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Colorectal imaging improves on diagnosis of colorectal diseases by providing colorectal images. Manual diagnosis of colorectal
disease is labor-intensive and time-consuming. In this paper, we present a method for automatic colorectal disease classification
and segmentation. Because of label unbalanced and difficult colorectal data, the classification based on self-paced transfer VGG
network (STVGG) is proposed. ImageNet pretraining network parameters are transferred to VGG network with training
colorectal data to acquire good initial network performance. And self-paced learning is used to optimize the network so that the
classification performance of label unbalanced and difficult samples is improved. In order to assist the colonoscopist to
accurately determine whether the polyp needs surgical resection, feature of trained STVGG model is shared to Unet
segmentation network as the encoder part and to avoid repeat learning of polyp segmentation model. The experimental results
on 3061 colorectal images illustrated that the proposed method obtained higher classification accuracy (96%) and segmentation
performance compared with a few other methods. The polyp can be segmented accurately from around tissues by the proposed
method. The segmentation results underpin the potential of deep learning methods for assisting colonoscopist in identifying
polyps and enabling timely resection of these polyps at an early stage.

1. Introduction

The International Agency for Research on Cancer released
research data on global cancer status in 2018. The report
reported the incidence and mortality of 36 types of tumors
in 185 countries around the world, comprehensively. The
data showed that the incidence of colorectal cancer ranked
third (10.2%), and the mortality rate ranked second (9.2%)
[1]. As we known, the mortality rate of colorectal cancer
can be reduced significantly by early removal of polyps
[2] which can be found according to the early screening.
Colorectal polyp, a benign disease, has specific imaging
characteristics such as shape or surface structure and
color [3]. Colorectal colonoscopy is the main method of
diagnosing intestinal diseases. With a great number of
colorectal images, the microscopic examination presents
labor-intensive and time-consuming problems [4]. In
addition, the pathological diagnosis of colonoscopy biopsy

samples is prone to deviations due to individual patholo-
gists’ experience and knowledge [5]. The accuracy of
diagnosis depends on the experience of the microscopy
doctor, and the difference in diagnosis accuracy between
experienced doctors and less experienced doctors is
greater than 10%. Therefore, it is necessary to distinguish
polyps from normal tissue and tumor using colorectal
optical images.

However, it is difficult for the diagnosis of colorectal
optical images. Firstly, the low light and interference of
liquid often result in poor imaging quality of colorectal
images. Secondly, the edges of normal tissue and polyp
types are blurred. It causes the classification accuracy of
normal tissue, polyp, and tumor to be low. Thirdly, the
individual differences of polyps are mainly manifested in
shape, color, and surface contour for polyps. And colorec-
tal polyps are heterogeneous resulted that the segmenta-
tion of polyp becomes challenging.
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Previous research showed that deep learning has given
good results in medical images processing, such as tumor
detection, classification, segmentation, retrieval, and predic-
tion, especially for diagnosis and treatment of the brain
[6, 7], breast [8], lung [9, 10], gastric [11], prostate cancers
[12, 13], and histopathology [14]. Meanwhile, endoscopy-
assisted diagnosis has also made some progress using deep
learning, especially in colorectal endoscopy. There are two
types for colorectal image detection: pathology and optical
colonoscopy images. Here is the introduction to the image
diagnosis progress.

