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Abstract

Background: Disease named entity recognition (NER) is a fundamental step in information processing of medical
texts. However, disease NER involves complex issues such as descriptive modifiers in actual practice. The accurate
identification of disease NER is a still an open and essential research problem in medical information extraction and
text mining tasks.

Methods: A hybrid model named Semantics Bidirectional LSTM and CRF (SBLC) for disease named entity recognition
task is proposed. The model leverages word embeddings, Bidirectional Long Short Term Memory networks and
Conditional Random Fields. A publically available NCBI disease dataset is applied to evaluate the model through

TaggerOne and DNER.

applied in many aspects of medical text processing.

comparing with nine state-of-the-art baseline methods including cTAKES, MetaMap, DNorm, C-Bi-LSTM-CRF,

Results: The results show that the SBLC model achieves an F1 score of 0.862 and outperforms the other
methods. In addition, the model does not rely on external domain dictionaries, thus it can be more conveniently

Conclusions: According to performance comparison, the proposed SBLC model achieved the best performance,
demonstrating its effectiveness in disease named entity recognition.

Keywords: Biomedical informatics, Text mining, Machine learning, Neural networks

Background

Medical named entities are prevalent in biomedical
texts, and they play critical roles in boosting scientific
discovery and facilitating information access [1]. As a
typical category of medical named entities, disease
names are widely used in biomedical studies [2], including
disease cause exploration, disease relationship analysis,
clinical diagnosis, disease prevention and treatment [3].
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Major research tasks in biomedical information extraction
depend on accurate disease named entity recognition
(NER) [4-8], and how to accurately identify disease
named entities is a fundamental and essential research
problem in medical information extraction and text
mining tasks.

Disease NER involves many complex issues, which in-
duce difficulties in actual practice [3]. Disease names are
usually generated by combining Greek and Latin roots
and affixes, e.g., hemo-chromatosis. More and more un-
known names are difficult to identify from a morphology
aspect. Many disease names also frequently contain
disease descriptive modifiers, e.g., liver cancer. These
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modifiers may be related to human body parts or de-
grees of disease, e.g. recurrent cat-eye syndrome. This
may cause difficulties in identifying modifiers from other
types of medical named entities (e.g., syndrome). More-
over, disease names may have multiple representation
forms. For instance, hectical complaint and recurrent
fever are the same disease but represented differently.
Finally, there exist a large amount of disease name ab-
breviations in medical texts. Some of them may not be
standard, such as those user-defined abbreviations listed
in the appendix of clinical trial texts.

There are large number of biomedical texts, e.g,
PubMed, PMC OA full texts, and Wikipedia. In order to
effectively obtain the semantic information from the
texts, word embedding training method named Negative
Sampling (NEG) Skip-gram [9] was proposed by Mikolov
et al. to learn high quality vector representations from a
large number of unstructured texts. This method could
speed up the vector training process and generate better
word embeddings. The method simplified the traditional
neural network structure, and thus could adapt to a large
number of texts. It could also automatically generate se-
mantic representations of words in text context. Recently,
many deep neural networks, such as the Long Short Term
Memory network (LSTM) model [10], have been widely
used to extract text context features. A variety of relevant
models that integrate LSTM to train word contextual
features and Conditional Random Field (CRF)-based
methods to optimize word sequence parameters have
been widely used in NER tasks [11]. These models im-
proved the feature extraction process by reducing the
work-load of feature selection. In addition, word embed-
dings have been proved to be effective in NER tasks [12].
Motivated by both the effectively applied LSTM model
and the usefulness of word embeddings, this paper com-
bines the word embeddings containing the semantics of
disease named entities with LSTM to improve the per-
formance of disease NER tasks.

To this purpose, we propose a new model named
SBLC for disease NER. The model is based on word em-
beddings, bidirectional LSTM and CRF. As a multi-layer
neural network, the model consists of three layers. The
first layer is word embedding, which is generated from
medical resources through massive medical text training.
The second layer is Bi-LSTM, which is used to obtain
the context of semantic structures. The third layer is
CRF, which captures relationship among token labels.
We evaluate the SBLC model by comparing it with the
state-of-the-art methods including NCBI, UMLS, CMT,
MeSH, cTAKES, DNorm and TaggerOne. Based on the
standard publicly available NCBI disease dataset that
contains 6892 disease named entities, the SBLC model
achieves an F1 score of 0.862, outperforming all the
other baseline methods.
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The major contributions of this paper lie in the follow-
ing two aspects. First, the proposed SBLC model system-
atically combines word embedding, bidirectional LSTM
and CRF for disease NER tasks. Second, this revised
model by integrating Ab3P improves the current per-
formance compared with state-of-the-art methods on a
publically available dataset.

The rest of the paper is organized as follows: The
section Related Work gives a brief overview of the back-
ground of the disease NER and related work. The sec-
tion Methods introduces the methodology of the SBLC
model. The section Result presents the evaluation of the
proposed SBLC model. The section Discussion analyzes
error cases, discusses properties of medical semantic
words, and points out the limitations of our model.
Finally, the section Conclusion concludes this study.

Related work

Disease NER

In medical domain, most existing studies on disease
NER mainly used machine learning methods with super-
vised, unsupervised or semi-supervised training. For ex-
ample, Dogan et al. [2] proposed an inference-based
method which linked disease names mentioned in med-
ical texts with their corresponding medical lexical en-
tries. The method, for the first time, used Unified
Medical Language System (UMLS) [13] developed by
the National Library of Medicine in the NCBI disease
corpus. Some similar systems, such as MetaMap [14],
cTAKES [15], MedLEE [16], SymText / MPlus [17],
KnowledgeMap [18], HiTEX [19] have been developed
utilizing UMLS. Although UMLS could cover a wide
range of medical mentions, many of these methods
failed to identify disease mentions not appearing in the
UMLS. In addition, the NER efficiency in terms of ac-
curacy was not sufficiently high for practical usage. For
example, the F1 in NCBI dataset of official MetaMap
was only 0.559 as reported in [2].

