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Abstract: Cell motility is the brilliant result of cell status and its interaction with close environments.
Its detection is now possible, thanks to the synergy of high-resolution camera sensors, time-lapse
microscopy devices, and dedicated software tools for video and data analysis. In this scenario,
we formulated a novel paradigm in which we considered the individual cells as a sort of sensitive
element of a sensor, which exploits the camera as a transducer returning the movement of the cell as
an output signal. In this way, cell movement allows us to retrieve information about the chemical
composition of the close environment. To optimally exploit this information, in this work, we introduce
a new setting, in which a cell trajectory is divided into sub-tracks, each one characterized by a specific
motion kind. Hence, we considered all the sub-tracks of the single-cell trajectory as the signals of a
virtual array of cell motility-based sensors. The kinematics of each sub-track is quantified and used
for a classification task. To investigate the potential of the proposed approach, we have compared the
achieved performances with those obtained by using a single-trajectory paradigm with the scope
to evaluate the chemotherapy treatment effects on prostate cancer cells. Novel pattern recognition
algorithms have been applied to the descriptors extracted at a sub-track level by implementing
features, as well as samples selection (a good teacher learning approach) for model construction.
The experimental results have put in evidence that the performances are higher when a further cluster
majority role has been considered, by emulating a sort of sensor fusion procedure. All of these results
highlighted the high strength of the proposed approach, and straightforwardly prefigure its use in
lab-on-chip or organ-on-chip applications, where the cell motility analysis can be massively applied
using time-lapse microscopy images.

Keywords: camera sensor; cell-motility; drug effect on in-vitro; prostate cancer cells

1. Introduction

The advent of sophisticated camera sensors integrated into time-lapse microscopy (TLM) devices
coupled with modern software tools for video and data analysis, allowed increasing capabilities to
“see in the deep” [1].
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Thanks to these facilities, the cellular microenvironment and related biological mechanisms can be
now investigated online during the phenomena evolution, letting research to understand the dynamics
of the processes involved for a deeper understanding of the biological mechanism. The online analysis
allowed by such sensors permits us to follow and analyze cellular movement in the environment,
and to further extract quantitative kinematics descriptors from the cell trajectories, therefore giving
to cell motility a crucial role. So, it is possible to change the measurement paradigm going from the
macro-temporal scale (acquisition every many hours for a static investigation), to a temporal scale
of the order of minutes. Virtually, the individual cells can be considered themselves as a sort of
sensitive element of a sensor that uses the camera as a transducer, and provides the movement of
the cell as an output signal that is able to retrieve information about the chemical composition of the
close environment.

Cell-based sensors have been largely used in cellular physiological parameter detection, human
olfactory mimicking systems [2–6], the treatment effect analysis, an environmental toxicity test,
and immunotherapy efficacy [7–9].

Thanks to the incremented uptake provided by time-lapse microscopy (TLM) and computer
simulations for data analysis, it is possible to simultaneously analyze the motion of many cells,
and to track their morphological as well as motion changes during cell life. This is possible now also,
thanks to the increased spatial and temporal resolution of the camera sensors and related electronic
interfaces [10]. Such aspects are going to be ever more relevant, since, as well known, they can be
related to alterations in the chemical compounds in the culture (drug administering), cell signaling
(cell–cell interaction), DNA damage, cell metabolism, etc. In addition, the coordinated motility of
group of cells (e.g., cancer cells clustered) may produce unusual behavior for individual cells, such as
emergent chemotaxis [11] or cell leader/follower paradigmatic roles in movement coordination [12].

According to the fact that cell movement depends upon the neighboring environment, the aim
of this study is to exploit cell movement as the output signal of a “virtual sensor”, whose sensitive
element is the cell itself. The observed output signal is then the cell trajectory extrapolated from the
time-lapse microscopy images.

Even if cell tracks have been extensively studied in many fields, from the morphogenesis of
pluricellular organisms [13] to adult physiological processes (such as tissue repair and immune
cell trafficking) [14], and many cancer-related diseases (such as cancer metastasis) [15,16], it is not
straightforward to construct a unique motion model for the entire cell track.

Experimental evidences, after all, have already suggested that the single cell track can be divided
in different parts each one characterized by a specific motion kind [17–23]. Starting from the hypothesis
that each single motion kind carried a different representation of the information of the cell, and of
its interaction with the environment [19,20] (e.g., anomalous diffusion may be a method for cells to
localize membrane receptors and control intramembrane signaling), the most innovative aspect in this
work is that we considered each single sub-track (and not simply the entire trajectory) as a sort of
sensor (Cell Motion Sensor, CMS). In such a way, each cell track can be virtually represented by an
array of CMSs, a “Sensor Array”, within which each single sub-track can be characterized by a specific
motion kind. The number of identified CMSs may change from cell track to cell track, but CMSs can be
coupled to three possible well-known typologies of motion: isotropic random walk, random walk with drift
and confined/sub-diffusive random walk [18] (a sort of three different input–output curves).