For the pathology colorectal images, the recent advance-
ment of deep learning is adapted. Thakur et al. [15] reviewed
the development of an AI system in CRC pathology image
analysis using deep learning. Korbar et al. [16] proposed an
automatic image-understanding method to help pathologists
with histopathological characterization and diagnosis of
colorectal polyps. Sena et al. [17] propose a deep learning
approach to recognize four different stages of cancerous
tissue development. Lizuka et al. [18] trained convolutional
neural networks (CNNs) and recurrent neural networks
(RNNs) on biopsy histopathology whole-slide images (WSIs)
of stomach and colon. For the optical colorectal images,
there are lots of researches on detection and segmentation
of colorectal polyps. Some methods take into account time
series: Urban et al. [19] used deep learning to localize and
identify polyps in real time with 96% accuracy in screen-
ing colonoscopy. Klare et al. [20] proposed the APDS with
which the colonoscopy system of the video stream is cap-
tured by a frame-grabber device in HD. Wang et al. [21]
used real-time automatic detection system to increase
colonoscopic polyp and adenoma detection rates; some
methods take into account spatial information: Li et al.
[22] used a fully convolutional neural network structure
for segmenting colorectal polyps. Yang et al. [23] devel-
oped convolutional neural network (CNN) models which
automatically categorized colorectal lesions into several
stages ranging from nonneoplastic lesions to advanced
CRC with conventional white-light colonoscopy images.
Zhang et al. [24] developed a fully automatic algorithm
to detect and classify hyperplastic and adenomatous colo-
rectal polyps. Others are from the semantic information:
Wickstrom and Kampffmeyer [25] proposed a novel
method for estimating the uncertainty associated with
important features in the input and demonstrated how
interpretability and uncertainty can be modeled for seman-
tic segmentation of colorectal polyps. The above colorectal
image processing methods using deep learning have achieved
good performance.

Based on the above analysis of colonic pathology and
optical colorectal image literature, deep learning methods
are proposed on detection or segmentation of colorectal
polyps. However, unlike the recent research based on single
task, our method takes into account multitask: colorectal
image classification and polyp image segmentation. In the
proposed STVGG, transfer learning and self-paced learning
are used to solve the unbalance and the difficult sample learn-
ing. STVGG transfers ImageNet network parameters to VGG
network and calculates the loss value of each image in the for-

ward propagation with the age parameter. In addition, the
trained STVGG model of colorectal classification is shared
to Unet segmentation model to deal with distinguishing
polyp and normal tissues.

2. Materials and Methods

2.1. Data Acquisition and Preprocessing. A total of 50 patients
were examined under colonoscopies, and images were col-
lected from the anorectal department of a hospital in Shaanxi
Province, China, under ethical approval. Three experienced
endoscopists were invited to classify the normal tissue, polyp,
and tumor, and the ground truth was acquired. The data
preprocessing was as follows:

Firstly, data filtering: uncleaned or unclear colorectal
images were removed. After image filtering, the set of endo-
scopic images consisted of 487, 1374, and 1200 images with
normal tissue, polyp, and tumor, respectively, taken under
either white light (WL) or narrow band imaging (NBI)
endoscopy.

Secondly, dataset split: the data were divided into train-
ing set, validation set, and test set according to the ratio of
2 : 1 : 2.

Thirdly, data argumentation: the argumentation methods
were rotation, flip, translation, and cropping. The training set
and validation set were argumentized by four times

Finally, data resizing: the data was resized to 440 ×
440 × 3 to maintain the integrity of the intestinal wall.

2.2. Automatic Classification in Colorectal Endoscopy Based
on STVGG. Because the performance of training network
is poor by using colorectal images directly, Network pre-
trained on ImageNet is introduced to obtain a good classi-
fication result. Meanwhile, polyp areas are more difficult to
be classified than normal tissue and tumor. This paper
introduces self-paced regularization items to assign differ-
ent sample weights for training samples. Self-paced learn-
ing injects the difficulty metric into the optimization
model and updates the model parameters based on the
current sample ordering and the metric based on the
learning effect. It obtains a new round of difficulty order-
ing of samples and finally achieves the purpose of adaptive
sample ordering.