DNorm [3] was one of the recent studies using a NCBI
disease corpus and a MEDICS vocabulary. It combined
MeSH [20] and OMIM [21]. DNorm learned the similar-
ity between disease names directly from training data,
which was based on the technology of paired learning to
rank (pLTR) strings normalization. Instead of solely rely-
ing on medical lexical resources, DNorm adopted a ma-
chine learning approach including pattern matching,
dictionary searching, heuristic rules. By defining a vector
space, it converted disease mentions and concepts into
vectors. DNorm achieved an F1 score of 0.809 on the
NCBI disease corpus.

In 2016, Leaman and Lu proposed the TaggerOne [22].
It was a joint model that combined NER and normalized
machine learning during training and predicting to over-
come the cascading error of DNorm. TaggerOne consisted
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of a semi-Markov structured linear classifier for NER and
a supervised semantic index for normalization, and en-
sured high throughput. Based on the same NCBI disease
corpus, TaggerOne achieved an F1 score of 0.829.

With respect to the methods applying deep learning to
NER, some neural network models that could automat-
ically extract word representation characteristics from
raw texts have been widely used in the NER field (e.g.,
[23]). Using deep learning, some sequence annotation
methods were also proposed and applied to disease NER
tasks (e.g., [24, 25]). As a typical method, Pyysalo et al.
[12] used word2vec to train a list of medical resources,
and obtained a better performance on a NCBI Disease
corpus. Recently, Wei et al. proposed a multi-layer
neural network, DNER [24], which used GENIA Tagger
[26] to extract a number of word features including
words, part-of-speech tags, words chunking information,
glyphs, morphological features, word embeddings, and
so on. After extraction, the word features were embed-
ded as inputs to a bidirectional Recurrent Neural Net-
work model, and other features like POS tags were used
for a CRF model. The normalization method of diction-
ary matching and the vector space model (VSM) were
used together to generate optimized outputs. The
overall performance of the model in terms of F1
score was 0.843 on the NCBI disease corpus. To our
knowledge, DNER was the best performance deep
learning-based method.

Motivated by the benefits of word embedding and
deep learning from the existing research, we intend to
utilize external medical resources for word representa-
tion and combine bidirectional LSTM and CRF for NER
recognition. We use a large number of medical resources
to train the word embeddings model in an unsupervised
manner, and combine the deep learning techniques for
disease NER tasks.

Word embedding training

Success of machine learning algorithms usually depended
on appropriate data representation, since different repre-
sentations could capture different features of the data.
Distributed word representation proposed by Hinton [27],
has been widely used. The word distribution hypothesis
held that the words in a similar context have similar
meanings, which convey similarities in semantic dimen-
sions. Along with the recent development of machine
learning techniques, more and more complex models have
been trained on larger datasets and achieved superior per-
formance [28].

Mikolov et al. [29] proposed a skip-gram method for
calculating vector representations of words in large data
sets. The compositions of disease named entities often
contained rare medical words. In order to improve the
computational efficiency, the Skip-gram model removed
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the hidden layer so that all words in input layer
shared a mapping layer. In the skip-gram method,
Negative Sampling (NEG) was used. It was a simpli-
fied version of Noise Contrastive Estimation (NCE)
[30]. NEG simplified NCE by guaranteeing word vec-
tor quality and improving training speed. NEG no
longer used a relatively complex Huffman tree, but
rather a relatively simple random negative sample,
which could be used as an alternative for hierarch-
ical softmax.

Motivated by the related work, particularly from
Mikolov et al. [9, 29], we apply the NEG skip-gram
method for disease NER. The method is described as fol-
lows. Given a training text sequence wy, ..., wg at pos-
ition ¢, the distribution score s(w,c;8) for the true
probability model was calculated using Eq. (1). The tar-
get of w was a set of context words w;_,;, ..., W, _1, W1 1,

veey Wi e

T,/

s(wy, 3 0) = Vi Vi, ~1<j<n, j=0 (1)

When using the negative sampling method, k negative
cases (W, ;, 1<i<k) were randomly sampled in the noise
distribution Q(w) for each positive case (wy, ¢;). 0 was a
logistic function. The negative function for negative
samples was shown in Eq. (2):

M)~

Lo(wy,c;) = logP(y = 1wy, c;) + log(1-P(y = 1|, c.))

_

-

—

= logo(s(wi,c;;0)) + Y logo(=s(i.ici;0))

i=

(2)

The value k was determined by the size of the data.
Normally, k ranged within [5, 20] in a small-scale data,
while decreased to [2, 5] in a large-scale data [9].
Equation (2) could be solved by a random gradient
rise method.

Bi-LSTM & CRF

As a typical deep learning method, the long and
short memory network (LSTM) [10] was usually
used for annotation tasks of text sequences. LSTM,
as shown in Eq. (3), could capture long distance in-
formation by adding several threshold cells which
controlled the contribution of each memory cell.
Therefore, LSTM enhanced the ability of keeping
long distance context information. Longer contextual
information could help the model to learn semantics
more precisely.
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ir = o(Waxe + Wiihy 1 + Weicr 1 + by)

Cr = (l—it)QCt_l + lt® tanh(chxt + thht—l + bc)
0 = G(onxt + Whoht—l + Wcoct + bo)

h; = 0,0 tanh(c;)

(3)

Bidirectional LSTM (Bi-LSTM) could simultaneously
learn forward and backward information of input sen-
tences and enhance the ability of entity classification. A
sentence X containing multiple words could be repre-
sented as a set of dimension vectors (xy, X, ..., x,,). y; de-
noted the forward LSTM and y, denotes the backward

LSTM. ¥, and y, were calculated by capturing from the
LSTM the preceding and following information of the
word ¢, respectively. The overall representation was
achieved by generating the same backend sequence in
LSTM. This pair of forward and backward LSTMs was
Bi-LSTM. This representation preserved the context in-
formation for the word .