In the last past decades, diverse attempts have been presented with the aim of identifying these
different modes of motions [18–25]. According to the state-of-the-art scenario, we decided to use here
the Moment Scaling Spectra (MSS) approach that was demonstrated to be more effective in determining
different motion modes along a track.

The information of each single sub-track can be then extracted through the kinematics descriptors
of the trajectory. These features then represent the input to a distinct classification model for each kind
of motion.
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As a proof of concept, we here applied the proposed system to the study of the effects of a
chemotherapeutic drug (topoisomerase II inhibitor etoposide) at different concentrations on prostate
cancer cells PC-3 cultured in a 35 mm Petri dish, and spontaneously grouped into clusters [26]. It will
be demonstrated that the division in sub-tracks allows for improving the recognition performance of
the drug effect on the cell motility patterns (i.e., paradigm “sensor array”), with respect to the analysis
of the kinematics descriptors computed on the entire cell track (i.e., paradigm “single cell-based
sensor”); furthermore, we will also prove that the analysis of classification results mediated over the
descriptors extracted at cluster levels can be the optimal solution (i.e., in a new paradigm of “sensor
fusion” strategy).

The present study overcomes the criticisms and the limitations highlighted in the preliminary
work by Di Giuseppe et al. [26] that was aimed at verifying the effectiveness of cell motility to discover
block replication effects on cancer cells. In particular, we present here a novel way to analyze the
information content of cell trajectories, considering the track as the concatenation of separate signals
that come from a different motion kind. With this approach, each cell trajectory can be seen as the
signal of an array of cell-based sensors constructed upon the different sub-tracks of a single cell
track. Numerical results obtained in the classification of different cell tracks under different drug
concentrations incredibly improve the results achieved by the old algorithms, either in terms of the
number of cells to analyze, the automatic way to operate, as well as the variety of drug concentrations
tested. Furthermore, the more general approach presented here will translate in a fully automatic way
the concept of selecting the best training examples for constructing the recognition model, leading to
the so-called “good teacher selection” strategy. This new approach focuses on the crucial selection of
the best samples for the model construction beyond the standard selection of the best features.

The larger number of experiments with additional biological conditions (drug concentrations),
and the increased number of videos considered here will further demonstrate the reliability of the
proposed strategy, totally encompassing the single-cell sensor concept towards a model that better
represents, not only the complexity of a group of cells with coordinated actions, but even the strong
complexity underhand of the life of each single cell.

Finally, the present algorithm proposes a twofold change of perspective in cell motility investigation.
In the first place, the novel association cell track-sensor array plays a key role in the better discrimination
of the drug effect respect to Di Giuseppe et al. [26]. Secondly, the division of cell trajectories in sub-tracks
is not restricted to consider cells on its own as in Montiel et al. [22] or Dosset et al. [23]. Indeed,
the approach is based on the identification of multiple diffusive motion kinds according to the
interaction forces among closer cells. The influence of cells on each other also results in a collective
response of cells belonging to the same cluster as the drug [11–13].

2. Materials and Methods

2.1. A Sketch of the Method

The whole approach is summarized in Figure 1. First, a live cell sample is prepared and put into
a Petri dish. Then, time-lapse microscopy (TLM), coupled with video analysis, is used to acquire
and analyze the video sequence of cells under the microscope. First, unsupervised cell clustering
is applied by automatically assigning each cell to a specific cluster in the video sequence. Cells are
then localized and tracked by Cell-Hunter software [26–28], in order to automatically identify a set
of individual cell trajectories within the video. Each trajectory is further segmented into different
sub-tracks, each representing a different Cell Motion Sensor (CMS). Three different motion-based
classifiers are constructed according to the previous discussed model of motions, and applied to the
corresponding sub-track, providing a sub-track prediction result.

A unique classification result is then achieved by using majority voting, i.e., we combined the
responses provided by more CMSs (i.e., by different sub-tracks in the same cell track) in the array
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represented by the entire cell track. The final assigned label quantifies the cancer treatment effect on
each specific cell.
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Figure 1. A Schematic representation of the whole sensor platform. A) The living cells sample is 
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segmented into different sub-tracks, each representing a different Cell Motion Sensor (CMS). By 
combining the responses of more CMSs using majority voting, an estimation of drug effects is 
provided. 
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PC-3 human prostate cancer cells, cell line initiated from a bone metastasis of a grade IV prostatic 
adenocarcinoma, were grown at 37 °C in a 5% CO2 humidified atmosphere in Roswell Park Memorial 
Institute (RPMI) 1640 medium, supplemented with 10% fetal bovine serum (FBS), 2 mg/mL 
glutamine, 100 IU/mL penicillin and streptomycin (Euroclone). We applied the CMS device to the 
study of the motility of PC-3 cells cultured in a 35 mm Petri dish environment grown to 40–60% 
confluence. Cells were treated with the topoisomerase II inhibitor etoposide (chemotherapeutic drug, 
Sigma) at the final concentrations of 0.0 μM, 0.5 μM, 1.0 μM, 5.0 μM and 50 μM, and immediately 
analyzed by time-lapse microscopy for the first 6 h.   