In our method, in order to fully use data of ImageNet,
the parameters of C1 and C2 from pretrained VGG19
model on ImageNet are transferred to STVGG. And the
practical colorectal images are used as training data to
update other layer parameters of the STVGG model. The
self-paced learning algorithm is introduced to STVGG
for dealing with those difficult and unbalance samples to
improve classification performance. The overview of
STVGG classification method is shown in Figure 1, where
Ci represents the ith convolutional patch, F represents the
fully connected layer, and G represents the global average
pooling layer. In this study, the first fully connected layer
F6 of VGG19 is replaced with the global average pooling
layer G6 to reduce the amount of model parameters and
prevent overfitting and to get the pretrained model with
the parameters of C1 and C2 layers.
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The cross-entropy is selected as loss function lðyi, gðXiÞÞ.
Forward propagation is used to calculate the loss l in STVGG
network:
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In the Eq. (1), c is the number of disease categories in the
colorectal endoscopy dataset, and ωT

j is the weight parameter

of the jth output node. z li represents the output vector in the
last fully connected layer of the network. Ifyi = jg∈f0, 1g,
when the predicted result of the sample is consistent with
the label I = 1, otherwise I = 0.

Furthermore, self-paced learning is used to modify the
STVGG network. The network objective function is rewritten
as follows:
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ω,b
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Parameters w and b are the weight and bias of the
STVGG network, respectively, v = ½v1 ⋯ vi ⋯ vn� represents
the weight of n samples, and f ðvi, λÞ is the binary self-
paced regular term defined in Eq. (3).

f H vi, λð Þ = −λvi ; vi ∗ l, λð Þ =
1 if l < λ,

0 if l ≥ λ:

(
ð3Þ

w, b, and v of the STVGG network are optimized by iteration
until the model converges to get a good classification net-
work. Flowchart of STVGG algorithm is shown in
Algorithm 1.

2.3. Automatic Segmentation in Polyp Image. After classifica-
tion task is completed, the parameters C1 − C5 of the trained
STVGG in the colorectal endoscopy classification task is
shared to the segmentation task as the code part, while the

Unet network framework is used in colorectal endoscopy
segmentation task. And the decoding part of the original
Unet is also adjusted with the corresponding encode part.
Compared with the original Unet, the channel number of
downsampling in the last layer is not increased for the pro-
posed model. The framework of our segmentation model is
shown in Figure 2.

Each rectangular box corresponds to a multichannel
feature map. The number on the left side of the rectangu-
lar box indicates the size of each channel of the feature
map. The number at the top of the rectangle indicates
the channel number in the feature map. The blue, red,
green, and purple arrows indicate the convolution opera-
tion with a convolution kernel size of 3 × 3, the max pool-
ing with stride of 2 × 2, and the upsampling and the
convolution with a convolution kernel size of 1 × 1,
respectively. The gray arrow indicates that the feature
map of the encoding part is cropped and copied with
the feature map of the decoding part.

2.4. Comparison with Other Methods. The selection of
comparison methods is based on the baseline VGG model
adding some training strategies, and the specific strategies
are as follows:

(1) VGG19 with transfer learning strategies (VGG+TL)
The parameters C1 − C2 in VGG19 are transferred from

ImageNet network to extract low-level features well shared
with natural images in colorectal endoscopy images.

(2) VGG19 with the strategy of structure retention color
normalization (VGG+SRCN)

The data are collected from different periods, different
patients, and equipment in different periods. Therefore,
SRCN strategy is used so that color features of processed
image tend to be consistent and reduce intraclass differences.

(3) VGG19 with strategy of spatial pyramid pooling
(VGG+SPP)

SPP [26] layer on the VGG19 network is adopted, and it
obtains a fixed length feature vector to aggregate the features
and avoid geometric distortion in feature maps.