Since there was more and more research focusing on
Bi-LSTM and Conditional Random Field (CRF) in NER
tasks, the following of this subsection described CRF. It
was first introduced as a sequence data tag recognition
model by Lafferty et al. [11]. Considering that the target
of NER was label sequences, linear chain CRF could
compute the global optimal sequence, thus it was widely
used to solve NER problems. The objective function of a
linear chain CRF was the conditional probability of the
state sequence y given the input sequence x, as shown
in Eq. (4).

P(ylx) = le) exp (Z Mef k(ynymxt)> (4)
k=1

fiWeys -1, %,) was a characteristic function. A; denoted
the learning weights of the function features, while y, ;
and yreferred to the previous and the current states, re-
spectively. Z(x) was the normalization factor for all state
sequences, as shown in Eq. (5).

K
Z(x) = Z exp (Z’lkfk(ytvyt—lvxt)> (5)

y k=1

The maximum likelihood method and numerical
optimization L-BFGS algorithm were used to solve the

N
parameter vector A = {Ai,...,Ax} in training process.
The viterbi algorithm was used to find the most likely
hidden state sequences from observed sequences [31].

Methods

This paper presents a new model SBLC for disease
named entity recognition based on semantic word
embedding, bidirectional LSTM, and CRF. The model
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consists of three layers: 1) a semantic word embedding
layer, 2) a bidirectional LSTM layer, and 3) a CRF and
Ab3p layer. The overall architecture of the SBLC model
shown in Fig. 1.

In the model, we first train semantic word vectors on
three corpora including PubMed, PMC OA full text and
Wikipedia. The trained word vectors are then projected
to the vectors trained on a standard NCBI corpus. The
word vectors containing text semantic information are
input to the Bi-LSTM layer. The NCBI training corpus
is further used for Bi-LSTM parameter training. We
optimize sequence parameters by the CRF layer. Fi-
nally, the model identifies disease abbreviations using
an Ab3P module.

The first layer is word embedding. The Skip-gram
model based on Negative Sampling is used to train word
embeddings on the three large-scale medical datasets.
Based on a previous work [12], we extract the texts from
PubMed, PMC Open Access (OA), and Wikipedia. A
total of 22,120,000 abstract records from PubMed,
672,000 full-texts from PMC OA, and 3,750,000 articles
from Wikipedia are retrieved by the end of 2013. The fi-
nally extracted texts as a corpus contain a total of 5.5
billion words. The corpus is then used as the training
dataset for word embedding generation.

The second layer is Bi-LSTM, which is used to learn
context information. LSTM captures long distance infor-
mation through a threshold unit, thus it can learn more
semantic features through longer contextual informa-
tion. Using the Bi-LSTM structure can simultaneously
learn the context information of preceding and following
sentences. From our previous empirical studies, the
Bi-LSTM can enhance entity classification performance.

The third layer is CRF and Ab3p, which captures the
relationship among word part-of-speech labels. We use
NLTK toolkit [32], a widely used natural language pro-
cessing tool, for part-of-speech labeling. In the CRE, the
Viterbi algorithm is used to solve the global optimal se-
quence problem. Finally, the BIO method is used for
NER annotation and the Ab3P is used to identify add-
itional disease abbreviations.

In general, a disease NER task can be regarded as a
process of assigning named entity tags to words. A single
named entity may consist of multiple words in order.
Accordingly, we use the BIO method for sequenced-
word labeling. Each word is marked with BIO labels. A
word is tagged with a B label if it is at the beginning of a
named entity. If the word is inside the entity but not at
the beginning, it is tagged as I. Words that are not
named entities are marked as O.

The labels of named entities are mutually dependent.
For example, an I-PERSON cannot appear after a B-LO-
CATION label. Therefore, the BIO labels cannot be
tagged independently. We use a CRF method to calculate
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the possibility score of each label from the Bi-LSTM out-
put. The objective function s(Xy), as shown in Eq. (6), is
used to calculate the probability of each label. The higher
the value, the higher probability of the predicted label to
be chosen.

S(X’y) = Zpsemi’yi + ZAyivyHl (6)

i=1 i=0
For an input sentence set X = (xy, xy, ..., x,,), P**” is a
score matrix, which is the output of the bidirectional
LSTM network containing the medical semantic fea-
tures. P**" is of size n x k, where k is the number of dif-
ferent BIO labels and it is set to 3 in this paper. A is a
matrix of transition scores and A, ; represents the transi-
tion score from the BIO label; to label;. y, and y, are the
beginning and ending labels of a sentence, respectively.
We use a softmax function p(y|X) to calculate the
probability of sequence y from all possible label se-
quences, as shown in Eq. (7).

exp(s(X,y))
sevy €XP(s(X,7))

pOIX) = 5 (7)

The final computation task is to find the point esti-
mate y* of all possible outputs y such that the

conditional log-likelihood probability P(y|X) is maxi-
mized, as shown in Eq. (8).
¥ = arg max( logP(y|X)) (8)

In the task of disease NER, disease abbreviations are
often interfered by other non-disease abbreviations. For
example, a disease name CT appearing in a clinical text
may refer to Computed Tomography (non-disease) or
Copper Toxicosis (Wilson disease). Thus, the identifica-
tion of CT as Computed Tomography is incorrect.

The abbreviation recognition is not effective using
solely word embeddings generated by the NEG skip-
gram training, since the disease abbreviations are easily
conflicted with other types of non-disease abbreviations.
Taking the same example, CT is expected to be classified
as Copper Toxicosis (ID 215600 in OMIM (Online
Mendelian Inheritance in Man)). However, the most
similar vocabularies associated with the word embed-
dings are the following 5 ranked tuples (noncontrast CT,
0.8745), (MDCT ray, 0.8664), (Computed tomography,
0.8643), (non-contrast, 0.8621), and (unenhanced, 0.8505),
where the first tuple element refers to the words relevant
to CT and the second element is their similarity values.
However, the similarity between CT and target word
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Copper Toxicosis is as low as 0.003, causing the difficulty
in the identification of disease abbreviation Copper Toxi-
cosis. To that end, we use Ab3P [33], available at http://
www.ncbinlm.nih.gov/CBBresearch/Wilbur/, to identify
disease abbreviations. Evident in previously reported re-
sults, Ab3P has an F1 score of 0.9 and 0.894 on the Med-
stract corpus and the MEDLINE annotation set,
respectively. It defines short form (SF) as abbreviations
and long form (LF) as the full representations of the
abbreviations. Ab3P uses relaxed length restrictions
and tried to find the best LF candidates by searching
for the most reliable strategy out of seventeen strat-
egies. For example, strategy FC denotes that a SF
character matches the 1st character of a word in LF.
Strategy FCG denotes that a SF character matches
the character following a non-alphanumeric and
non-space character in LF.

