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ABSTRACT Host-microbe interactions are influenced by complex host genetics and
environment. Studies across animal taxa have aided our understanding of how intes-
tinal microbiota influence vertebrate development, disease, and physiology. How-
ever, traditional mammalian studies can be limited by the use of isogenic strains,
husbandry constraints that result in small sample sizes and limited statistical power,
reliance on indirect characterization of gut microbial communities from fecal sam-
ples, and concerns of whether observations in artificial conditions are actually reflec-
tive of what occurs in the wild. Fish models are able to overcome many of these
limitations. The extensive variation in the physiology, ecology, and natural history of
fish enriches studies of the evolution and ecology of host-microbe interactions. They
share physiological and immunological features common among vertebrates, includ-
ing humans, and harbor complex gut microbiota, which allows identification of the
mechanisms driving microbial community assembly. Their accelerated life cycles and
large clutch sizes and the ease of sampling both internal and external microbial
communities make them particularly well suited for robust statistical studies of mi-
crobial diversity. Gnotobiotic techniques, genetic manipulation of the microbiota and
host, and transparent juveniles enable novel insights into mechanisms underlying
development of the digestive tract and disease states. Many diseases involve a com-
plex combination of genes which are difficult to manipulate in homogeneous model
organisms. By taking advantage of the natural genetic variation found in wild fish
populations, as well as of the availability of powerful genetic tools, future studies
should be able to identify conserved genes and pathways that contribute to human
genetic diseases characterized by dysbiosis.
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In vertebrates, the gut microbiome promotes the normal development of host
physiology (1), skeletal systems (2, 3), and metabolism (4) while decreasing suscep-

tibility to pathogens. It is sensitive to disruptions (5) that are often associated with
short- and long-term consequences for host health and development (2, 6), such as
inflammatory bowel disease, type II diabetes, colorectal cancer, autoimmune diseases,
and autism (7, 8). Vertebrates harbor complex residential microbial communities that
have been shaped by the host (9) and, unlike invertebrate models such as fruit flies and
squid, have adaptive immune systems that recognize particular microbes and play vital
roles in cultivating residential gut microbial communities (9). While studies of host-
microbe interactions have provided novel insights into development, disease, and
physiology, gaps remain in our understanding of the processes underlying microbial
community assembly (10, 11), the mechanisms by which gut microbes influence host
development and physiology (12–18), and the genetic and environmental factors that
regulate gut microbial composition and diversity (19). Bridging these gaps requires the
development of robust, versatile, and genetically tractable model systems (20).
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COMPARISON OF MOUSE AND FISH MODELS

Inbred mouse models have traditionally been used to study host-microbe interac-
tions. More than 450 strains have been described since the first inbred mice were
created nearly 100 years ago. These strains are valuable not only because of their
isogenicity, which allows the isolation of a particular genetic variant of interest, but also
because phenotypic differences among strains have been described in great detail (21).
The rich collection of knockout, knock-in, and mutant lines has greatly increased
understanding of how host genetics contribute to microbial community composition,
immune function, and metabolism (22).

However, studies using mouse models have been restricted in several ways. Use of
inbred lines limits understanding of how complex genetic variation influences microbial
community composition (23). For example, at least 163 genetic loci of small effect in the
human genome have been linked to irritable bowel disorder (24), and many of them
serve purposes with respect to immune system signaling and mucosal barrier integrity
across vertebrates (25, 26). Disrupting these genes individually and/or in various
combinations would require a staggering number of mouse lines. Genetic differences
have often accumulated between mutant and wild-type colonies that had been sep-
arately maintained for multiple generations, leading to discordant results among strains
reared at different laboratories (27). When genetically variable individuals are used,
husbandry constraints can result in small sample sizes and limited statistical power (19).

In addition to genetic constraints, the inability to observe microbe interactions in
live mice can prevent in-depth studies of host-microbe interactions. Most mouse
studies rely upon indirect characterization of gut microbial communities from fecal
samples, which are not consistently reliable indicators of gut microbial communities
(28–34) and cannot be used to detect differences in microbial communities that are
spatially separated along the gut (32). Additional concerns include whether observa-
tions made under artificial conditions are actually reflective of what occurs in the wild
(20, 35). These limitations highlight the need for model systems that allow robust
statistical examination of how microbial communities are shaped by complex natural
host genetic variation (36) in both laboratory-reared and wild populations.

The 28,000 characterized fish species comprise nearly half of all vertebrate diversity
and possess extensive variation in physiology, ecology, and natural history (37) that can
facilitate our understanding of the evolution of host-microbe interactions (38). Relative
to the contribution of fish species to overall vertebrate diversity, their microbial
communities have remained underexplored (39), although they have been character-
ized in a range of fishes (see, e.g., references 40, 41, 42, and 43).

Teleosts possess physiological and immunological features common to all verte-
brates as well as a complex gut microbiota. Both teleosts and mammals have a
digestive tract consisting of a liver, gallbladder, pancreas, and intestine that develop in
a similar trajectory, from the rostral gut to the hindgut and midgut. Guts are separated
along the rostral-caudal axis and have an intestinal epithelium made up of absorptive
enterocytes, secretory goblet cells, and enteroendocrine cells (44). Intestines initially
form in a sterile environment and complete their development in the presence of
microbes (14). In much the same way that mammalian newborns are first colonized by
microbes at birth, fish initially acquire their gut microbes from the environment upon
opening of the digestive tract, which typically occurs a couple of days after hatching
(45). Gut microbes aid in fermentation of polysaccharides to short-chain fatty acids
(46) and protect against pathogenic infection (47, 48). The genes involved in
immune system signaling are highly conserved between mammals and teleosts, as
well (26, 49, 50).

