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Schizophrenia is a chronic psychotic disorder characterized by the disruption of

thought processes, perception, cognition, and behaviors, for which there is still

a lack of objective and quantitative biomarkers in brain activity. Using functional

magnetic resonance imaging (fMRI) data from an open-source database, this study

investigated differences between the dynamic exploration of resting-state networks in 71

schizophrenia patients and 74 healthy controls. Focusing on recurrent states of phase

coherence in fMRI signals, brain activity was examined for intergroup differences through

the lens of dynamical systems theory. Results showed reduced fractional occupancy

and dwell time of a globally synchronized state in schizophrenia. Conversely, patients

exhibited increased fractional occupancy, dwell time and limiting probability of being in

states during which canonical functional networks—i.e., Limbic, Dorsal Attention and

Somatomotor—synchronized in anti-phase with respect to the rest of the brain. In

terms of state-to-state transitions, patients exhibited increased probability of switching

to Limbic, Somatomotor and Visual networks, and reduced probability of remaining in

states related to the Default Mode network, the Orbitofrontal network and the globally

synchronized state. All results revealed medium to large effect sizes. Combined, these

findings expose pronounced differences in the temporal expression of resting-state

networks in schizophrenia patients, which may relate to the pathophysiology of this

disorder. Overall, these results reinforce the utility of dynamical systems theory to extend

current knowledge regarding disrupted brain dynamics in psychiatric disorders.

Keywords: resting-state functional magnetic resonance imaging, dynamic functional connectivity, LEiDA,

functional networks, dynamical systems theory, schizophrenia

1. INTRODUCTION

Brain activity at “rest” captured using functional magnetic resonance imaging (fMRI) reveals the
recurrent emergence and dissolution of connectivity patterns that overlap with functional networks
typically activated during task (Beckmann et al., 2005; Fox and Raichle, 2007; Smith et al., 2009;
Deco and Jirsa, 2012). These resting-state networks (RSNs) have been consistently detected and
extensively analyzed across neuroimaging studies (Damoiseaux et al., 2006; van den Heuvel and
Hulshoff Pol, 2010) and their characterization in the temporal domain—referred to as dynamic
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functional connectivity (dFC)—has been suggested to provide
potential biomarkers of several neurological and psychiatric
disorders (Sakoğlu et al., 2010; Hutchison et al., 2013; Preti
et al., 2017). In fact, the discovery of biomarkers in dFC is
crucial not only for more efficient diagnosis but also to inform
computational models in order to gain insight into the large-scale
organizational principles of brain activity in health and disease
(Cabral et al., 2012a,b; Stefanovski et al., 2019; Courtiol et al.,
2020; Kringelbach and Deco, 2020).

Schizophrenia (SZ) is a chronic brain disorder affecting 1
in 300 humans worldwide and, if left untreated, its symptoms
can be persistent and disabling (James et al., 2018). The
cognitive and behavioral symptoms observed in patients with
SZ are hypothesized to arise from the disrupted functional
integration of segregated brain areas (Friston et al., 1995;
Liang et al., 2006; Lynall et al., 2010; Skudlarski et al., 2010).
Furthermore, neuroimaging studies suggest that SZ patients
have aberrant functional connectivity in brain networks and
these abnormalities are related to disease symptoms (Wang
et al., 2014). As such, neuroimaging data-sharing initiatives
have been developed to potentiate the discovery of biomarkers
of schizophrenia in fMRI signals, allowing to test novel
analysis methods which may provide further insights into
the pathophysiology of this disease and, potentially, lead
to the discovery of new treatments for the diseased brain
(Aine et al., 2017).

To date, previous studies investigating dFC have suggested
that compared to healthy controls (HCs), patients with SZ spend
more time in FC states characterized by weak connectivity
(Rabany et al., 2019) and less time in FC states which represent
strong, large-scale brain connectivity (Damaraju et al., 2014;
Dong et al., 2018; Sanfratello et al., 2019). Furthermore, when
SZ patients transition into the FC state of strongest connectivity,
they switch states very rapidly (Rabany et al., 2019). Overall,
SZ patients have been found to exhibit fewer changes between
connectivity patterns compared to HCs (Miller et al., 2016).
Notably, most research on dFC in SZ has been carried out
using independent component analysis to extract time courses of
networks which were subsequently used to estimate dFC through
sliding-window analysis (SWA) (Sakoğlu et al., 2010; Preti et al.,
2017). However, the choice of the window length affects the
temporal resolution of the SWA approach—raising questions
over its validity (Preti et al., 2017). In this study, to overcome this
weakness, the Leading Eigenvector Dynamics Analysis (LEiDA)
method, based on phase coherence of fMRI signals, is used to
investigate dFC at an instantaneous level (Glerean et al., 2012;
Cabral et al., 2017). It must be noted that methods based on phase
coherence may fail to capture the non-linear stochastic nature
of neuronal network dynamics to its full extent—prompting
the use of metrics such as multi-scale-entropy (Courtiol et al.,
2016). Nevertheless, methods based on phase coherence have
demonstrated a particular sensitivity to alterations in psychiatric
symptoms (both clinical and pre-clinical) motivating its use in
the current work (Cabral et al., 2017; Figueroa et al., 2019; Lord
et al., 2019; Alonso Mart-nez et al., 2020; Larabi et al., 2020).

The main aim in this study was to investigate if patients with
SZ exhibit alterations in the dynamical exploration of functional

networks during rest detected using LEiDA. Furthermore,
this work examined the validity of the partitions resulting
from the clustering procedure and investigated the influence
of using the K-medoids algorithm instead of the K-means
algorithm to differentiate SZ patients from HCs. This work
hypothesized to find abnormal dFC in SZ patients characterized
by reduced excursions to an FC state possibly involved in the
integration of segregated functional connections and increased
excursions to a number of FC states which represent functionally
segregated networks.