C1
C2 C3

C4 C5 F6 F7 F8

C1
C2 C3

C4 C5 G6 F7 F8 Classification
results

Colorectal
endoscopy

images

ImageNet
images

STVGG

VGG

Figure 1: The overview of STVGG classification method.
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2.5. Evaluation of the Classification and Segmentation. The
segmentation results are evaluated both visually and
quantitatively, given the ground truth, our classification and
segmentation results. The segmentation performance is eval-

uated by these evaluation metrics: accuracy, sensitivity, spec-
ificity, and dice similarity coefficient (DSC). We use TP, FP,
TN, and FN to represent true positive, false positive, true
negative, and false negative. And L1 and L2 represent the

Flowchart of STVGG algorithm.
Input: Training set D = fðxi, yiÞ, i = 1⋯ ng, xi represents the ith training data, and yi is the i

th data label.
Initialization parameter: “age parameter”λ, a suitable initial value is given according to the approximate value range of the presample
training error value; initialize the sample weight vector v.
Model training parameter settings: total number of training iterations epoch, minimum batch size for training and verification, initial
learning rate during model training α, and decay rate of learning rate φ; update increment of age parameters k, k > 0.
a) Calculate network weights w and bias b by Eq. (2)
b) Calculate and update loss function lðyi, gðXiÞÞ
c) Calculate self-paced regular term f ðvi, λÞ and update weight vector v
d) Calculate and update min

ω,b
Esplðw, bÞ

e) Update age parameters λ and learning rate α, λ = λ + k, α = a ⋅ φ, φ < 1
f) Repeat steps a to e until the number of iterations epoch = 0
output: network weights w and bias b

Algorithm 1.
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Figure 2: The framework of our segmentation model.
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manual annotation and our method segmentation results,
respectively, and these indexes are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, ð4Þ

Sensitivity =
∣L1 ∩ L2 ∣
∣L1 ∣

, ð5Þ

Specificity =
∣ ~ L1 ∣ L2ð Þ∣
∣ ~ L1 ∣

, ð6Þ

DSC =
2 ∣ L1 ∩ L2 ∣
∣L1∣+∣L2 ∣ð Þ : ð7Þ

3. Experimental Results and Discussion

In this paper, the experimental environment was set in
Python3.6.0, Tensorflow-GPU 1.7.0, Keras 2.1.3, SimpleITK
0.8.1, Nvidia Titan Pascal GPU (1080 Titan), and Cudnn
V9.0. Verified by experiment, the colorectal image size of
440 was superior to 330 and 540. The average accuracy of
the final test set was 0.03 and 0.01 higher than the latter
two, respectively. The colorectal data with original image size
range of 228 to 586 was resized to 440 × 440.

Choosing optimization functions. Experiments showed
that the average classification accuracy of SGD is 0.02 and
0.05 higher than RmSprop and Adam, respectively. There-
fore, SGD was finally selected as our optimization function.

Selecting transfer layers. Experiments froze the parame-
ters of the 4, 8, 12, and 16 layers, respectively. It showed that
when the parameters of the first 4 layers were frozen, the best
average classification accuracy was achieved.

Cross-entropy are chosen as loss function. The relevant
parameters were as follows: learning rate is 0.0001, decay =
1e − 6, and the parameter of Nesterov Momentum was set
to 0.9. The batch size was 8. λ was initialized to 1.1, and the
updating step was 0.05. As training began, λ became larger
and the tolerance of difficult samples was greater.

3.1. Colorectal Endoscopy Image Classification. The colorectal
endoscopy image classification accuracy is shown in Table 1.
It can be seen from Table 1 that the polyp accuracy of VGG
network was the lowest. The classification accuracies of
VGG+SRCN on polyps and normal tissue are improved as
it could decrease the intraclass differences. VGG+SPP also
improved the classification accuracies of normal tissue and
colorectal polyp but polyp accuracy was relatively low
because the edges of normal tissue and polyp types are
blurred. As an improvement strategy, the accuracy of

VGG+TL was also improved. But compared with strategies
of SRVN and SPP, the effect is not significant. In this
study, STVGG was proposed and the experimental results
showed that the overall accuracies were greatly improved.