The BIO labels for the identified abbreviations by
SBLC and Ab3P are Setsgrc and Setapsp respectively.
The final label sets are computed asSetsg;cU Setqpsp. If
there is no identification output for an abbreviation
using SBLC, the identified label by Ab3P is applied as
the final result. In cases the identified labels from SBLC
and Ab3P are different, the labels by Ab3P are taken as
the correct identification. In this way, Ab3P in identify-
ing abbreviations of disease named entities is used to
supply the SBLC, thus improving the overall NER
performance.

Results

Dataset

We use a publicly available dataset, the NCBI disease
corpus [2], to evaluate the performance of the proposed
SBLC model. The dataset is developed and annotated by
the research groups from American National Center for
Biotechnology Information (NCBI) and American Na-
tional Institutes of Health (NIH). It has been frequently
used in disease NER tasks [3, 22, 24]. The dataset con-
tains 793 article abstracts from PubMed, and includes
over 6000 sentences and 2136 unique disease concepts.
The dataset is manually annotated by 14 persons having
medical informatics research backgrounds and medical
text annotation experiences. The dataset consists of
three sub-datasets: a training data set (593 texts), a de-
velopment data set (100 texts), and a test data set (100
texts). Detailed statistics information of the NCBI data-
set is shown in Table 1.

Baseline

To evaluate the effectiveness of the SBLC, the follow-
ing 9 baseline methods are used in performance
comparison:
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Table 1 The statistics of the NCBI dataset for disease NER

Characteristics Training Developing Testing Total
# of PubMed article abstracts 593 100 100 793
# of annotated disease mentions 5145 787 960 6892
# of unique annotated disease 1710 368 427 2136
mentions

Avg. sentences/abstract 10 10 10 10
Avg. words/sentence 20 22 22 21
Avg. words/abstract 217 226 232 225

1) Dictionary look-up method [2]. It uses Norm from
the SPECIALIST lexical tools to identify disease
names in the MEDIC lexicon.

2) cTAKES [15]. The cTAKES NER component
implements a dictionary look-up algorithm within a
noun-phrase look-up window. The dictionary is a
subset of UMLS, including SNOMED CT and
RxNORM concepts guided by extensive consultations
with clinical researchers and practitioners. Each
named entity is mapped to a concept from the
terminology. The cTAKES is available at http://
ctakes.apache.org/. In the comparison, we use the
latest version cTAKES 4.0.

3) MetaMap [14]. MetaMap is based on lexical look-up
to identify the UMLS Metathesaurus concepts in
biomedical texts. In the experiment, we use MetaMap
MEDIC filtering to restrict output results to disease
names.

4) The Inference Method [2]. It tries to link diseases
to their corresponding medical lexical entries. It
designs string matching rule combinations that map
annotated strings to standard disease dictionaries.
The method was tested by the manually annotated
AZDC disease corpus and the PubMed abstract
texts.

5) DNorm [3]. The method is based on pairwise
learning to rank (pLTR), which has been successfully
applied to large optimization problems in
information retrieval. It learns similarities
between mentions and concept names, including
synonymy and polysemy.

6) CRE + UMLS, CRF + CMT, CRE + MeSH [34].
These are several hybrid combination strategies
involving CRF and UMLS, CRF and Convergent
Medical Terminology (CMT), as well as CRF and
Medical Subject Headings (MeSH).

7) C-Bi-LSTM-CRF [34]. It extracts the prefix and
suffix information for each word at the character-
level in training text. The method consists of
three layers. The first layer is a character-based
Bi-LSTM layer designed to learn character-level
expressions of words. The second layer is a
word-based Bi-LSTM layer. The third layer is a
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CRF layer, which captures the relations among
labels.

8) TaggerOne [22]. This method is developed by the
National Center for Biotechnology Information,
USA. It uses a semi-Markov structured linear
classifier for NER and normalization, simultaneously
performs NER and normalization during training and
prediction.

9) DNER [24]. Based on a deep learning method
Bi-RNN, this method recognizes named entities
using a support vector machine classifier. Dictionary
matching and vector space model based
normalization method are used to align the
recognized mention-level disease named entities
in MeSH.

We further analyze the functional characteristics of all
the baseline methods in terms of using “dictionary
look-up”, “disease name normalization”, “word embed-
ding”, “LSTM”, and “CRF”, as shown in Table 2. “Y”
means that a method contains a specific function and
“N” means not. As can be seen in the table, most of the
methods use disease name normalization approach and
half of them use CRF. Only SBLC and C-Bi-LSTM-CRF
use LSTM. SBLC is the only method that uses word em-
bedding and it does not rely on dictionary look-up nor
disease name normalization.

Evaluation metrics

We use three widely used evaluation metrics, precision,
recall and Fl-score, in disease NER studies (2, 3, 24, 34,
35] and other types of NER studies [23, 25, 31]. There
are four possible outcomes for an instance in a testing
data: An instance will be classified as a disease when it

Table 2 Parameter combination comparison
Methods

Dictionary Disease name Word LSTM CRF

look-up  normalization embedding

Dictionary Y Y N N N
look-up [2]

CTAKES [15] Y Y N N Y
MetaMap [14]

<
=<
=z
=z
=z

Inference
Method [2]

CRF + UMLS [34]
CRF + CMT [34]
CRF + MeSH [34]
DNorm [3]
C-Bi-LSTM-CRF [34]
TaggerOne [22]
DNER [24]

SBLC

zZ z zZz zZ < < < <
Zz < < zZz < < =< <
< z z z z z z =z
< z z < z z z =z
< < zZz < zZ < =< <
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is truly a disease (true positive, TP); it will be classified
as a disease when it is actually a non-disease (false posi-
tive, FP); it will be classified as a non-disease when it is
actually a disease (false negative, FN); or it will be classi-
fied as a non-disease and it is truly a non-disease (true
negative, TN). Based on these 4 possible outcomes, pre-
cision, recall and F1-score are defined as follows:

Precision: the proportion of instances that are cor-
rectly labeled as diseases among those labeled as
diseases.