2. MATERIALS AND METHODS

2.1. Neuroimaging Data
Neuroimaging data was obtained from the publicly available
repository COBRE preprocessed with NIAK 0.17—lightweight
release (Calhoun et al., 2012; Bellec, 2016). The neuroimaging
data included preprocessed resting-state fMRI (rs-fMRI) data
from 72 SZ patients and 74 HCs, in which participants passively
stared at a fixation cross (Aine et al., 2017). The rs-fMRI
data featured 150 echo planar imaging volumes obtained in 5
min, with repetition time (TR) = 2 s, echo time = 29 ms,
acquisition matrix = 64×64 mm2, flip angle = 75◦ and voxel
size = 3×3×4 mm3. The acquisition and preprocessing of
the fMRI data are fully described in detail in Bellec (2016).
Preprocessing included slice-timing correction, coregistration
to the Montreal Neurological Institute (MNI) template and
resampling of the functional volumes in the MNI space at a 6
mm isotropic resolution. No confounds were regressed from the
data, because this procedure may extract fMRI signal variance
whose contribution to functional networks remains under debate
(Murphy et al., 2013; Bright and Murphy, 2015; Nalci et al.,
2019; Chen et al., 2020). In addition, the fMRI volumes were
not spatially smoothed since the subsequent parcellation induces
a level of smoothing. Furthermore, temporal filters were not
applied since previous works considering the whole-frequency
spectrum have been shown to improve within-subject reliability
regarding the temporal expression of FC patterns (Vohryzek
et al., 2020).

Inspection of the fMRI data for each subject resulted in
the exclusion of one subject whose data did not include all
150 volumes. Therefore, the final dataset used in this analysis
included 71 SZ patients (57 males) and 74 HCs (51 males).
A goodness of fit χ2 test did not reject the null hypothesis
of independence between gender and group (p = 0.1167).
Both groups had an age range of 18–65 years old. A two-sided
Wilcoxon Rank-Sum test with Bonferroni correction did not
identify a significant difference between the mean age of the
groups (p = 0.4253). The framewise displacement (FD) provided
a quantitative indication of each subject’s head motion during
the scanning period (Power et al., 2012). The same statistical test
detected a significant intergroup difference in the group mean
FD (p < 0.001). Specifically, on average, the fMRI signals of SZ
patients were characterized by larger amounts of head motion
(FD). Given the statistically significant difference in the mean
FD, the impact of head-motion in the group-level results was
investigated (see Supplementary Material Section 2).
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2.2. Parcellation
The entire brain of each participant was parcellated into
90 cortical and sub-cortical non-cerebellar regions using the
Anatomic Automatic Labeling (AAL) template. Accordingly, for
each region in the brain template, the fMRI signals were averaged
over all voxels belonging to that brain area. For each subject, this
resulted in an N × T dataset, where N = 90 is the number of
brain areas and T = 150 is the number of volumes in each scan.

2.3. Computation of Dynamic Functional
Connectivity
To compute the phase relationship between each pair of AAL
regions, first the instantaneous phase of the fMRI signals across
all brain regions n ∈ {1, . . . ,N} for each time t ∈ {2, . . . ,T − 1},
θ(n, t), were estimated by computing the Hilbert transform of
their regional time courses (Glerean et al., 2012). Here, the first
and last TR of each fMRI scan were excluded due to possible
signal distortions induced by the Hilbert transform (Vohryzek
et al., 2020). The Hilbert transform enables the capture of the
time-varying phase of a fMRI signal at each time, t, by converting
it into its analytical representation [see Figure 1A (top left)]
(Glerean et al., 2012; Cabral et al., 2017). To obtain a whole-
brain pattern of phase synchrony, the phase coherence between
areas n and p at each time t, dFC(n, p, t), was estimated using
Equation (1):

dFC(n, p, t) = cos(θ(n, t)− θ(p, t)) (1)

where phase coherence values range between -1 (areas n and p
in anti-phase at time t) and 1 (areas n and p have synchronized
signals at time t), as shown in Figure 1A (bottom left). This
computation was repeated for all pairwise combinations of brain
areas (n, p), with n, p ∈ {1, . . . , 90}, at each time point t, with t ∈
{2, . . . , 149}, and for all subjects. For each subject, the resulting
dFC was a three-dimensional tensor with dimensionN×N×T′,
where T′ = 148, i.e., 148 dFC90×90(t) matrices were estimated.

2.4. Functional Connectivity Leading
Eigenvector
To characterize the evolution of the phase coherence matrix over
time with reduced dimensionality, the current study employed
the LEiDA method which considers only the leading eigenvector,
V1(t), of each dFC(t) matrix (Cabral et al., 2017). In detail, as
observed in Figure 1A (middle), the leading eigenvector,V1(t), is
an N × 1 vector that captures the dominant connectivity pattern
of phase coherence at time t, i.e., V1(t) represents the main
orientation of the phases over all brain areas (Cabral et al., 2017).
Under this framework, for each time t, the associated leading
eigenvector partitions theN brain areas into two communities by
separating the elements with different signs in V1(t) (Newman,
2006; Cabral et al., 2017). When all elements of V1(t) have the
same sign, the phases between brain regions are coherent, which
is indicative of a global mode of phase coherence governing
all fMRI signals. This implies that all brain regions belong
to the same community. Contrarily, if the elements of V1(t)
have different signs (i.e., positive and negative), the connectivity
pattern between brain regions is not coherent. As a result, each

brain area is assigned to one of the two communities according
to their phase relationship. Additionally, the absolute value of
each element in the leading eigenvector weighs the contribution
of each brain area to the assigned community (Newman, 2006;
Cabral et al., 2017). The dominant FC pattern of the dFC matrix
at time t can also be reconstructed back into matrix format by
computing the (N × N) outer product V1(t)V

⊺

1 (t), as shown in
Figure 1A (top right). Given that if V1(t) is a leading eigenvector,
so is −V1(t), following the procedure of Figueroa et al. (2019),
Lord et al. (2019), Vohryzek et al. (2020), it was ensured that most
of the elements in V1(t) had negative values. This is because by
assigning positive values to the brain areas whose phases did not
follow the global mode, functional brain networks were distinctly
detected, as seen in Figure 1A (bottom right). Importantly, this
approach was found to explain most of the variance of observed
phase coherence data variation, while substantially reducing its
dimensionality. In fact, the leading eigenvector accounted for
more than 50% of the variance in phase coherence at all time
points and for all subjects.