The main reason is that STVGG can classify difficult-to-
classify samples, for example, the small inflammatory or
hyperplastic polyps which are very similar to normal colo-
noscopy images, and the polyps with ulcers, large areas of
bleeding, and reticulated polyps, which are closer to the char-
acteristics of tumor. The STVGG method can significantly
improve the accuracy of polyp under the condition of ensur-
ing the classification accuracy of tumor and normal ones, and
the method converges in about 10 generations of training.

3.2. Polyp Image Segmentation. In the above colorectal endos-
copy image classification task, a relatively good classification
result was obtained by STVGG model. Therefore, polyp seg-
mentation was designed based on classification task. Doctors
usually used polyp’s images to make a decision whether sur-
gical resection is required based on pathological diagnosis.
Figure 3 shows five sequences of polyp images. (Ai) is the
original image, (Bi) is ground truth, (Ci) is the segmentation
result of Segnet network, (Di) is the segmentation result of
Unet network, (Ei) is the segmentation result of TLVGG net-
work, and (Fi) is the segmentation result of STVGG network.

Figure 3 indicates that the results of Segnet method are
greatly affected by the surrounding environment, and the
segmentation result is not good. The results of Unet method
are more superior than those of Segnet in big target but the
effect is not obvious. Compared to those methods, the results
of TLVGG method made great progress especially in sur-
rounding and small target, but the segmentation results of
large targets are not ideal. Our method shows the best results,
no matter it is segmentation of large and small objects or
environmental interference.

Table 2 shows that the Segnet segmentation method does
not segment the polyp in its complete shape. Using Unet for
segmentation of polyps is accurate, but oversegmentation is
also obvious. The Unet is more sensitive to light spots in
the imaging process, and it is easy to treat the reflective part
as a polyp.

The segmentation performances of the TLVGG network
were obviously better than Segnet and Unet. The segmenta-
tion target contour was close to the real target, but there were
still missed detections. The STVGG model worked best
because ImageNet network parameters were transferred to
VGG network to acquire good initial network. And self-
paced learning was used to optimize the network so that
the classification performance of label unbalanced samples
was improved.

Table 1: Classification accuracy obtained for different methods.

Category VGG VGG+SRCN VGG+SPP VGG+TL STVGG

Tumor 0.98 0.98 0.94 0.96 0.98

Normal tissue 0.90 0.94 0.99 0.95 0.99

Polyp 0.7 0.84 0.91 0.89 0.95

Average accuracy 0.76 0.87 0.93 0.91 0.96
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4. Conclusions

To address this issue of label unbalanced and difficult colo-
rectal data, we presented an automatic processing pipeline
for classification and segmentation based on colorectal
images. STVGG network used transfer learning and self-
paced learning in order to acquire good initial network and
solve the problem of label unbalanced and difficult sample
classification. And then STVGG network was shared as the
encoding part of Unet as encoder of the segmentation task,
and image segmentation task was achieved. The experimen-
tal illustrated that the proposed method obtained higher clas-
sification accuracy (96%) and segmentation performance
compared with other a few methods. This proposed method
may be applied to other image researches, such as stomach,
ear, nose, and throat. Possible future improvements can be
made in parameter adaptation.
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Table 2: Segmentation indexes obtained from different methods.

Segnet Unet TLVGG STVGG

DSC 0:6210 ± 0:2370 0:6980 ± 0:3005 0:8267 ± 0:2066 0:8455 ± 0:2030

Sen 0:6916 ± 0:2677 0:7591 ± 0:3317 0:8222 ± 0:2462 0:8323 ± 0:2201

Spe 0:9766 ± 0:0180 0:9834 ± 0:0235 0:9933 ± 0:0095 0:9949 ± 0:0067

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

Figure 3: Segmentation in colorectal endoscopy images. (Ai) Original images, (Bi) ground truth, (Ci) Segnet, (Di) Unet, (Ei) TLVGG, and
(Fi) ours.
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