

stromal fibroblasts to the outer rim of the tumor site in
xenograft mouse models of lung carcinomas.39 Notably, ele-
vated PDGFRβ expression, in particular, has also been shown
to be associated with Tamoxifen resistance,94 as well as lower
prognosis, drug resistance and higher tumor recurrence rates
in both breast and prostate cancer.94,95

In contrast to FAP and αSMA, the strength of PDGFRs lies
not in their relative specificity for cancer-associated fibroblasts,

but rather in their widespread expression in the overall fibroblast
population present in the tumor (Fig. 3). Neither PDGFRα nor
PDGFRβ show significant upregulation in CAF populations,29

but do seem to be expressed more broadly in fibroblasts than
comparative markers, such as αSMA, and in a manner that is
less responsive to environmental factors such as hypoxia.40 While
this means that PDGFRs are somewhat limited as primary CAF
markers, they can be used as more general fibroblast markers in
combination with more specific CAF markers, due to their more
stable expression, especially when compared to other markers

Table 1. Markers used in the identification of fibroblasts and CAFs

Positive markers Marker comments Surface marker

CAF markers

FAP Most promising target of CAf-based therapies. Has been shown to be mainly
expressed by the non-myofibroblast sub-population of CAFs. Also displayed by
epithelial cells undergoing EMT.23,25,29

Yes

α-SMA/ACTA2 Widely considered to be the most reliable CAF-specific marker. Not expressed by all
functionally active CAFs. Downregulaled in one CAF subtype (CAF-A).23,28,66

No

MFAP5 A novel marker identified by Yeung et al. Suggested to be extremely specific to CAFs.
but is rarely used in existing literature. Recent studies suggest that MFAP5
expression may vary between subtypes.23,29,67,68

No

COL11A1 A novel marker identified by Vazquez-Villa et al. Suggested to be extremely specific to
CAFs, but is rarely used in existing literature.69

No

TN-C A myofibroblast-associated marker that has been used to identify CAFs in the past.
Has been shown to be an important driver of metastasis.28,70–72

No

PDPN Often overexpressed in certain CAF subtypes. Unspecific for fibroblasts and
expressed by tumor cells and macrophages.98–100

Yes

ITGA11 Shown to be upregulated in non-small cell lung cancer CAFs Expressed by numerous
tumor cell lines and shows variability based on environmental factors.101–103

Yes

NG2 A marker expressed by certain CAF sub-populations. Not specific for fibroblasts and
expressed by numerous other cells, such as myeloid and T-cells.17,29

Yes

Fibroblast markers

PDGFRα/β Common markers used for fibroblast identification. PDGFRα is much more widely
expressed over the larger fibroblast population than more specific markers such as
αSMA.29,70,73,74

Yes

VIM Traditional marker for fibroblast identification. Not CAF-specific and widely expressed
by all fibroblasts.45–47

No

FSP-1/S100A4 Common fibroblast marker. Expressed by cells of mesenchymal origins. Not
expressed by all fibroblast present in a tumor. Considered to be a marker for
quiescent fibroblasts, rather than CAFs.6,25,75

No

POSTN Not specific for cancer-associated fibroblasts and is expressed in normal
fibroblasts.41,54

No

COL1 A histochemical marker commonly used in older lo identify fibroblast populations.
Not exclusive to fibroblasts.91,92

No

Negative Markers Marker Comments Surface Marker

EPCAM A known market for epithelial cells. Not expressed by fibroblast cells.14,45,56 Yes

CALD1 Negative fibroblast market. Positive for pericytes.49 No

SMTN Negative fibroblast market. Positive for smooth muscle cells.10,49 Yes

PTPRC Negative marker used to identify leukocytes.25,33,53 Yes

PECAM1 Negative marker used in order to identify endothelial cell populations.14,15,25 Yes