2.5. Estimation of FC States
Upon computing the leading eigenvector of the phase coherence
matrix for each recording frame, the next step in the analysis was
to characterize the evolution of the dFC over time by identifying
recurrent FC states in the data, as illustrated in Figure 1C (Cabral
et al., 2017).

The dataset of all leading eigenvectors computed across all
145 participants at the set of volumes {2, . . . , 149}, totalling
148 × 145 = 21, 460 leading eigenvectors, was clustered using:
(1) the K-means algorithm; and (2) the K-medoids algorithm
(Aggarwal and Reddy, 2013). Here, both algorithms were run
with a value of K from 2 to 20, i.e., dividing the set of leading
eigenvectors into K = {2, 3, . . . , 20} clusters. Furthermore, in
both clustering analyses, the cosine distance was used as the
distance metric for minimization and the algorithms were run
1,000 times to minimize the chances of getting trapped in a local
minima (Cabral et al., 2017; Figueroa et al., 2019; Lord et al., 2019;
Vohryzek et al., 2020).

Independently of the algorithm, the LEiDA clustering
procedure outputs one optimal clustering solution for each value
of K clusters. Specifically, each clustering solution contains K
clusters C = {C1, . . . ,CK}, with K ∈ {2, . . . , 20}—decomposing
the N-dimensional phase space of pooled leading eigenvectors
into a K-dimensional state space. Each cluster Cα (α ∈

{1, . . . ,K}) is represented by a vector of dimension N × 1, VCα
,

which represents a recurrent FC state, as depicted in Figure 1C.
It must be noted that the K-means and K-medoids algorithms
provide distinct interpretations regarding the functionalmeaning
of thementioned FC states. According to theK-means algorithm,
the prototypes of each cluster, designated as centroids, are given
by the mean of the leading eigenvectors belonging to each cluster.
As such, centroids may not correspond to actual data points
from the set of leading eigenvectors. On the other hand, the K-
medoids algorithm chooses actual leading eigenvectors as the
prototypes of the clusters which are designated as medoids.
Whilst at the cost of higher computational complexity, the
robustness of the K-medoids algorithm means it is better suited
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FIGURE 1 | Graphical illustration of the estimation and characterization of the temporal trajectories of recurrent FC states obtained by using Leading Eigenvector

Dynamics Analysis (LEiDA). (A) Phases of all N = 90 brain areas in the complex plane at time t (top left); Phase coherence matrix at time t, dFC(t) (bottom left); Vector

representation of the leading eigenvector, V1 (t), of dFC(t) (middle); Matrix representation of V1 (t) (top right); Network representation of V1 (t), with links between the

areas with positive elements in V1 (t) plotted in red (bottom right). (B) The leading eigenvectors are computed for each time point and from all fMRI scans. (C) The

pooled leading eigenvectors are partitioned into K clusters using a clustering algorithm. The cluster centroids/medoids are assumed to represent recurrent patterns of

phase coherence (FC states). (D,E) The leading eigenvector at each TR is represented by the centroid/medoid of the cluster to which it was assigned by the clustering

procedure. This originates time courses of FC states for each fMRI session. The time courses are then characterized using tools from dynamical systems theory. (F)

Each FC state can be represented as a N× N matrix (outer product) and as a network in cortical space (elements with positive sign linked by red edges).

to manage outliers than the K-means algorithm when detecting
recurrent FC states (Aggarwal and Reddy, 2013). Assuming that
some of the leading eigenvectors belonging to SZ patients were
outliers, by employing the K-medoids algorithm, their influence
would be underestimated when detecting FC states—resulting
in more representative functional networks of the set of leading
eigenvectors from both groups.

2.6. Characterization of FC State
Trajectories
For each clustering solution, the set of estimated K FC states was
used to obtain, for each participant, time courses of FC states
(as represented in Figures 1D,E). This was accomplished by
representing each V1 at time t by the FC state (centroid/medoid)
of the cluster to which it was assigned by the clustering
algorithm, depicted as a matrix and as a network in cortical space
in Figure 1F. Specifically, following the conceptual framework
proposed by Vohryzek et al. (2020), resting-state fMRI time
series were assumed to temporally evolve through a finite state
trajectory of recurrent patterns of phase coherence. Following
this rationale, each clustering solution with K FC states was

assumed to define a finite state space S = {1, . . . ,K}.
Furthermore, for a clustering solution with K clusters, the
cluster (FC state) to which V1 was assigned at time t, denoted
by Vt , was assumed to define a stochastic process,

{

Vt : t ∈

{2, . . . , 149}
}

, with an associated finite state space given by S.
Consequently, considering theMarkov property (Kulkarni, 2011)
holds, each temporal trajectory of FC states was assumed to define
a time-homogeneous Discrete Time Markov Chain (DTMC).
Importantly, it must be noted that, although brain activity is
an uninterrupted process, the restricted fMRI scanning windows
implied the state trajectories were temporally limited—resulting
in a number of DTMCs not spanning the entire state space.

A number of descriptive measures were considered to
characterize the properties of the temporal trajectories of FC
states observed in SZ patients and HCs. Notably, these measures
have been shown to provide relevant insights on dynamic brain
activity in previous LEiDA analyses (Cabral et al., 2017; Figueroa
et al., 2019; Lord et al., 2019).