2.3. Experimental Set-Up 

Time-lapse videos have been acquired with a customized small-scale inverted microscope for 
live-cell imaging. The experiments have been recorded in brightfield (8-bit grayscale) with a 10X 
magnification, capturing one frame every minute, with 6 h of total video time. The samples were 
exposed to light only for the acquisition (5–7 s per frame), in order to prevent any photo-activated 
cell mechanisms. The resulting videos have a FOV of 1.2 mm width by 1 mm height with a theoretical 
spatial resolution of 0.33 µm/pixel. 

Figure 1. A Schematic representation of the whole sensor platform. (A) The living cells sample is
prepared and put into a Petri dish. (B) Time-lapse Microscopy analysis is used to acquire the video of
moving cells. Cells are located, differentiated and individually tracked. (C) Each trajectory is segmented
into different sub-tracks, each representing a different Cell Motion Sensor (CMS). By combining the
responses of more CMSs using majority voting, an estimation of drug effects is provided.

2.2. Cell Culture

PC-3 human prostate cancer cells, cell line initiated from a bone metastasis of a grade IV prostatic
adenocarcinoma, were grown at 37 ◦C in a 5% CO2 humidified atmosphere in Roswell Park Memorial
Institute (RPMI) 1640 medium, supplemented with 10% fetal bovine serum (FBS), 2 mg/mL glutamine,
100 IU/mL penicillin and streptomycin (Euroclone). We applied the CMS device to the study of
the motility of PC-3 cells cultured in a 35 mm Petri dish environment grown to 40–60% confluence.
Cells were treated with the topoisomerase II inhibitor etoposide (chemotherapeutic drug, Sigma) at
the final concentrations of 0.0 µM, 0.5 µM, 1.0 µM, 5.0 µM and 50 µM, and immediately analyzed by
time-lapse microscopy for the first 6 h.

2.3. Experimental Set-Up

Time-lapse videos have been acquired with a customized small-scale inverted microscope for
live-cell imaging. The experiments have been recorded in brightfield (8-bit grayscale) with a 10X
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magnification, capturing one frame every minute, with 6 h of total video time. The samples were
exposed to light only for the acquisition (5–7 s per frame), in order to prevent any photo-activated cell
mechanisms. The resulting videos have a FOV of 1.2 mm width by 1 mm height with a theoretical
spatial resolution of 0.33 µm/pixel.

2.4. Video Analysis

In the following, we present the three main steps of the video data analysis: automatic clustering
and tracking, sub-track identification within a trajectory, and feature extraction.

2.4.1. Automatic Clustering and Tracking

An unsupervised clustering technique (Figure 2A) is applied to detect clusters in the videos of
our experimental scenarios. The technique is based upon the localization of individual cells through
the segmentation of circular-shaped objects using the Circular Hough Transform (CHT) [29], with its
radius settled around the mean manually-estimated radius of the considered cells.
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Figure 2. A schematic representation of automatic cell clustering and tracking. (A) Automatic
cluster-cell assignment procedure. (B) Visual result of the automatic cell clustering. (C) Cell tracking
results superimposed on the first video frame.

At each frame, after cell detection, each cell nucleus is represented by a white circular object.
In order to obtain the entire cluster segmentation, an accumulation criterion, consisting of the
overlapping of the cell nuclei detected along all of the frames, was applied. In Figure 2B, an example
of the final cluster detection result is shown. A grayscale map is first obtained, where a higher
intensity indicates cells with limited motility, and hence higher probability to stay in that position
during movement. Lower intensities indicate minor probability for cells to be located in that position.
Pixel intensity thresholding by the Otsu approach [30] is then applied to recover a binary (black and
white) image, where white objects indicate a meaningful cell localization probability. The contouring
of detected regions define cluster boundaries.
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As a second step, we applied the software Cell Hunter [26–28] for Single Particle Tracking (SPT) [31]
to identify cell trajectories in the video. An example of this application is represented in Figure 2C.

The last stage relies upon a univocal cluster-cell assignment. The definitive cell allocation was
preceded by a time-varying procedure, which assigned each cell position at a time to a cluster by
computing the time-by-time Euclidean distance between the cell center in each frame and the cluster
region center.

Most cells remained on the same cluster for the entire duration of the experiment, a few others
migrated from one cluster to another. We assigned such cells to the main cluster, i.e., the cluster in
which cell trajectories fell for most of the time, when they were inside this cluster for 95% of the time.

Clusters with less than 10 cells have been excluded from the analysis, so that each cluster could be
considered as a sufficiently large independent population to measure the mutual influence among
cells, and the collective response to the drug (see the sub-paragraphs below).