Abbreviations: FAP, fibroblast activation protein α; ACTA2 (αSMA), alpha smooth muscle actin; MFAP5, microfibrillar-associated protein 5; COL11A1, collagen
type XI alpha 1 chain; TNC, tenascin-C; PDPN, podoplanin; ITGA11, integrin α11β1; NG2, neural/glial antigen 2; PDGFRα/β, platelet derived growth factor recep-
tor alpha/beta; VIM, vimentin; FSP-1, fibroblast-specific protein 1; POSTN, periostin; EPCAM, epithelial cell adhesion molecule; CALD1, high molecular weight
caldesmon; SMTN, smoothelin; PTPRC, protein tyrosine phosphatase; receptor type C; PECAM1, platelet and endothelial cell adhesion molecule 1.
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which seem to be sensitive to factors such as CAF subtype
(αSMA, FAP) or hypoxia (αSMA, POSTN). Another strength of
the PDGFRs is that, unlike αSMA, they are surface-bound markers,
allowing for flow cytometry-based sorting of viable fibroblast popu-
lations for long-term assays and cultures.

As with FAP, platelet-derived growth factor receptors are also
considered to be a potential avenue for therapeutic intervention.
Crenolanib, a receptor tyrosine kinase inhibitor for PDGFRα and
PDGFRβ, is currently undergoing phase III trials in advanced
or metastatic gastrointestinal stromal tumor (GIST) patients.41

While this is largely driven by the common nature of PDGFRα
mutations in GIST patients, which is mutated in approximately
10% of all patients,42 the heightened activity of the PDGFR path-
ways in CAFs make them an attractive target for potential thera-
peutics. Furthermore, other PDGFR inhibitors such as Dasatinib
and Imatinib, have been shown to be capable of reducing the
pro-proliferative effect of CAF conditioned media and changing
the microarray gene expression signature of primary cancer-
associated fibroblasts into one more closely resembling normal
non-tumorigenic fibroblasts.43

Vimentin
Vimentin is a type III intermediate filament protein, which
plays an important role in the formation of the cytoskele-
ton network, especially in cells of mesenchymal origin. This
network is key for organelle placement within cells, cellular
migration and adhesion. In addition, Vimentin binds to
phosphorylated extracellular signal-regulated kinase (pERK)
and rhodopsin kinase (RhoK), allowing it to alter actin orga-
nization and initiate mitogen-activated protein kinase (MAPK)
cascades.44

As fibroblasts are strongly characterized by their mesen-
chymal phenotype, Vimentin is highly expressed in fibroblasts
of all types. This has led to the widespread use of Vimentin as
a common method of visually identifying fibroblast populations
through both immunofluorescent45,46 as well as immunohisto-
chemical staining.47 However, the effectiveness of Vimentin as
a CAF-specific marker is greatly hampered by its widespread
expression throughout both the overall fibroblast population45

and numerous other cell types, such as macrophages and adi-
pocytes.29 In addition, Vimentin is expressed by epithelial cells
undergoing epithelial-to-mesenchymal transition (EMT), dur-
ing which tumor cells display heightened expression of a wide
variety of mesenchymal markers.48 As Vimentin is also present
in a number of different cell types of mesenchymal origin, such
as adipocytes and myocytes, its overall specificity as a marker,
even for fibroblasts, is quite low. Furthermore, like αSMA,
Vimentin is hampered by its intracellular localization, making it
incapable of separating viable fibroblast populations via methods
such as fluorescence-activated cell sorting (FACS).

Other Markers
In addition to the four markers highlighted previously, there
are other positive markers for CAFs that have been used to
identify cancer-associated fibroblasts in some capacity. How-
ever, many of them still run into similar issues to the markers
described above, mainly associated with the lack of specificity,
variable expression across the overall CAF population, intra-
cellular localization, or, in some cases, simple obscurity and
lack of characterization.