2.6.1. Fractional Occupancy
The fractional occupancy (probability of occurrence) of an FC
state α represents the proportion of timesVt is assigned to cluster
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Cα throughout a scan (Vohryzek et al., 2020). The fractional

occupancy of FC state α for the fMRI scan of subject s, P(s)α , is
calculated (estimation) as follows:

P(s)α =
1

T′

T′
∑

t=1

1{

V
(s)
t ∈Cα

} , α ∈ {1, . . . ,K} (2)

where T′ = 148 is the number of time points (first and last
volume of each scan were excluded), 1 is the indicator function
and V(s)

t is the FC state to which V1(t) was assigned at time t. For
each clustering solution, this measure was estimated for each of
the K FC states separately for each fMRI scan.

2.6.2. Dwell Time
The dwell time (mean duration) of an FC state represents
the mean number of consecutive epochs spent in that state
throughout the duration of a scan (Vohryzek et al., 2020). The

dwell time of FC state α, DT(s)
α , is defined (estimation) as:

DT(s)
α =

1

k
(s)
α

k
(s)
α

∑

dα=1

Rdα
, α ∈ {1, . . . ,K} (3)

where k
(s)
α is the number of consecutive periods in which V

(s)
t

was assigned to cluster Cα and Rdα
is the duration of each of

the k
(s)
α periods. For each clustering solution, the dwell time

was estimated for each of the K FC states separately for each
fMRI scan.

2.6.3. One-Step Transition Probability Matrix
Considering a clustering solution with state space S = {1, . . . ,K},
the probability of being in FC state α at time t and transition to
FC state β at time t + 1 is given by the following expression:

P
(s)
αβ =

1

T′ − 1

T′−1
∑

t=1

1{

V
(s)
t ∈Cα , V(s)

t+1∈Cβ

} (4)

with α,β ∈ {1, . . . ,K} (Vohryzek et al., 2020). From Equation
(4), for a clustering solution with K FC states, it follows that the
Transition Probability Matrix (TPM) of the fMRI scan of subject
s, P(s), is defined (estimation) as:

P(s) = P
[

V
(s)
t+1 ∈ Cβ | V

(s)
t ∈ Cα

]

=
P
(s)
αβ

P
(s)
α

(5)

with α,β ∈ {1, . . . ,K}. For the tentative optimal clustering
solution, a TPM was estimated separately for the DTMC of each
fMRI scan.

2.6.4. Limiting Probability
In this study, the limiting distribution was only estimated for
irreducible and aperiodic DTMCs (Kulkarni, 2011), with finite
state space given by the tentative optimal state trajectories.
Therefore, for every subject, s, with a DTMC satisfying the
aforementioned criteria, it followed that:

lim
t→∞

(

P
(s)
αβ

)t
= π

(s)
β > 0 , α,β ∈ {1, . . . ,K} (6)

where the estimate of the row vector denoting the stationary

distribution of the DTMC (Kulkarni, 2011), π
(s) =

[

π
(s)
β

]

β∈S
,

with dimension 1× |S|, is given by:

π
(s) = 1× (I− P(s) +ONE)−1 (7)

where 1 is a 1 × |S| vector of ones, I is the identity matrix with
rank |S|, P(s) is the TPM of subject s and ONE is an |S| × |S|
matrix all of whose entries are one. Due to the inclusion criteria
imposed on the DTMCs defined by the optimal state trajectories,
i.e., irreducibility and aperiodicity, only 37 and 46 DTMCs from
the HC and SZ groups, respectively, were analyzed. For a given
FC state β , πβ (element β of the row vector π) was themeasure to
be used to perform intergroup comparisons. Importantly, since
only aperiodic DTMCs were considered, πβ can be understood as
the limiting probability that the DTMC is in FC state β and as the
long-run fraction of time the DTMC spends in FC state β . It must
be noted that intergroup comparisons between the estimated
stationary distributions were not performed in this study.

2.7. Intergroup Comparisons
In this research, hypothesis tests to compare the group mean
of the properties calculated from the temporal state trajectories
observed in SZ patients and HCs were performed using Monte
Carlo permutation tests (Pesarin and Salmaso, 2010) by adapting
the procedure used by Cabral et al. (2017), Figueroa et al.
(2019), Lord et al. (2019). To produce an accurate approximate
estimation of the permutation distribution, these tests were
conducted using B = 10, 000 permutations (Marozzi, 2004).
Here, depending on the result of a Levene’s test (Levene, 1960)
(used to assess the homogeneity between the group variances) the
Monte Carlo permutation tests were performed based on one of
the following two statistics (under the null hypothesis):

T∗
0 =































X̄1 − X̄2
√

S21
nHC

+
S22
nSZ

, pLevene’s test < 0.05

X̄1 − X̄2
√

Sp
( 1
nHC

+ 1
nSZ

)

, otherwise

(8)

where X̄1 and X̄2 are the random sample means, S1 and S2 are
the random sample standard deviations, and nHC and nSZ are the
sample sizes for the HC and SZ groups, respectively. The pooled
random standard deviation, Sp, is given by Sp =

(

(nHC − 1)S21 +
(nSZ − 1)S22

)

/
(

nHC + nSZ − 2
)

. Under the null hypothesis, the
statistic from Equation (8) used to perform the statistical test was
subsequently used to obtain the value of the statistic under each of
the B permutations of the sample data. In this study, the standard
deviation of the difference of the group means was estimated
using 500 bootstrap samples within each permutation sample.
This was performed so that the estimation of this quantity was
conducted independently of the calculated means difference.

To complement the statistical hypothesis tests and
understand the magnitude of the detected intergroup differences
independently of the sample size, the effect size was estimated
using Hedge’s g statistic (Hedges, 1981). The use of this measure
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was based on its appropriateness to measure the effect size for
the difference between means and on the fact that this measure
takes into account the size of the sample from each group.