2.4.2. Sub-Track Identification within a Trajectory

Several approaches have been proposed in the state-of-the-art to implement the sub-track motion
estimation [22,23]. In the work of Montiel et al. [22], the authors detected changes in diffusion modes,
i.e., confined, isotropic and directed random walks, within one cell trajectory, by referring to a statistical
approach, a based likelihood ratio test, and by deriving Maximum Likelihood Estimators to estimate
diffusion coefficients related to the diverse identified modes.

Dosset et al. [23], instead, trained a back-propagation neural network (BPNN) to distinguish the
three diffusion behaviors within a single cell trajectory, then classified by means the computation of the
Mean Squared Displacement [18].

The aforementioned methodologies were applied to individual trajectories by disregarding the
mutual influences of neighboring cells. However, according to recent works [32–35], the interplay
among cells and their motion behavior in concert have characterized the core of cell motility items.
Mathematical models have been designed to describe coordinated cell migration [32–35]. They reserved
a valuable role in cell–cell interactions to explain the coordinated cell motion. On this basis, to design
our approach of diffusion modes identification, we assumed that the transition between motion kinds
within the same cell trajectory in a cluster was strongly influenced by the presence of the other cells of
the same cluster and by the consequent interaction forces among them.

After computing the interaction force acting on cells separately, we considered some local minima
of the force (explained later) as the motility transition between a motion mode to another, because they
correspond to a lack of interaction (i.e., as a breakup in the single cell motility) within the cluster.

For the definition of the interaction force, we readapted the concept of interaction among cells in
wound healing [35] to cells inside the same cluster.

Let c represent an arbitrary cell belonging to a cluster C. The interaction force exerted onto the
considered cell c by the other cells of the same cluster C was computed as the sum of the gradients of
attractive Gaussian potentials, given by

→

Fc =
(
Fc

x, Fc
y

)
= −

∑
k∈C

∇Uc
k(x, y) (1)

where
Uc

k = −U0exp
(
−(rc

k/tol)2
)

(2)

expresses the Gaussian potential related to the kth cell of the cluster with amplitude U0, chosen as
U0 = 1 µm2/min. Because of this assumption, the force was called a normalized interaction force.

Since the center of the attraction is the considered cell c, rc
k denotes the distance between the

cell c and the kth cell of C, whilst tol is the attractive potential range, the maximum cancer cell–cell
overlapping distance, imposed equals to the mean-diameter of detected cells.
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Local minima of the module of the aforementioned force were identified through a combined use
of sliding windowing and first decile computation. Figure 3A shows an example of automatic cell
transition mode recognition. First, we eliminated trajectories with a duration smaller than two hours,
to keep only the most informative tracks for the analysis. We then imposed the size of the sliding
window as a sixth of the trajectory length, a trade-off between obtaining meaningful information from
the computation of the local moments of displacement, and avoiding losing information about the
interaction force. Too short windows revealed it to be unsuitable to obtain robust local moment signals
for the subsequent analysis. On the other hand, longer sliding windows overshadowed the effect of
cell interaction.
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Figure 3. Motility switches detection and motion kind assignment. (A) Normalized interaction force
exerted by cells in a cluster on a cell belonging to the same cluster. Switches from a mode of motion
to another (shown in three diverse colors) match the detected local minima of the force (gray circles),
which are located in the transition area (shaded gray area) between the sliding window and the first
decile. Minima intercepted by the sliding window, but over the first decile are excluded (red cross).
(B) The resulting cell trajectory divided in three different-colored sub-tracks corresponding to the three
parts obtained by the identification of the local minima in (A). The green asterisk denotes the starting
point of cell trajectory. (C) MSS computation for the three sub-tracks in (B) with representation of each
sub-track. The slope of the MSS defines the motion kind assignment: 0.3561 for confined random walk
(light blue), 0.5432 for isotropic random walk (red) and 0.8368 for random walk with drift (yellow).
RW in the legend stands for random walk. Dotted lines with slopes of 1 and 0.5 are also represented
as benchmarks.

The first decile was considered as a threshold score in order to detect the lower, and thus the
most relevant, local minima. By disposing all of the force values in ascending order, the first decile is
the score below which 10% of the values fall. We therefore took as motility switches the solely local
minima detected within the sliding window that are below the first decile. They were found in that we
called the transition area (represented in gray in the figure). Gray circles represent the two transitions
between modes of motion. The red cross locates a minimum identified inside the sliding window,
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but over the first decile that was excluded, because it fell out of the transition area. After each trajectory
was split into a given number of sub-tracks, each tract was automatically assigned to a different kind
of motion, as described below.