S100 calcium binding protein A4 (S100A4), also known as
fibroblast-specific protein 1 (FSP1), for example, is a marker

Figure 3. Expression of common markers in patient-derived fibroblasts. Immunofluorescent staining of primary colon cancer fibroblasts
(Neuromics, #CAF05), reveals a heterogeneous expression pattern for both αSMA/ACTA2 (abcam #ab7817, 1/200) and FAP (Santa-Cruz
Biotechnology #sc-65,398, 1/200), while PDGFRα (abcam #ab61219, 1/200) expression in tested cells remains relatively homogenous.
Nuclei of fibroblasts were stained using DAPI (DAPI Fluoromount-G® Mounting Medium). Image is representative of three independent
biological experiments. Cells were imaged using a Zeiss LSM 510 Meta laser scanning confocal microscope (Carl Zeiss, Jena, Germany)
with a Plan-Apochromat 63x/1.40 Oil DIC M27 objective (x60). Images were processed using NIS elements software (Nikon) and ImageJ
1.51 s. Abbreviations: FAP: Fibroblast Activation Protein α, αSMA: Alpha Smooth Muscle Actin, PDGFRα: Platelet Derived Growth Factor
Receptor Alpha, DAPI: 40,6-diamidino-2-phenylindole.
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that has been used in a number of publications in order to
confirm the CAF phenotype of examined cells.49–51 However,
recent studies have raised some suspicion on the specificity of
FSP1, as it has been observed to be less reliable for fibroblast
identification from primary tumor samples than FAP.25 It has
also been confirmed to be expressed by metastatic prostate
cancer-derived epithelial cell lines and tissues.25 Furthermore,
FSP1 expression in fibroblasts is also strongly variable between
different CAF sub-populations.52

Other putative markers, such as Transgelin (TAGLN) and
Periostin (POSTN), are also highly expressed in fibroblast and
CAF populations76 and have been used as secondary markers
alongside the primary markers described above.40,53 However,
much like their more commonly used counterparts, specificity,54

subtype variance,23 and intracellular localization are all aspects
which greatly complicate their use as CAF markers.

Podoplanin (PDPN) is another membrane-bound marker
that has been observed to be overexpressed in CAF popula-
tions. While it is not specific to fibroblasts, being also expressed
in epithelial tumor cells98 and inflammatory macrophages,99

recent studies do suggest that this marker could potentially be
used in order to identify pro-tumorigenic fibroblast subpopula-
tions, as PDPN-positive fibroblasts have been shown to be cor-
related with worse outcomes across multiple different tumor
types.100

In addition to the aforementioned markers, Integrin α11β1
(ITGA11) has also been highlighted as a major collagen recep-
tor that undergoes upregulation in non-small cell lung cancer
CAFs.77,101,102 However, ITGA11 expression has been shown
to be present in numerous different tumor cell lines,103 sensitive
to environmental conditions such as hypoxia,103 and its expres-
sion has been linked to TGF-β signaling in the past,104 which
has been shown to play a role as both an inducer and antago-
nist of certain CAF subtypes.105 All of this suggests that further
research is necessary in order to validate the subtype-specificity
of this specific integrin.

Two markers, Microfibril Associated Protein 5 (MFAP5)
and Collagen Type XI Alpha I Chain (COL11A1), have also
been suggested to be highly specific CAF-markers.29,55 Their
usage is currently still limited amongst the academic com-
munity, and further characterization of these markers and
their behavior and expression in different tumor types and
CAF subtypes is sorely needed. Results obtained by Li et al.
seem to suggest that MFAP5 expression, at the very least, is
not widely conserved between different CAF populations and
can significantly vary based on the subtype in question.23

However, MFAP5 has also been shown to be greatly elevated
in CAF secretomes of oral tongue squamous cell carcinoma
patients, where its expression was linked to the activation
of various pro-growth pathways such as MAPK.88 This sug-
gests that while its expression may be variable in the overall
CAF population, MFAP5 may still potentially play a role
in identifying critical pro-tumorogenic cancer-driving CAF
subpopulations.