2.8. Comparison to Resting-State
Functional Networks
The functional relevance of the estimated FC states was
investigated by assessing whether there was a significant spatial
overlap between the centroids/medoids and any of the seven
reference RSNs defined by Thomas Yeo et al. (2011). This was
accomplished by employing the procedure used by Lord et al.
(2019), Vohryzek et al. (2020). Specifically, the seven RSNs were
transformed into seven non-overlapping vectors with dimension
1 × 90, where each entry of the vectors corresponded to the
proportion of voxels of each AAL brain area that were assigned
to each of the seven RSNs. Finally, the Pearson correlation
coefficient was used to assess the spatial overlap between these
seven RSNs and the centroids/medoids VCα

with α ∈ {1, . . . ,K}
(all negative values of VCα

were set to zero so that only areas
thought to define relevant functional networks were considered).

2.9. Unsupervised Internal Cluster
Validation Criteria
The quality of clustering solutions outputted by the clustering
algorithms was evaluated using the average Silhouette coefficient
and the Dunn’s index (Aggarwal and Reddy, 2013).

2.10. External Validation Clustering
Agreement Measures
Clustering outputs from distinct algorithms were compared
using the Adjusted Rand Index (ARI) and the Variation of
Information (VI) clustering agreement measures (Aggarwal and
Reddy, 2013).

2.11. Clustering Stability Evaluated by
K-Fold Cross-Validation
The stability of clustering solutions was assessed according
to a 10-fold cross-validation procedure adapted from Martins
and Cardoso (2008). Firstly, the sample of the pooled leading
eigenvectors was split into two subsamples, referred to as training
and test samples. Secondly, a clustering algorithm was applied
to the training sample—yielding partition P1. Subsequently, a
Nearest Centroid classifier assigned each observation of the
test sample to the cluster of partition P1, whose centroid was
nearest—resulting in the class set P2 of the test sample. The
same clustering algorithm was then applied to the test sample—
producing the cluster set P3. Finally, partitions P2 and P3 were
compared based on the ARI, VI and percent agreement (fraction
of objects correctly assigned). This procedure was repeated for
each of the 10 cross-validation folds.

2.12. Software
This analysis used MATLAB R2019b (MATLAB, 2019),
the Statistics and Machine Learning ToolboxTM and the
Econometrics ToolboxTM.

3. RESULTS

3.1. Intergroup Differences Across
Partition Models Detected by the K-Means
Algorithm
The collection of clustering solutions was investigated to search
for FC states whose fractional occupancy and dwell time most
significantly and consistently differed between SZ patients and
HCs. For a partition model with K clusters, K hypothesis tests
were performed. Consequently, to account for the increased
probability of false positives, the significance threshold α1 = 0.05
was adjusted to α2 = 0.05/K using a Bonferroni correction.
Additionally, a conservative significance threshold of α3 =

0.05/
∑20

K=2 K was considered to encompass both dependent and
independent null hypotheses across clustering solutions.

Figure 2B presents, for each clustering solution, the K two-
sided p-values obtained from evaluating whether the group
mean fractional occupancy of an FC state differed between
SZ patients and HCs. From the inspection of Figure 2B, it
is apparent that, across all partition models, the clustering
procedure consistently returned FC states whose mean fractional
occupancy differs significantly between groups—falling below the
corrected significance thresholds α2 and α3.

Closer inspection of Figure 2B shows there are significant
intergroup differences in the mean fractional occupancy of FC
state 1 for a range of clustering solutions (p < α3, two-tailed
tests). In fact, the mean fractional occupancy of this state was
found to be significantly decreased in SZ patients compared to
HCs (p < α3 for K ∈ {2, . . . , 17}, one-tailed tests), as suggested
in Figure 2A. Interestingly, for all partition models, the centroid
associated with FC state 1 revealed this recurrent FC pattern
represents a globally synchronized state of phase coherence (all
elements of the centroid had the same sign). Hence, FC state 1 is
referred to as the Global Mode.

As depicted in Figure 2B, across all clustering solutions,
further non-global FC states are characterized by significant
intergroup differences in the group mean fractional occupancy
(p < α3, two-tailed tests). Interestingly, all these states were
typified by a higher mean probability of occurrence in the SZ
group compared to the HC group (p < α3, one-tailed tests),
as presented in Figure 2A. Visual inspection of these non-global
FC states revealed they represent varying forms of the same
underlying connectivity patterns. Specifically, states detected for
lower values of K could be obtained by combining the fine-
grained FC patterns identified in partition models with larger
values of K—evidencing the dependence among the hypothesis
tests performed across clustering solutions.

The analysis of mean dwell time estimates of detected FC
states suggested that this measure did not allow as much
consistent and clear differentiation between groups compared to
the estimates of the fractional occupancy of FC states, as observed
in Supplementary Figure 1. In fact, the mean dwell time of the
Global Mode was reduced significantly in SZ patients compared
to HCs in only 8 clustering solutions (p < α3, one-tailed tests).
Conversely, across all partition models, the mean dwell time was
identified as significantly increased in the SZ group compared to
the HC group in only two FC states (p < α3, one-tailed tests).
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FIGURE 2 | Intergroup comparisons of the mean fractional occupancy of each FC state for each clustering solution. (A) Barplot of the estimated mean fractional

occupancy with associated standard error of each FC state for each group. For each FC state, the color of the bars indicates whether the null hypothesis of no

intergroup differences in the mean fractional occupancy was rejected (two-tailed tests). The standard error of each bar was calculated as the standard deviation of the

sample data divided by the square root of the sample size. (B) Two-sided p-values obtained for the intergroup comparisons of the mean fractional occupancy of each

FC state for each partition model. FC states (clusters) are ranked according to their probability of occurrence, where cluster 1 consists of the largest number of objects

and cluster K consists of the least number of objects. The red, green and blue dotted lines correspond to a 0.05, 0.05/K and 0.05/
∑20

K=2 K significance threshold,

respectively.