For the scope of this work, three different kinds of motion were assumed. In the example
in Figure 3B, the considered cell track was divided into three tracts identified by different colors.
Each sub-track was associated to one kind of three main diffusion modes [18]: isotropic random walk,
random walk with drift and confined/sub-diffusive random walk. An isotropic random walk describes
cells moving in a succession of random steps, without following a clear-defined direction, a sort of
directional trend (drift), which is the hallmark of the directed random walk. A cell mimicking an
isotropic or directed random walk does not have constraints during motion, while a cell moving of a
confined random walk persists in a restricted area. Motions were discriminated by calculating the
Moment Scaling Spectra (MSS) [23,24].

The concept of the MSS is related to that of the moments of displacements, including the Mean Square
Displacement (MSD) [18,19]. Let the two-dimensional position vectors of the ith cell trajectory at time t,
xi(t), with t = 0, 1, . . . Li − 1 with Li the trajectory length. Given a time lag τ, ranging from 1 to Li/3 [25],
the moment of order v, as a function of the time lag τ, is defined as

MoDv,i(τ) =
1

Li − τ

Li− τ∑
t=1

d(xi(t + τ), xi(t))
v, (3)

where d denotes the Euclidean distance between two position vectors and v = 0, 1, . . . , 6 [25].
The second order moment corresponds to the commonly known MSD. Rewriting the power law

MoDv,i(τ) ∝ τ
γv

, presented by Sbalzarini et al. [25] as log(MoDv,i(τ)) ∝ γ
v log(τ), the so-called scaling

coefficients γv were found using a linear least squares fit.
According to Ferrari et al. [24], the study of all moments of displacements and their related scaling

coefficients conveys a robust analysis of the motion analyzed. By plotting the fitted scaling coefficients,
γv, versus the degrees of moments, v, the MSS is obtained [24,25]. When the MSS plot is a straight-line,
it indicates a strong, self-similar process. The slope, computed by a linear least squares’ regression,
provides information about the observed motion kind.

If the MSS slope is around 0.5, the motion is an isotropic random walk (diffusive mode). A directed
random walk motion (super-diffusive mode) corresponds to a slope in the region bounded from above
by 1 and from below by 0.5. Finally, a confined random walk (sub-diffusive-mode) is observed when
the MSS slope is less than 0.5. In Figure 3C, MSSs for each sub-track identified within the single
trajectory in the example in Figure 3B were computed and shown. The three tracts were assigned
to one motion kind after computing their slopes by fitting. The slope of the MSS in blue is equal to
0.3561, and corresponds to a confined random walk. The MSS in red, with a slope of 0.5432, defines an
isotropic random walk. Finally, the slope of MSS in yellow is equal to 0.8368, indicative of a random
walk with drift.

2.4.3. Feature Extraction

A set of commonly used motility features was extracted from each identified sub-track and from
the related entire cell trajectory. The mathematical expressions of the computed descriptors may be
found in Table 1.

For time-varying descriptors, the corresponding meaningful statistical operators were considered:
the average value, some statistical moments of increasing order, i.e., the standard deviation,
the skewness, the kurtosis and the average rate of information provided by the distribution of
the descriptor values, known as the Shannon entropy [26]. A total of 29 features were estimated for
each cell trajectory and the respective identified sub-tracks. Thus, we collected a set of kinematic
features computed for the entire trajectories, and another one in which we picked up features for
sub-tracks (CMSs). We divided the latter set in three different subsets, each corresponding to a distinct
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motion kind (isotropic random walk, random walk with drift and confined random walk). All the
29 features were used to build classifiers of our cooperative strategies, but only four of them were
exploited for the good teacher sample selection (see sub-paragraphs below).

Table 1. List of the extracted kinematic descriptors. The index i denotes the ith cell track with coordinates
(xi(tk), yi(tk)), for tk = t0, . . . , t f , where t0 and t f the starting and the ending time instant of the track.
For the track curvature, x′i , y′i and x′′i , y′′i are the first and second temporal derivatives, respectively,
computed by finite difference. For the diffusion coefficient, y0 represents the y-axis intercept estimated
from the Mean Square Displacement sequence.

Time-Varying Descriptors

Tangential speed magnitude [36] vi(tk) =

√(
xi(tk+1)−xi(tk)

(tk+1−tk)

)2
+

(
yi(tk+1)−yi(tk)

(tk+1−tk)

)2

Track curvature [26] κi(tk) =
|xi
′yi
′′
−yi

′xi
′′|

[(xi′)
2+(yi′)

2]
3/2

Angular speed magnitude [26] ωi(tk) = vi(tk)κi(tk)

Turning angle [36] θi(tk) = tan−1
[
(yi(tk+1)−yi(tk))

xi(tk+1)−xi(tk)

]
Distance to track center [26] rC(tk): the distance of each track point from the corresponding track

geometrical center (as the average coordinates in x and y).

Constant Descriptors

Distance to cluster center [26]
dc: the average distance between the geometrical center of the entire
cluster (as the average coordinates of all the track centers) and the

geometrical center of the track.

Diffusion coefficient [25] D2 = 4−1ey0

Directional persistence [26] pi: the ratio of the distance between the starting and the ending point of
the track and the actual length of the track.