Finally, there are a number of negative markers that are
commonly used to help in the identification of fibroblast/CAF
populations. Due to the lack of a single definitive marker of
CAFs, and the lack of specificity for many of the positive
markers used for CAF identification, negative selection is
vital in order to exclude a number of cell types that can be
typically found in tumor tissue samples. Markers such as
epithelial cell adhesion molecule (EPCAM) and Smoothelin
(SMTN) are widely used to discriminate against epithelial14,45,56

and smooth muscle cells,10,49 respectively. Other negative markers,
such as CD45, CD34 and CD11b have also been used to
exclude non-fibroblast cell populations such as leukocytes
and endothelial cells.57

Heterogeneity and Plasticity: Challenges and Future
Possibilities
All in all, it is clear that there are no single definitive markers
that can be used in order to identify CAF populations. Indeed,
considering the large number of roles that cancer-associated
fibroblasts can play in the tumor environment, including both
tumor-suppressive and tumor-promoting activities,6 as well as
the constantly increasing number of various CAF subtypes, it
becomes questionable whether or not such a convenient marker
even exists in the first place.

This observed heterogeneity of CAFs potentially reflects a
situation similar to the one seen in cancer stem cells. Like
CAFs, cancer stem cells have been shown to be highly plastic
and express various markers which vary over time.93 As such,
the definition of a cancer stem cell refers more to a specific
cell state rather than to a distinct cell type. Indeed, flow cyto-
metry experiments coupled to Markov model predictions have
highlighted that different purified breast cancer cell populations
display extensive plasticity and always return to a phenotypic
proportion equilibrium over time.51 Culturing conditions, such
as the presence of a 3D-matrix, as well as numerous extrinsic
factors, have also been suggested to largely influence gene
expression in fibroblasts.106 Even standard cell culture passag-
ing has been associated with changes in the gene expression
profile of certain types of fibroblasts, such as rheumatoid arthri-
tis synovial fibroblasts.107 Keeping all of this in mind, it may be
that CAFs could be considered to be a dynamic state of fibro-
blasts, rather than a unique population. In addition, epigenetic
changes could directly influence CAFs and their marker expres-
sion.6 Future studies that systematically address the expression
of CAF markers, combined with genomic and transcriptomic
profile analysis of single fibroblasts, could potentially help eluci-
date these controversies.

In light of this, functional selection, based on physical
characteristics and unhampered by heterogeneous marker
expression, may serve as an alternative approach for identify-
ing CAF populations. Due to their higher contractility, con-
traction assays have been previously used to differentiate
between CAFs and normal fibroblasts.88 As increased contrac-
tility is a characteristic that is traditionally more associated
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with myofibroblast subtypes, rather than secretory CAF sub-
types, it could potentially serve as a novel avenue of fibroblast
characterization and a method used for differentiating between
CAF subtypes in the future. In addition, three-dimensional
hydrogel assays, using substances such as collagen or matrigel,
are another way through which different CAF subtypes could
potentially be tested and characterized in a functional manner.
In fact, marker heterogeneity may even turn out to be a boon,
rather than a bane, as subtype-specific marker expression could
hypothetically allow for the targeting of these populations in a
relatively specific manner. A recent study by Su et.al highlights
the potential of this approach, as they were able to pin down a
subpopulation of Neprilysin (CD10) and G protein-coupled
receptor 77 (GPR77) positive fibroblasts that were shown to
play a significant role in promoting chemoresistance and cancer
stemness via persistent p65-driven NF-κB activation.89

Conclusion
Regardless, additional clarity is sorely needed in the field, as
the inherent vagueness that surrounds the classification of
cancer-associated fibroblasts has already led to rather conflict-
ing results. In Nature’s News and Views section, E. Wagner
highlighted two articles published in the Journal of Experi-
mental Medicine where the effect of IKKβ deletion was exam-
ined in cancer-associated fibroblasts.58 Despite looking at
the same gene, the two papers came at two separate, almost
contradictory, conclusions, suggesting that deletion of IKKβ
results in both enhanced tumor growth16 and decreased
inflammation and tumor suppression.59 While other experi-
mental differences may play a significant role in the results
observed, it should still be noted that the two papers used dif-
fering protocols and markers for fibroblast identification
(COL I and COL VI) and characterization. This serves to
underscore the potential difficulties that may arise when the
definition of cancer-associated fibroblasts is so extremely
vague and the use of defining markers so variable between dif-
ferent publications.