Notably, these non-global states were highly correlated (Pearson’s
r = 0.996)—reinforcing the fact that significant intergroup
differences were consistently detected across similar FC patterns.

3.2. Overlap With Reference Functional
Networks
Investigation of the overlap between the centroids of the
detected FC states and the seven canonical functional
networks defined by Thomas Yeo et al. (2011), depicted
in Supplementary Figure 2B, confirmed that intergroup
differences were consistently detected in a number of varying
forms of the same FC patterns. Interestingly, FC state 1 did
not significantly overlap with any of the seven reference RSNs,
as shown in Supplementary Figure 2A—indicating this global
state does not reveal the activation of any particular subset of
functionally coupled brain regions. Additionally, across partition
models, the non-global FC states with a significantly increased
mean fractional occupancy in SZ were found to repeatedly
overlap with the Somatomotor, Dorsal Attention and Limbic
networks, as illustrated in Supplementary Figure 2A. The mean
dwell time of FC states related to the Dorsal Attention network
was significantly increased in the SZ group compared to the HC
group. Accordingly, FC states with functional activity possibly

related to that of the aforementioned canonical RSNs recur
more often (and lasted for larger consecutive periods of time) in
SZ patients.

3.3. Internal Validation of K-Means
Clustering Solutions
As shown in Figure 3, the highest average Silhouette coefficient
and Dunn’s index were obtained for clustering solutions with
a low number of FC states, which are of limited interest for
the present study. Contrarily, for clustering solutions with more
than 12 clusters, both validation measures remained relatively
constant at low values—indicating such partitions are also of
limited interest.

Notably, for clustering solutions with K between 7 and 11,
the average Silhouette coefficient decreased smoothly and the
Dunn’s index remained approximately constant, as observed
in Figure 3—suggesting these partition models are of potential
interest for further analysis.

3.4. Selection of the Optimal Clustering
Solution
For the subsequent analysis, the partitionmodel with 11 FC states
was selected as the optimal K-means clustering solution. This
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FIGURE 3 | Internal validation of K-means clustering results. Average

Silhouette coefficient and Dunn’s index used to evaluate the quality of

clustering solutions.

decision was based upon the ability to identify a collection of FC
states with properties that significantly differed between groups
and the quality and stability of the actual partition of the data.

The collection of 11 phase coherence patterns, their fractional
occupancy and dwell time values are presented in Figure 4. The
non-global FC states were found to be significantly correlated
with six of the seven RSNs estimated by Thomas Yeo et al. (2011),
as shown in Figure 4A. From Figure 4B, it is apparent that the
11 FC states represent phase coherence between distinct subsets
of brain areas. Furthermore, significant intergroup differences
were identified in the mean fractional occupancy of 4 FC states,
as observed in Figure 4C. Closer inspection of Figures 4A,B

reveals that these 4 FC states represent distinct functionally
meaningful networks. The mean fractional occupancy of FC state
1 was significantly decreased in SZ patients compared to HCs
(p < α3; Hedge’s g = 0.694, medium to large effect size),
with estimates 29.8 ± 19.8% and 39.8 ± 14.9% (mean ± std)
for the SZ and HC groups, respectively. Furthermore, the mean
fractional occupancy of FC states 5, 9, and 10 was significantly
increased in SZ patients compared to HCs (p < α3; Hedge’s
g = {0.611, 0.630, 0.629}, respectively, medium to large effect
size), with values 7.61 ± 7.78%, 5.67 ± 6.34%, and 5.14 ± 4.09%
for the SZ group and 4.02 ± 3.15%, 2.52 ± 3.24%, and 2.94 ±

2.81% for the HC group, respectively (mean ± std). Finally, the
mean dwell time of 2 FC states was found to be significantly
different between groups, as shown in Figure 4D. Specifically,
the mean dwell time of the Global Mode was significantly
decreased in SZ patients compared to HCs (p < α3; Hedge’s
g = 0.618, medium to large effect size). The mean dwell
time value of this state was 4.986 ± 2.306 s and 6.574 ± 2.803
s (mean ± std) for SZ patients and HCs, respectively. The
mean dwell time of FC state 9 was significantly increased in
SZ patients compared to HCs (p < α2; Hedge’s g = 0.519,
medium to large effect size), with values 2.287 ± 0.763 s for

the SZ group and 1.830 ± 0.977 s for the control group (mean
± std).

Furthermore, the percent agreement, ARI and VI obtained for
each fold of the 10-fold cross-validation procedure are provided
in Supplementary Table 1. The results suggest respectively, good
levels of association and paired agreement between partitions of
the test sample and that the amount of information that was lost
in changing from the class set P2 to the cluster set P3 of the test
sample was relatively low. Consequently, the optimal clustering
solution is considered valid and appropriate for further analysis.

3.5. State-to-State Transitions of the
Optimal State Trajectories
With respect to the optimal clustering solution, for all
participants, the individual DTMC defined by the temporal
trajectories through the finite state space S′ = {1, . . . , 11}, was
characterized by its estimated TPM. For each probability of
transitioning from state α to state β (α → β , α,β ∈ S′),
a two-sided p-value was obtained by testing whether its group
mean differed between groups. The state-to-state transition
probabilities that were significantly affected in SZ patients
compared to HCs are depicted in Figure 5.

As shown in Figure 5, the mean probability of remaining in
FC state 1 was significantly reduced in SZ patients compared
to HCs (Hedge’s g = 0.726, medium to large effect size).
Furthermore, the mean probability of remaining in FC states 2
and 7 was significantly reduced in the SZ group compared to
the HC group (Hedge’s g = {0.449, 0.515}, respectively, small to
medium effect size). Lastly, the mean probability of transitioning
from FC state 1 to FC states 5 and 10 (Hedge’s g = {0.452, 0.513},
respectively, small to medium effect size) and from FC state 9 to
FC state 10 (Hedge’s g = 0.461, small to medium effect size) were
significantly increased in SZ patients compared to HCs. Overall, a
number of mean transition probabilities were found to be altered
in SZ patients.