Migration speed [26] mvi =

√(
xi(t f )−xi(t0)

(t f−t0)

)2
+

(
yi(t f )−yi(t0)

(t f−t0)

)2

2.5. Machine Learning Architecture

2.5.1. Data Labeling

We tested the array of CMS device described in the previous paragraph for treatment effect
evaluation, i.e., to recognize four diverse experimental conditions (0.0 µM, 0.5− 1.0 µM, 5.0 µM and
50.0 µM), corresponding to classes here labeled as 1,2,3 and 4, respectively. Drug concentrations of
0.5 and 1.0 µM were aggregated for data numerosity considerations.

2.5.2. Good Teacher Sample Selection

According to previous studies [26], we observed that not all of the cells tracks are equally
meaningful of drug concentrations effects. For example, isolated cells may not convey the desired
information lacking of interacting potential, as well as cells that lie in the core of a cluster that may suffer
from limited motility possibility. To serve as a sensor, a cell should be able to receive the drug, to interact
with the surrounding, and to change its own motility accordingly. For this reason, we decided to
reduce the amount of cell tracks located in the first part of the method to those that have the chance
to be CMS. First of all, we identify features directly related to the motility, or that have previously
proven to be crucial in a treatment effect study based on cell motility [26]. For this scope, we selected
the average track curvature, the distance to cluster center, the average and the standard deviation of tangential
speed magnitude. Based on these four descriptors, we eliminated, in a totally unsupervised manner,
those data whose feature values, calculated in each single experiment, exceed the 25th or the 75th
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percentile. The rationale is that kinematics features exceeding those boundaries (curvature and speed)
may be related to motionless cells, or cells moving fast in an isolated way. In addition, as elsewhere
demonstrated [26], cells that lie in the core of the cluster (small distance to the center) or very far from
the center (cells moving from one cluster to another) can be hardly used for a general analysis.

2.5.3. Cooperative Strategies

For each cell track, the three different modes of motions defined above were recognized. Basically,
we implemented a hierarchical cooperative strategy to combine the responses provided by different
classification models trained on different modes of motions.

In a first step, three classification models are independently trained over the sub-tracks (CMSs)
assigned to each mode of motions. Let us consider a cell cluster in the test phase. By focusing on
one of its cell trajectories, the three models assign to its n sub-tracks a score vector (i.e., the selected
classification models should be able to return a score to belong to a given class), indicated as score1,
score2, and scoren in Figure 4. Secondly, we carried out score averaging at the cell track level, highlighting
the cell sensor array potential. The label corresponding to the highest average score is finally assigned
to the cell track (track label in Figure 4). Finally, the majority voting procedure is applied to the labels of
the tracks of the same cluster, thus producing a label at cluster level, i.e., the one with major assignment
among the detected CMSs (cluster label in Figure 4).

Sensors 2020, 20, x FOR PEER REVIEW 10 of 15 

For each cell track, the three different modes of motions defined above were recognized. 
Basically, we implemented a hierarchical cooperative strategy to combine the responses provided by 
different classification models trained on different modes of motions. 

In a first step, three classification models are independently trained over the sub-tracks (CMSs) 
assigned to each mode of motions. Let us consider a cell cluster in the test phase. By focusing on one 
of its cell trajectories, the three models assign to its n sub-tracks a score vector (i.e., the selected 
classification models should be able to return a score to belong to a given class), indicated as score1, 
score2, and scoren in Figure 4. Secondly, we carried out score averaging at the cell track level, 
highlighting the cell sensor array potential. The label corresponding to the highest average score is 
finally assigned to the cell track (track label in Figure 4). Finally, the majority voting procedure is 
applied to the labels of the tracks of the same cluster, thus producing a label at cluster level, i.e., the 
one with major assignment among the detected CMSs (cluster label in Figure 4). 

 
Figure 4. A Schematic block-diagram of the proposed classification platform. From left to right: three 
classifiers related to the three types of motion are built in order to execute classification on sub-tracks 
attributed to each kind of these motion models. Each classification model should be able to return a 
score to belong to a given of n classes (Score1, Score2, and Scoren). The score can be averaged class by 
class, and then the label corresponding to the highest score is assigned to the track (i.e., Track label). 
The majority voting procedure is then performed at the cell track level, and a label is finally assigned 
to the entire cluster (i.e., Cluster label). 

Such a choice is supported by the recently investigated concerted effort among cells, emerging in 
coordinate migration [12,13] and in chemotaxis response [11]. We assume the global behavior in reply 
to treatment as a concerted effort among cells disposed in the same cluster. Classification model 
training was performed by a leave-one-cluster-out cross-validation procedure. During simulations, 
we compared the performances of standard classifiers such as LDA, SVM and QDA. Actually, QDA 
provided slightly better performance, and hence we selected it for the following analysis. 
Nevertheless, the rationale for the method was not to focus upon choosing one classifier rather than 
another, as much as on the optimization of the learning strategy for whichever classification 
architecture.   