P

Precision = ———
TP + FP

)
Recall: the proportion of disease instances that are cor-

rectly labeled.

TP

Recall = ———
TP + FN

(10)

F1 score: the harmonic mean of precision and recall.

2 X Precision X Recall

F1 (11)

Precision + Recall

Parameter tuning

In SBLC, there are a number of parameters. In the par-
ameter tuning process, we try different combinations of
the parameters and record the corresponding perfor-
mances in terms of F1 scores based on the training data-
set. Eventually, we obtain a list of optimized parameter
values, as shown in Table 3.

In addition, the increase of the hidden layer dimension
of Bi-LSTM network may lead to high computational
complexity. To optimize the network layers, we have
tried different dimensions of hidden layers ranging from
50 to 200 incrementally, with a step of 50, to test the
performance of the Bi-LSTM network on the training
dataset. From the result shown in Table 4, the F1 score
is 0.768 using 50 dimensions of hidden layers and is in-
creased to 0.802 using 100 dimensions of hidden layers.
However, the F1 score drops to 0.753 and 0.768 when

Table 3 The optimized parameter settings of the LSTM network

Parameter Setting Description

Word_dim 200 Token embedding dimension
Word_LSTM_dim 100 Token size in LSTM hidden layer
Word_bidirectional TRUE Using Bi-LSTM

Word Embedding TRUE Using word embedding

CRF TRUE Using CRF

Dropout 1 Input droupout

Learning method SGD SGD Adadelta Adam
Abbreviation TRUE Using Ab3P
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Table 6 Performance comparison using different combinations

in Bi-LSTM of external training datasets
Dimensions Precision Recall F1 Pre-Data Sets Precision Recall F1
Bi-LSTM 50 0.802 0.738 0.768 Wikipedia 0.842 0.838 0.840
100 0.848 0.761 0.802 PMC (full text) 0.866 0.856  0.861
150 0.838 0.684 0.753 PubMed (abstract) 0.847 0838 0.843
200 0.848 0.702 0.768 PubMed (abstract) + PMC (full text) 0.866 0.858 0.862
The highest values are denoted in bold type Wikipedia+PubMed (abstract) + PMC (full text)  0.865 0858 03861

the dimension number of the hidden layers is increased
to 150 and 200, respectively. In order to have a lower
computational complexity, we select 100 as the best di-
mension number of hidden layers for the Bi-LSTM
network.

The number of word embedding dimensions may also
affect the method performance and computational com-
plexity. Similarly, we set the word embedding dimen-
sions from 50 to 200, with a step of 50. From the result
shown in the Table 5, the highest F1 score is 0.862 when
the dimension equals to 200. Consequently, we use
200, which is also commonly used in many other
NER tasks as the best dimension setting in word em-
bedding generation.

Results

During word embedding training, different training data
sources may affect the quality of generated word embed-
ding. We use three datasets: 1) A PubMed dataset com-
posed of 22,120,000 paper abstracts. 2) A PMC dataset
containing 672,000 full-text publications, and 3) A Wiki-
pedia dataset containing 3,750,000 articles.

We test the performance of disease NER using differ-
ent combinations of the datasets. As shown in Table 6,
with respect to F1 score, using the PubMed (abstract)
and the PMC (full text) separately achieve an F1
score of 0.843 and 0.861, respectively. Using the
PubMed (abstract) + PMC (full text) obtains the best
F1 performance.

From the result, Wikipedia is not effective on both in-
dependent usage and combination. This might be caused
by our incomplete Wikipedia training dataset, since the
dataset contained only part of disease named entries and
some disease names were not being covered. Moreover,

Table 5 Effects of different parameter settings of word embedding
dimensions

Dimensions Precision Recall F1
Word embeddings 50 0816 0.737 0.774
100 0.834 0.750 0.790
150 0.859 0.686 0.763
200 0.866 0.858 0.862

The highest values are denoted in bold type

The highest values are denoted in bold type

Wikipedia is not a specialized medical corpus thus much
non-medical content were involved. The reason was also
reported by [36] similarly. We therefore use the com-
bination of the PubMed (abstract) and the PMC (full
text) as the external datasets for word embedding
pre-training.

In order to verify the robustness of the proposed SBLC
model, we evaluate the performance using different sizes
of the test dataset increasing from 10 to 100 abstracts
with a step of 10. We apply a bootstrap sampling
method on the test data set using put-back sampling
method for 100 times. After that, we assess the statistical
significance of F1 scores by computing confidence inter-
vals at the 95% level. In each round, five different strat-
egies by setting different SBLC parameters are used for
comparison. As mentioned above, SBLC was the method
with the full functions; SBLC(- semantic word embed-
ding) represented SBLC without semantic word embed-
ding layer; SBLC(- word embedding) represents the
SBLC without word embedding in the training process;
SBLC(- Bi-LSTM) denoted SBLC without Bi-LSTM net-
work; and SBLC(- CRF) denoted the SBLC without the
CREF layer.

Without Bi-LSTM, the model acquires the widest
range of variability and poor robustness. It shows that
Bi-LSTM contributes a lot to the robustness of the SBLC
model. The performances of the models without semantic
word embedding nor word embedding are close to each
other. The robustness of the SLBC model is generally
smoother, compared to the two methods. The F1 scores
using different numbers of testing texts are shown in Fig. 2.