3.6. Limiting Probabilities of the Optimal
FC States
For the subgroup of 37 HCs and 46 SZ patients with irreducible
and aperiodic DTMCs, the estimated mean long-run proportion
of TRs spent in FC state 1 was, respectively, 0.309 ± 0.104
and 0.272 ± 0.111 (mean ± std). Surprisingly, no intergroup
differences were found in the mean limiting probability of this
state (two-tailed test; Hedge’s g = 0.342, small to medium effect
size). Only the mean limiting probability of FC states 5 and
10 were identified as significantly increased in the SZ subgroup
compared to theHC subgroup (p < 0.05, one-tailed tests; Hedge’s
g = {0.464, 0.449}, respectively, small to medium effect size).

3.7. Influence of Using the K-Medoids
Algorithm Instead of the K-Means
Algorithm
The application of the K-medoids algorithm was found to enable
the detection of FC states with a mean fractional occupancy and a
mean dwell time that consistently and significantly differ between
groups. Similarly with the findings produced by the K-means
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FIGURE 4 | Repertoire of FC states defined from phase coherence obtained from the clustering solution with K = 11 clusters. The FC states are arranged (left-to-right)

according to decreasing estimated fractional occupancy. Each FC state is represented by a N× 1 centroid VCα
, with α ∈ {1, . . . , 11}. (A) Cortical rendering of all brain

areas with positive values in VCα
. The functional network defined by Thomas Yeo et al. (2011) with which VCα

most significantly overlapped is indicated as subtitle. (B)

Vector representation showing the N elements in VCα
, representing the contribution of each brain area to FC state α. (C) Boxplot of the fractional occupancy values for

each FC state for the SZ and HC groups. (D) Boxplot of the dwell time values for each FC state for the SZ and HC groups. Single and double asterisks indicate

significant intergroup differences with p < α2 and p < α3 (one-tailed tests), respectively. Green points represent outliers, according to the Tukey criterion (Tukey, 1977).

algorithm, the K-medoids algorithm identified an FC state which
represents a globally synchronized state whose mean fractional
occupancy and dwell time was significantly decreased in SZ
patients compared to HCs. Additionally, the mean fractional
occupancy of a number of non-global FC states related to the
reference Somatomotor, Dorsal Attention and Limbic RSNs was
found to be significantly increased in SZ patients compared
to HCs. Finally, the mean dwell time of FC states related to
the Dorsal Attention and Limbic networks was found to be
significantly increased in SZ patients compared to HCs.

The ARI and VI showed that the clustering solutions with
the same number of FC states detected by each of the clustering
algorithms were dissimilar. Interestingly, for each K, with K ∈

{2, . . . , 20}, the FC states (centroids/medoids) detected by each of
the clustering algorithms with significant intergroup differences
in the mean fractional occupancy and mean dwell time (p < α2,
two-tailed tests) were found to be highly correlated. Therefore,
both the K-means and the K-medoids algorithms were found to
effectively identify similar FC states whose properties provide the
capacity to differentiate SZ patients from HCs.
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FIGURE 5 | Transition diagram of the state-to-state transitions significantly altered in SZ patients compared to HCs. Arrows represent a mean transition probability

that was significantly increased (green) or decreased (red) in SZ patients compared to HCs. Single and double asterisks indicate, respectively, significant intergroup

differences with p < 0.05/11 and p < 0.05/(11× 11) (one-tailed tests).

4. DISCUSSION

This study investigated differences in resting-state brain activity
between schizophrenia patients and healthy controls. This was
done from the perspective of dynamical systems theory by
considering the exploration of functional networks as trajectories
through a state space—providing an insightful framework to
interpret brain activity alterations in schizophrenia.

Overall, SZ patients were found to spend less time in
a globally synchronized state, or Global Mode, in line with
previous studies using different analytical approaches (Damaraju
et al., 2014; Rabany et al., 2019; Sanfratello et al., 2019).
Conversely, a repertoire of non-global FC states, involving
the phase synchronization of brain areas belonging to the
Somatomotor, Dorsal Attention and Limbic RSNs, were shown
to recur more often in SZ patients. These non-global FC

states have been previously referred to as “ghost” attractor
states since they appear briefly and erratically, yet consistently
and recurrently across subjects (Vohryzek et al., 2020). The
detection of increased excursions to a subset of these “ghost”
attractor states in schizophrenia is suggestive of alterations in
the energy landscape of brain activity. In particular, the RSNs
that recurred more often have been previously associated with
schizophrenia symptoms. In fact, the Somatomotor network
was related to motor and negative symptoms of schizophrenia
(Bernard et al., 2017), the Limbic network was related to
positive symptoms (such as paranoid ideation; Walther et al.,
2021) and to disorganization (Lin et al., 2018) and the
Dorsal Attention network was related to the regulation of
attention Kandilarova et al. (2021), as well as to positive and
negative symptoms’ improvement after antipsychotic treatment
(Kraguljac et al., 2016).
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Regarding state-to-state transitions, SZ patients were found
to be less likely to remain in the globally synchronized state,
in line with previous studies (Rabany et al., 2019). Importantly,
this state has been linked to greater neural flexible switching
via integration or segregation of different functional connections
(Cabral et al., 2017; Nomi et al., 2017). Therefore, the reduced
ability of SZ patients to access and remain in this state could
be hypothesized to provoke impaired integration of functionally
meaningful networks (Dong et al., 2018). Additionally, SZ
patients were found to have a higher probability of transitioning
from the Global Mode to states related to the Somatomotor and
Limbic RSNs and from a Dorsal Attention-related network to
a Limbic-related network—reinforcing the role of brain activity
alterations across these “ghost” attractor states in schizophrenia.
Another interesting finding was the reduced ability to remain
in a state related to the Default RSN in SZ patients. In
fact, this RSN has been linked to core processes of human
cognition (Greicius et al., 2003; van den Heuvel and Hulshoff
Pol, 2010)—support the view of schizophrenia as a disorder
affecting cognitive function. Finally, the reduced ability of SZ
patients to remain in an Orbitofrontal Network—a network
hypothesized to be involved in sensory integration, monitoring
the reward value of reinforcers, decision making and expectation
(Kringelbach and Rolls, 2004). This could potentially explain
some of the positive and negative symptoms associated with
this disorder. These findings provide additional evidence of
the altered energy landscape in schizophrenia. However, how
these alterations translate into distorted cognition and behavior
remains completely unclear and future investigations should
gather a diverse panel of experts to explore how these findings
could be applied to improve our understanding of schizophrenia.