3. Results and Discussion 

3.1. Processed Data 

In this work, we tested our platform of analysis on a setting of 14 experiments at diverse 
experimental conditions, two for the control condition, no drug (0.0 μM ), eight for drug 
concentrations 0.5 − 1.0 μM, two for 5.0 μM and two for 50.0 μM. With the aim of classifying these 
four biological conditions, we assigned a label to each of the drug concentrations, i.e., from label = 1 
to label=4 at increasing drug dose. We first applied the automatic clustering, tracking procedure and 
data refining (see Methods), which led to a final result of 794 cell trajectories, 44 for label = 1, 377 for 
label = 2, 172 for label = 3 and 201 for label=4, belonging to distinct 119 detected clusters, 12 for label=1, 
63 for label = 2, 17 for label = 3 and 27 for label=4. Therefore, every single detected cell trajectory was 
broken up in several sub-tracks by the automatic approach described in Methods. By separating sub-
tracks according to the relative random walk kind, we collected 819 cell tracks for the isotropic 

Motion model based 
classifiers

Score averaging 
and class 

assignment on a 
track

Confined Random 
walk

Isotropic Random
walk

Random walk
with drift

Majority voting 
on all the tracks 

belonging to 
the same 

cluster

[score1 , score2 , …, scoren ]

Cell-track

Cluster 
label

Track
label[score1 , score2 , …, scoren ]

[score1 , score2 , …, scoren ]

Figure 4. A Schematic block-diagram of the proposed classification platform. From left to right: three
classifiers related to the three types of motion are built in order to execute classification on sub-tracks
attributed to each kind of these motion models. Each classification model should be able to return a
score to belong to a given of n classes (Score1, Score2, and Scoren). The score can be averaged class by
class, and then the label corresponding to the highest score is assigned to the track (i.e., Track label).
The majority voting procedure is then performed at the cell track level, and a label is finally assigned to
the entire cluster (i.e., Cluster label).

Such a choice is supported by the recently investigated concerted effort among cells, emerging in
coordinate migration [12,13] and in chemotaxis response [11]. We assume the global behavior in reply
to treatment as a concerted effort among cells disposed in the same cluster. Classification model training
was performed by a leave-one-cluster-out cross-validation procedure. During simulations, we compared
the performances of standard classifiers such as LDA, SVM and QDA. Actually, QDA provided slightly
better performance, and hence we selected it for the following analysis. Nevertheless, the rationale
for the method was not to focus upon choosing one classifier rather than another, as much as on the
optimization of the learning strategy for whichever classification architecture.

3. Results and Discussion

3.1. Processed Data

In this work, we tested our platform of analysis on a setting of 14 experiments at diverse
experimental conditions, two for the control condition, no drug (0.0 µM), eight for drug concentrations
0.5 − 1.0 µM, two for 5.0 µM and two for 50.0 µM. With the aim of classifying these four biological
conditions, we assigned a label to each of the drug concentrations, i.e., from label = 1 to label = 4 at
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increasing drug dose. We first applied the automatic clustering, tracking procedure and data refining
(see Methods), which led to a final result of 794 cell trajectories, 44 for label = 1, 377 for label = 2, 172 for
label = 3 and 201 for label = 4, belonging to distinct 119 detected clusters, 12 for label = 1, 63 for label
= 2, 17 for label = 3 and 27 for label = 4. Therefore, every single detected cell trajectory was broken
up in several sub-tracks by the automatic approach described in Methods. By separating sub-tracks
according to the relative random walk kind, we collected 819 cell tracks for the isotropic random walk,
819 for a directed random walk, and 829 for the confined random walk, so for a total amount of 2467
sub-tracks. The high number of sub-tracks extracted allowed us to conduct a massive analysis over the
cell motility impact of drug administering.

3.2. Beyond Univariate Data Analysis

The proposed classification procedure is based upon multivariate data analysis to give more
robustness to the drug-impact investigation: we combined motility descriptors in a unified array for
the three motion models (see Methods). Features taken separately, in fact, may not always discriminate
efficiently all drug concentrations. As proof of concept, in the first row of Figure 5 the box-plots of
the average track curvature for confined random walk (left), of the diffusion coefficient for isotropic
random walk (center), and of the directional persistence for random walk with drift (right), at varying
drug concentrations, are shown.
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Figure 5. Single-descriptor analysis. In the first row, the box-plots of the average track curvature (left),
of the diffusion coefficient (center) and of the directional persistence (right), respectively, extracted from
sub-tracks assigned to confined, isotropic and directed random walk, and belonging to the four classes
of drug concentration labeled as 1, 2, 3 and 4. In the second row, the triangular matrix of p-values for
the Student’s t-test test with Bonferroni’s correction corresponding to the three descriptors in the first
row. Cells of the matrix with asterisks indicate p-values < 0.05. Specifically, * p-value < 0.05, ** p-value
< 0.01, *** p-value < 0.001.