This lack of specific definition is further confounded by the
extreme heterogeneity and plasticity that can be observed
within the overall CAF population (Figs. 2 and 3). As men-
tioned before, the marker expression within CAF subtypes can
vary significantly, to the point where some of the most com-
monly used CAF markers, such as FAP, are simply non-existent
within certain CAF-subtypes.23 This, in turn, casts doubt when
such markers are used to produce results that are extrapolated to
apply to the CAF population at large. While the usage of neg-
ative markers is relatively common, the number of positive
markers used for CAF selection is still typically limited to one
or two and often include markers that have been clearly dem-
onstrated to be extremely heterogeneous (αSMA and FAP).
This leaves open the possibility that the chosen markers could
have selected for specific or excluded certain sub-populations.
While this is something that can be taken into account, it does

potentially raise questions about a number of previously pub-
lished studies that have not considered this subtype variance.

When selecting for CAF populations using antibody-based
methods such as FACS, it is essential that multiple surface
markers are used in order to avoid any chance of introducing
unintentional subtype bias. Other available surface markers
such as PDGFRα/β work well here, as do more general fibro-
blast surface markers like Thy-1 cell surface antigen (CD90),
provided that the cell population is also subjected to selection
with negative markers.57,60 This is especially important, as a
significant number of commonly used fibroblast markers dis-
play expression over a number of different cell types,25,34 run-
ning the risk of inadvertent sample contamination if a proper
negative selection is not carried out. Further stratification of
the isolated general population could then be carried out using
various more subtype-specific markers such as FAP, PDGFRβ
and GPR77/CD19.23,89,96

All of this serves to underline the importance of further
research into the roles and characteristics of fibroblasts in the
tumor microenvironment. A number of studies have already been
conducted in order to identify the various CAF subtypes that
reside within the overall tumor microenvironment.23,33,56,89,90,96

These subtypes have been shown to possess extreme variabil-
ity in regards to their marker expression, with certain sub-
types showing almost no expression of certain markers, such
as FAP23 or PDGFRβ.96 Others have highlighted CAF sub-
populations with unique surface markers, such as GPR77
and CD10, which are capable of maintaining cancer stem-
ness and promoting chemoresistance.89 Even aspects such as
tumor proximity33 have been shown to play a key role in the
development of different CAF subtypes with significant func-
tional and phenotypical differences. Keeping this in mind, stud-
ies aimed at identifying and characterizing the distribution of
various CAF subtypes in tumors, such as those carried out by
Costa et al. in breast cancer, have recently risen to increased
prominence.56 These studies are incredibly vital, as the charac-
terization of these novel subtypes, their marker expression and
discovery of new functional categories of cancer-associated fibro-
blasts is essential in understanding exactly how to identify these
elusive cells, as well as the role that they play within tumors.

Furthermore, despite the tumor-promoting and tumor-
suppressing role of CAFs in the TME, it is also important
to consider the opposite - how various aspects of the TME
change the characteristics of fibroblasts. CAF phenotype and
marker expression have been suggested to vary significantly
when in the presence of other members of the tumor micro-
environment61,62 and even aspects such as fibroblast proximity
to tumor cells have been identified as potential drivers of fibro-
blast subtype differentiation.33 Additionally, further research
will hopefully manage to better elucidate how tumor fibroblasts
obtain and maintain a “CAF state” and dissect the various sig-
naling pathways involved. Finally, ass most therapies targeting
cancer-associated fibroblasts have so far exhibited mixed results,
future studies, using novel methods such as lineage tracing,
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single-cell sequencing, or immunophenotyping, will allow us
to better understand the function and behavior of tumor-
associated fibroblasts, thereby improving the capacity to identify,
isolate and target these cells in a more specific and therapeutically
viable manner.
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