Despite the lack of a full understanding of the
relationship between connectivity patterns observed in
Electroencephalography (EEG) and fMRI, these findings
could be speculated to portray a temporal dynamics related to
that observed with EEG microstates measured at a different time
resolution. In fact, in line with the aforementioned findings, EEG
studies have reported an increased occurrence of a microstate
associated with the Limbic RSN (Ramos da Cruz et al., 2020) and
unexpectedly more transitions from a microstate associated with
the Attention RSN to a microstate associated with the Limbic
RSN in schizophrenia (Rieger et al., 2016).

On the question of the influence of using the K-medoids
algorithm to conduct an LEiDA analysis, this study found that
similar intergroup differences are captured by employing either
theK-medoids algorithm or theK-means algorithm. This finding
suggests that the choice of an optimal clustering algorithm
should rely not only on statistical and cluster validation analyses,
but also on concepts and methods from dynamical systems
theory (Deco and Jirsa, 2012; Cabral et al., 2017; Vohryzek
et al., 2020). On the one hand, from the definition of the K-
means algorithm, the detected FC states (centroids) are not
necessarily observations from the input dataset, but could rather
be interpreted as averaged recurrent unobserved FC patterns;
hence their designation as “ghost” attractor states (Vohryzek
et al., 2020). However, the definition of the K-medoids algorithm
implied the detected FC states (medoids) are observed recurrent
FC patterns. Research questions pertaining to the functional

meaning of the detected FC patterns underline the need to
employ tools from dynamical systems theory to provide further
insights into the dynamical regime of brain activity (Deco and
Jirsa, 2012; Cabral et al., 2017; Vohryzek et al., 2020).

Developing on from previous LEiDA analyses, this study
proposes examining the limiting probability of FC states. This
property offers valuable insights into the long-run proportion
of time that a DTMC spends in each state. Specifically, this
measure is computed from the TPMs which characterize the state
trajectories—capturing dynamic behavior of brain activity to a
greater extent than fractional occupancy. However, considerably
more research will need to be conducted to determine its
utility. Furthermore, the measurements of this property are
derived from the estimation of the stationary distribution of the
state trajectories, defined as irreducible and aperiodic DTMCs.
A natural progression of this work is to examine whether
intergroup differences in the stationary distributions provide
further insights into the limiting dynamic behavior of brain
activity in diseased and healthy populations. This could be
achieved by employing the two-sample goodness of fit χ2 test.

One shortcoming of this study which could have affected
the measurements of both the state-to-state transition and
state limiting probabilities is the low temporal resolution of
the neuroimaging data (TR = 2 s). This was most clearly
observed from the inconsistencies found across state trajectories
obtained from the optimal clustering solution where, oftentimes,
the occurrence of all FC states was not guaranteed. In fact,
Magnetoencephalography (MEG) studies have suggested that
brain functional connectivity dynamics occurs at time scales
of approximately 200 ms (Baker et al., 2014; Vidaurre et al.,
2016). Accordingly, future work should utilize data with higher
temporal resolution to enable the capture of more rapid
dynamics—improving the utility of these properties as possible
biomarkers of schizophrenia.

Another limitation of this study is that the detected FC
states were strongly constrained by the selected parcellation atlas
(AAL). Despite having shown consistent results across studies
employing LEiDA (Cabral et al., 2017; Figueroa et al., 2019; Lord
et al., 2019; Larabi et al., 2020; Vohryzek et al., 2020), the AAL
template is based on an anatomical parcellation and, therefore,
may not provide an adequate framework to conduct an analysis
of dFC. Accordingly, future studies could extend this analysis to
other fMRI-derived anatomical or functional parcellations.

The effect of variables such as age, gender and clinical
history of patients were not taken into account while assessing
intergroup differences. Specifically, intergroup differences were
attributed exclusively to the effect of the group. Further research
is required to determine whether these variables or their
interaction could explain the variability found between groups.
Another unaddressed issue was whether not applying nuisance
regression strategies influenced the LEiDAmethod and therefore,
the observed intergroup differences. Future investigations on
this question could contribute with valuable insights into
this controversial preprocessing step. Despite these weaknesses
and supported by the complementary analysis presented in
Supplementary Material Section 2, based on a large sample, this
study provided unbiased and statistically rigorous evidence for
differences between patients with schizophrenia and healthy
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controls—leading to increased confidence in the biomarking
value of the findings from this research.

5. CONCLUSION

Resting-state dynamic functional connectivity comparisons were
conducted between schizophrenia patients and healthy controls
by employing and extending the LEiDA method. Through the
characterization of the temporal expression of different FC states,
this study found that schizophrenia patients exhibit an altered
energy landscape of brain activity. An implication of this is
the possibility that, even in the absence of any explicit task,
schizophrenia patients transition more frequently to network
patterns that are commonly activated during specific tasks.
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