The p-values for Student’s t-test with Bonferroni’s corrections are represented in the second row
of Figure 5. For the average track curvature, the t-test was able to discriminate all concentrations of the
drug with p < 0.0001 (right). Conversely, the discriminatory ability of the diffusion coefficient fails in
discerning the two lower drug concentrations, i.e., classes 1 and 2 (center). Finally, for the directional
persistence, a statistically significant difference is exclusively evident by comparing class 2 with class 3,
p < 0.01, and class 2 with class 4, p < 0.001, (right).
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3.3. Comparative Approaches

To evaluate the advantages of our analysis platform in sensing drug concentration from motility
characteristics, we compared the obtained results with those achieved by the alternative approaches
indicated in Figure 6. The green blocks identify the proposed method and the related results.
Score averaging and class assignment to the single-track reach 87% of the accuracy. Majority voting
then produces a strong improvement, and leads to an accuracy value of 96%.
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Figure 6. Comparative analysis results. Green boxes at the top indicate the proposed method. The blue,
orange and yellow blocks indicate the classifiers constructed on each single motion model, starting
from the corresponding sub-tracks of each cell track. Finally, the pink boxes at the bottom indicate the
old-paradigm approach in which the entire track is used for the analysis.

First, we evaluate the performance of individual motion model classifiers by applying the majority
voting procedure over the labels assigned, using each motion model separately (intermediate output
of the first three rows, blue, orange and yellow blocks). The result obtained by applying the majority
voting only to the labels provided by each classifier will be also listed. Results indicate that the three
single motion models equally contribute to the final result, but individually does not reach very high
performance at track level. When majority voting is used, results improve, but still do not reach the
result obtained by their combination. Maximum values of 80% and 90% are obtained, for track and
cluster labeling, respectively. The results obtained by the proposed cooperative strategy demonstrates
the importance of the “sensor fusion” approach implemented.

To further verify the necessity of a cell motion sensor array strategy, we compared our method
with the single-track model approach in which the entire track is extracted for each cell, and its features
are used to train the classifier. The cell-track and the cluster level labeling are also indicated in the
pink boxes at the bottom. In this approach, a single cell trajectory is considered as a unique sensor,
and lacks the potential of constructing an array of sensors within the same cell track. Accuracy results
of 59% and 70% support the validity of the novel assumptions. All of the classification models used for
the comparison are based on a QDA classifier.
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3.4. Discussion

The present study aims at providing a preliminary investigation of the effect of chemotherapy
on cancer cell motility during initial time steps after treatment. Indeed, in-vivo cell movements are
too complex to be modeled with the scarce nowadays knowledge, and basic information must be
gathered before approaching the complexity. In light of this, it seemed wise for us to begin from a
simplified model to begin getting basic information, still lacking. The interest in cell motility is due to
the fact that cells do not stop moving only because they die, but rather, because the actin movement
necessary for locomotion requires specific signaling pathways they may, or may not, depend upon
induced DNA damage. Such complexity that manifests much before cell death is not simply the
aggregation of multiple cell responses, but rather the synergy of a dynamic cell motility behavior based
on heterogeneous motion and the related coordination among different cells.

To extend the validity of the CMS approach, in future work, the plethora of cell lines will be
enlarged at different drug concentrations. In addition, shape descriptors related to morphology
changes occurring during cell movement will be joined to motility features for comparative and
improved studies.

4. Conclusions

Thanks to the incremented uptake provided by sophisticated camera sensors integrated into
time-lapse microscopy (TLM) devices coupled with modern software tools for video and data analysis,
cell motion has recently gained increasing interest as a fundamental part of the useful information.
We envisaged to consider individual cells themselves as a sort of sensitive element of a sensor. In this
view, the camera acts as a transducer, and provides the movement of the cell as an output signal
required to retrieve information about the chemical composition of the surrounding environment.
According to the fact that cell movement depends on the neighboring environment, in this work
we propose to exploit cell movement as the output signal of a “virtual sensor”, with the aim of
discovering drug administering impact over cell motility capability. To the best of our knowledge,
the dynamics of the phenomena is related to the different motion kinds that a cell assumes during
its life cycle. On this basis, we propose and implement here a novel paradigm in which each single
cell sub-track can be seen as a sort of sensor, and therefore the entire cell track as a virtual “array of
sensors”. Machine learning approaches applied on the descriptors extracted at the sub-track level were
demonstrated to be more effective in recognizing the motility effect of the drug. As a proof of concept,
we investigated the impact of etoposide (a block replication drug) in PC-3 prostate cancer cells with
respect to state-of-the-art methods framed in the standard single-track paradigm. With the support of
innovative data refining and cooperative architectures, the proposed platform aggregates the response
of individual cell motility-based sensors in a whole, and with an intriguing change of paradigm,
presents a very promising tool for further biological investigations and massive drug efficacy studies.
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