In addition, we test the performance of SBLC by com-
paring it with different strategies considering contribu-
tions from four parts: Ab3p, CREF, Bi-LSTM, Word
Embedding. The comparison results are shown in
Table 7. CRF uses the CRF layer structure only for NER.
The precision, recall, F1 score is 0.701, 0.675 and 0.688.
Bi-LSTM uses the Bi-LSTM layer structure only. The
precision, recall, F1 score is 0.600, 0.425 and 0.498.
While adding Ab3p on the basis of CRE, Ab3p + CRF ob-
tains a precision and a recall of 0.726 and 0.689, respect-
ively. By adding abbreviations on the basis of Bi-LSTM,
Ab3p + Bi-LSTM obtains a precision and a recall of
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Fig. 2 The performance of SBLC using different numbers of testing texts. The lines are the averaged F1 for 100 times testing and the shaded areas

60 80 100

0.645 and 0.452, respectively. Utilizing both CRF and
Bi-LSTM layers, Bi-LSTM + CRF achieves a precision, a
recall, and an F1 score of 0.806, 0.800 and 0.803, which
improves the overall performance. Combining Ab3p,
Bi-LSTM and CRF layers, Ab3p + Bi-LSTM + CRF im-
proves the precision, recall, and F1 score to 0.813, 0.808
and 0.811. Combining Word Embedding and Bi-LSTM
layers, Word Embedding + Bi-LSTM achieves a preci-
sion, a recall, and an F1 score of 0.675, 0.501 and 0.575.
Word Embedding + CRF obtains a precision, a recall,
and an F1 score of 0.821, 0.772 and 0.796. Combining
Word Embedding, Bi-LSTM and CRF layers, Word

Table 7 Effects of different parameter settings and the final
optimized result

Parameter Precision Recall F1
CRF 0.701 0.675 0.688
Bi-LSTM 0.600 0425 0498
Ab3p + CRF 0.726 0.689 0.707
Ab3p + Bi-LSTM 0.645 0452 0.532
Bi-LSTM + CRF 0.806 0.800 0.803
Ab3p + Bi-LSTM + CRF 0813 0.808 0811
Word Embedding + Bi-LSTM 0.675 0.501 0.575
Word Embedding + CRF 0.821 0.772 0.796
Word Embedding + Bi-LSTM + CRF 0.842 0.828 0.835
Ab3p + Word Embedding + Bi-LSTM 0613 0.689 0.648
Ab3p +Word Embedding + CRF 0.846 0.786 0815
Ab3p + Word Embedding + Bi-LSTM + 0.866 0.858 0.862

CRF (SBLO)

Embedding + Bi-LSTM + CRF obtains a precision, a re-
call, and an F1 score of 0.842, 0.828 and 0.835. Ab3p +
Word Embedding + Bi-LSTM, by combining Ab3p,
Word Embedding and Bi-LSTM layers, obtains a preci-
sion, a recall, and an F1 score of 0.613, 0.689 and 0.648.
Combining Ab3p, Word Embedding and CRF layers,
Ab3p + Word Embedding + CRF obtains a precision, a
recall, and an F1 score of 0.846, 0.786 and 0.815. Ab3p
+ Word Embedding + Bi-LSTM + CRF (SBLC) obtains
the highest precision, recall, and F1 score of 0.866,
0.858 and 0.862.

Table 8 The performance comparison of our SBLC model with
the baseline methods on the same NCBI test dataset

Methods Precision Recall F1
Dictionary look-up [2] 0.213 0.718 0316
CTAKES (version 4.0) [15] 0476 0.541 0.506
MetaMap (semantic type filtering) [14] 0.495 0.679 0.541
MetaMap (MEDIC filtering) [14] 0510 0.702 0.559
Inference method [2] 0.597 0.731 0.637
CRF + CMT [34] 0.795 0.683 0.735
CRF + MeSH [34] 0.855 0.660 0.746
CRF + UMLS [34] 0.839 0.688 0.756
DNorm [3] 0.822 0.775 0.798
C-Bi-LSTM-CRF [34] 0.848 0.761 0.802
TaggerOne [22] 0.835 0.796 0.815
TaggerOne(+ normalization) [22] 0.851 0.808 0.829
DNER [24] 0.853 0.833 0.843
SBLC 0.866 0.858  0.862

The highest values are denoted in bold type

The highest values are denoted in bold type
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Fig. 3 The annotations of the identified disease named entities
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The fourth experiment compares the performances
of the proposed SBLC model with those of the above
mentioned 9 baseline methods. For MetaMap, we fur-
ther consider the usage of two filtering strategies: se-
mantic type filtering and MEDIC filtering. For
TaggerOne, we further use normalization leveraging
external resource. Comparison results are shown in
Table 8. The widely-used cTAKES obtain an F1 score
of 0.506 and the MetaMap increased the F1 score to
0.559. The inference method acquires an F1 score of
0.637. The three combinations of CRF strategies CRF
+CMT, CRF+MeSH and CRF+UMLS obtain F1
scores of 0.735, 0.746 and 0.756. The state-of-the-art
methods DNorm and TaggerOne, both developed by
NIH, achieve relatively higher F1 scores as 0.798 and
0.829, respectively. The deep learning-based method
C-LSTM-CRF obtains an F1 of 0.802, while the recent
DNER has an F1 score of 0.843. Our SBLC achieves
the highest F1 score of 0.862, outperforming all the
baseline methods. The comparison results show the
effectiveness of our proposed SBLC method.

Discussion

Error analysis

We analyze all the error cases from our SBLC
method, and summarize the error cases as the follow-
ing three types.

1) The complex compound words cause difficulties
in disease NER. For example, the disease name “insulin-
dependent diabetes mellitus” (MeSH ID D003922) has a
joint mark “-” but SBLC can recognize “diabetes mellitus”
only. This might be due to the insufficient amount of
training data, which cause the incorrect identification of
complex disease named entities and compound words.

2) Long disease mentions might cause NER failures.
For example, “demyelination of the cerebral white matter”
(D003711) and “disorder of glycoprotein metabolism”
(DiseaseClass, D008661) are two long disease names failed
to be recognized by SBLC. We further identify the length
of these error cases with long disease names, and find that
the unidentified disease names usually contain more than
3 words. This is a challenge for disease NER, particularly
with the appearance of more and more disease names.

3) Some rare disease names appear in the testing
dataset only. For example, Non-Hodgkins lymphoma
(D008228) is not appeared in the training dataset, thus it
is missed in the NER on the testing dataset.

Medical semantic word embedding

In a medical NER task, word is a fundamental unit and
word semantics is proved to be useful. The trained se-
mantics could be further enhanced as a feature for
higher-level neural network training. For example, the
disease NER result on a PubMed article (PID 9949209)

Table 9 The semantic similarity among the identified disease concepts using Cosine similarity measure

hepatic copper accumulation overload liver

Hepatic 0.784 cobalt 0.849 depletion 0.736 overloading 0.807 kidney 0.81
liver 0.770 nickel 0.831 accumulates 0.688 Nontransfusional 0.672 hepatic 0.77
extra-hepatic 0.738 manganese 0.824 overaccumulation 0.684 overload-related 0632 pancreas 0.741
intra-hepatic 0.733 iron 0811 degradation 0.683 overload-induced 0.626 kidneys 0.716
extrahepatic 0.714 zinc 0.799 redistribution 0.681 dyshomeostasis 0611 livers 0.698
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Fig. 4 The example word embedding projected to a two-dimensional space

in the testing dataset is shown in Fig. 3. The words with
colored background in purple, blue, gray and yellow de-
note the four identified unique disease mentions. These
mentions are further normalized to standard concepts
marked with associated rectangle boxes containing
unique concept id.

In SBLC, NEG skip-gram is used to train word embed-
dings and the trained embeddings could reflect the se-
mantic distances among the learned disease concepts. For
example, based on the same example above, SBLC calcu-
lates the similarities among all the identified disease con-
cepts using the Cosine similarity measure. The results are
reported in Table 9. Words in different capitalization and
tense, or synonymy are identified and assigned with a
similarity weights. In order to view the similarity among
the identified disease concepts, we map the concepts to a
two-dimensional space, as shown in Fig. 4. The closer the
words, the more semantically similar they become. For
example, the closest semantics to the word “liver” are

“kidney”, “hepatic”, kidneys”, and “livers”.

” o«

pancreas”,

Conclusions

In this paper, we proposed a new deep learning-based
model named as SBLC. The model utilized semantic
word embeddings, bidirectional LSTM, CREF, and Ab3P.
Based on a standard NCBI disease dataset, we compared
the SBLC with 9 state-of-the-art methods including
MetaMap, cTAKES, DNorm, and TaggerOne. The
results showed that the SBLC model achieved the best
performance, indicating the effectiveness of SBLC in
disease named entity recognition.

Abbreviations

Bi-LSTM: Bidirectional Long Short Term Memory networks; CMT: Convergent
Medical Terminology; CRF: Conditional Random Fields; NER: Named Entity
Recognition; UMLS: Unified Medical Language System

Acknowledgements
Not applicable.

Funding

Publication of the article is supported by grants from National Natural
Science Foundation of China (61772146), Guangdong Innovative Research
Team Program (2014ZT05G157), Guangzhou Science Technology and
Innovation Commission (201803010063), Natural Science Foundation of
Guangdong Province (2018A030310051), and the Science and Technology Plan
of Guangzhou (201804010296).

Availability of data and materials
The datasets used and analyzed during the current study are available from
the https//www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/.

About this supplement

This article has been published as part of BMC Medical Informatics and
Decision Making Volume 18 Supplement 5, 2018: Proceedings from the 2018
Sino-US Conference on Health Informatics. The full contents of the supplement
are available online at https://bmcmedinformdecismak.biomedcentral.com/
articles/supplements/volume-18-supplement-5.

Authors’ contributions

KX leaded the method design and experiment implementation. ZFZ took in
charge of data processing and labeling. TYH, TG, and WYL provided theoretical
guidance, result review, and paper revision. All authors read and approved the
final manuscript.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'School of Computer Science and Technology, Guangdong University of
Technology, Guangzhou, China. *School of Information Science and
Technology, Guangdong Universities of Foreign Studies, Guangzhou, China.
3Educational Testing Service, Princeton, NJ, USA. “Center for Linguistics and
Applied Linguistics, Guangdong University of Foreign Studies, Guangzhou,
China. *School of Computer Science, South China Normal University,
Guangzhou, China.



https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-18-supplement-5
https://bmcmedinformdecismak.biomedcentral.com/articles/supplements/volume-18-supplement-5

Xu et al. BMC Medical Informatics and Decision Making 2018, 18(Suppl 5):114

Published: 7 December 2018

References

1.

20.

21.

22.

23.

A.Névéol, J. Li, and Z. Lu. Linking multiple disease-related resources through
UMLS. ACM SIGHIT International Health Informatics Symposium. New York;
2012.p. 767-772.

Dogan RI, Leaman R, Lu Z. NCBI disease corpus: a resource for disease name
recognition and concept normalization. J Biomed Inform. 2014;47:1-10.
Leaman R, Dogan RI, Lu Z. DNormL: Disease name normalization with pairwise
learning to rank. Bioinformatics. 2013;29(22):2909-17.

Meystre SM, Savova GK, Kipper-Schuler KC, Hurdle JF, et al. Extracting
information from textual documents in the electronic health record: a
review of recent research. IMIA Yearbook. 2008;47(Suppl 1):128-44.
Eltyeb S, Salim N. Chemical named entities recognition: a review on approaches
and applications. J Cheminformatics. 20146(1):17.

Goulart RRV, de Lima VLS, Xavier CC. A systematic review of named entity
recognition in biomedical texts. J Braz Comput Soc. 2011;17(2):103-16.
Meystre SM, Friedlin FJ, South BR, Shen S, Samore MH. Automatic de-
identification of textual documents in the electronic health record: a
review of recent research. BMC Med Res Methodol. 2010;10(1):70.
Rzhetsky A, Seringhaus M, Gerstein M. Seeking a new biology through text
mining. Cell. 2008;134(1):9-13.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. in
Proc. of the 26th International Conference on Neural Information Processing
Systems. Volume 2, USA. 2013. p. 3111-3119.

Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.
1997,9(8):1735-80.

J. Lafferty, A. McCallum, and F. C. Pereira. Conditional random fields:
probabilistic models for segmenting and labeling sequence data. In: the
Eighteenth International Conference on Machine Learning. 2001; pp.
282-289.

S. Pyysalo, F. Ginter, H. Moen, T. Salakoski, and S. Ananiadou. Distributional
semantics resources for biomedical text processing. In The 5th international
symposium on languages in biology and medicine (LBM 2013), Tokyo,
Japan 2013.

Bodenreider O. The unified medical language system (UMLS): integrating
biomedical terminology. Nucleic Acids Res. 2004;32(suppl 1):267-70.

A. R. Aronson. Effective mapping of biomedical text to the UMLS
Metathesaurus: the MetaMap program. In: Proc of the AMIA Symposium
2001; p.17.

Savova GK, et al. Mayo clinical text analysis and knowledge extraction
system (CTAKES): architecture, component evaluation and applications.

J Am Med Inform Assoc. 2010;17(5):507-13.

Chiang J-H, Lin J-W, Yang C-W. Automated evaluation of electronic discharge
notes to assess quality of care for cardiovascular diseases using medical
language extraction and encoding system (MedLEE). J Am Med Inform Assoc.
2010;17(3):245-52.

L. M. Christensen, P. J. Haug, and M. Fiszman. MPLUS: a probabilistic medical
language understanding system. In Proc of the ACL-02 workshop on
Natural language processing in the biomedical domain 2002; vol. 3, pp.
29-36.

Denny JC, Smithers JD, Miller RA, Spickard A lll. Understanding’ medical
school curriculum content using KnowledgeMap. J Am Med Inform Assoc.
2003;10(4):351-62.

Zeng QT, Goryachev S, Weiss S, Sordo M, Murphy SN, Lazarus R. Extracting
principal diagnosis, co-morbidity and smoking status for asthma research:
evaluation of a natural language processing system. BMC Med Inform Decis
Mak. 2006,6(1):30.

Lipscomb CE. Medical subject headings (MeSH). Bull Med Libr Assoc. 2000;
88(3):265.

Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online
Mendelian inheritance in man (OMIM), a knowledgebase of human
genes and genetic disorders. Nucleic Acids Res. 2005;33(suppl_1):514-7.
Leaman R, Lu Z. TaggerOne: Joint named entity recognition and normalization
with semi-Markov models. Bioinformatics. 2016;32(18):2839-46.

Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C. Neural
architectures for named entity recognition. In: Proc. of the 2016
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies. San Diego:
Proc of the Human Language Technology Conference and the Annual

24,

25.

26.

27.

28.

29.

30.

31

32.

33

34.

35.

36.

Page 44 of 127

Meeting of the North American Chapter of the Association for
Computational Linguistics; 2016. p. 260-70.

Wei Q, Chen T, Xu R, He Y, Gui L. Disease named entity recognition by
combining conditional random fields and bidirectional recurrent neural
networks. Database (Oxford). 2016:baw140.

Gridach M. Character-level neural network for biomedical named entity
recognition. J Biomed Inform. 2017;70:85-91.

Kulick S, et al. Integrated annotation for biomedical information extraction.
In: Proc of the Human Language Technology Conference and the Annual
Meeting of the North American Chapter of the Association for Computational
Linguistics; 2004. p. 61-8.

Hinton GE, Mcclelland JL, Rumelhart DE. Distributed representations, parallel
distributed processing: explorations in the microstructure of cognition, vol.
1. Cambridge, MA: foundations. MIT Press; 1986.

Bengio Y, Courville A, Vincent P. Representation learning: a review and new
perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798-828.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word
representations in vector space. ArXiv Prepr. 2013; ArXiv13013781.
Gutmann M, Hyvdrinen A. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In: Proc. of the Thirteenth
International Conference on Artificial Intelligence and Statistics; 2010. p.
297-304.

Li K et al. Hadoop recognition of biomedical named entity using conditional
random fields. IEEE Trans. Parallel Distrib Syst. 2015;26(11):3040-51.

Bird S. NLTK: the natural language toolkit. In: Proc. of the COLING/ACL on
interactive presentation sessions; 2006. p. 69-72.

Sohn S, Comeau DC, Kim W, Wilbur WJ. Abbreviation definition identification
based on automatic precision estimates. BMC Bioinformatics. 2008,9:402-11.
Xu K, Zhou Z, Hao T, Liu W. A bidirectional LSTM and conditional random
fields approach to medical named entity recognition. Adv Intell Syst Comput.
2018639:355-65.

Wei CH, Leaman R, Lu Z. SimConcept: a hybrid approach for simplifying
composite named entities in biomedical text. IEEE J Biomed Health Inform.
2015;19(4):1385-91.

Chiu B, Crichton G, Korhonen A, Pyysalo S. How to train good word
Embeddings for biomedical NLP. In: Proc. of the 15th Workshop on
Biomedical Natural Language Processing, Berlin, Germany; 2016. p. 166-74.

Ready to submit your research? Choose BMC and benefit from:

e fast, convenient online submission

o thorough peer review by experienced researchers in your field

 rapid publication on acceptance

o support for research data, including large and complex data types

e gold Open Access which fosters wider collaboration and increased citations
e maximum visibility for your research: over 100M website views per year

K BMC

At BMC, research is always in progress.

Learn more biomedcentral.com/submissions




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Related work
	Disease NER
	Word embedding training
	Bi-LSTM & CRF

	Methods
	Results
	Dataset
	Baseline
	Evaluation metrics
	Parameter tuning
	Results

	Discussion
	Error analysis
	Medical semantic word embedding

	Conclusions
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	About this supplement
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	Author details
	References