Teleost physiology and mammalian physiology also differ in several ways. Teleosts
lack lymph nodes and bone marrow (51), although the head kidney is considered
orthologous in function. The teleost innate immune system is more diverse than that
of mammals, but their immunoglobulins have fewer antibodies (52–54). While a great
diversity of gut microbes has been sampled across fish species, most communities have
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been dominated by the Proteobacteria (20, 38, 55–57). This is in contrast to healthy
mammalian guts, which are dominated by Bacteroidetes and Firmicutes (22). An excep-
tion has been documented in herbivorous marine fishes, which closely resemble
herbivorous mammalian guts, suggesting that their microbial communities share sim-
ilar functions in gut fermentation (38).

Aside from physiological and microbial community differences between fishes and
mammals, fish models also present some experimental constraints. The roles of early
life exposures that have both short- and long-term consequences on gut microbial
community structure in mammals, such as mode of delivery (vaginal versus cesarean)
and breast milk (58), cannot be studied in teleosts. Humanized microbiome mice
models (59) allow the transplantation of human microbes into mice to recapitulate
some aspect of their host’s phenotype and are a valuable tool for understanding the
influence of the gut microbiome in disease and the role of diet in shaping the
microbiome (60, 61). This technique has not been developed in fish.

ADVANTAGES OF ZEBRAFISH AND THREESPINE STICKLEBACK MODELS

Most of the host-microbe research using teleosts has focused on zebrafish (Danio
rerio). However, threespine stickleback (Gasterosteus aculeatus), which is a widely used
model organism in evolution, genetics, and ecology, has recently also been adapted for
host-microbe interaction research. Advantages of these two systems lie in the powerful
genetic tools that have been developed and their rich history of study, dating back to
the 1800s (62) (Fig. 1). Single crosses produce a large number of offspring that can be
housed in highly controlled environments (63) and permit statistically robust studies;
their rapid development and small size have made them valuable resources for a wide

FIG 1 Teleosts exhibit natural variation, and their physiology is remarkably similar to that of other vertebrates, including
humans. These features have led to a rich history of study that has made teleosts strong model organisms for both field and
laboratory studies of host-microbe interactions. The ease with which their internal and environmental microbial communities
can be sampled, their adaptive radiations, and the availability of advanced genetic tools for characterizing hosts and microbes
have made them ideal for empirical studies. In the laboratory, the optical transparency, large sample sizes, small size, and rapid
development of fish have facilitated experimental manipulations of microbes and hosts and their environment. Combining
field and laboratory studies allows identification of gene-environment interactions influencing host-microbe symbioses.

Meeting Review Journal of Bacteriology

August 2017 Volume 199 Issue 15 e00868-16 jb.asm.org 3

http://jb.asm.org


range of genetic studies; and both their internal and external (environmental) microbial
communities can be easily sampled and manipulated (20, 50, 56), unlike those of
mammals. A powerful asset of these models lies in the ability to study the evolution of
the relationship between the host and its microbiota due to the host’s relatively short
life span (1 to 2 years) and the extensive knowledge that we have of laboratory lines
(zebrafish) and wild populations (stickleback). Coupled with annotated genomes and
the ability to compare host and microbial DNA and transcriptomes, these teleosts have
already begun to advance our understanding of host-microbe interactions.

The transparency of zebrafish eggs and juveniles allowed the first successful exam-
ination of the colonization dynamics of bacteria within live, developing hosts (14). The
ability to genetically manipulate both host cells and microbes to express fluorescent
proteins allows real-time nondestructive observations of spatial and temporal variation
in host-microbe interactions in developing zebrafish, which has granted insights into
the distribution of bacterial populations along the gut (12), complex microbial behav-
iors (64), and population dynamics during colonization (65). However, this technique is
limited to genetically modifiable microbes, which represent only a fraction of the
community present in fish guts.

A primary advantage of using threespine stickleback as a model organism is the
ability to study how natural genetic variation, which is of a magnitude similar to that
found in the human population (Fig. 2), influences a range of phenotypes, including
bone development (66), pigmentation (67, 68), and behavior (69). Many genetic re-
gions, such as those associated with skeletal structures, also underlie variations in
human populations (70). Stickleback therefore present a great potential to reveal genes
important for driving microbial membership and the host response to microbes,
including processes involved in metabolic changes, cell development, and cell-to-cell
signaling.

GNOTOBIOTIC STUDIES IN TELEOSTS

In gnotobiotic studies, animals are derived under germfree conditions and analyzed
either in this sterile state or in association with specific microbes in comparison to
conventionally reared animals with diverse microbial communities (71). Gnotobiotic
techniques are straightforward in fishes since they develop ex utero and eggs can be
surface sterilized shortly after fertilization (13). Gnotobiotic techniques were first de-
veloped in platyfish (Xiphophorus maculatus), followed by tilapia (Tilapia macrocephala),
salmon (Salmo salar), sheepshead minnow (Cyprinidon vairegatus), Atlantic halibut
(Hippoglossus hippoglossus), and turbot (Scopthalmus maximus) (72–77). However, the
most detailed studies of host-microbe interactions have used gnotobiotic zebrafish (78,
79) and stickleback (80). Gnotobiotic studies in both mammals and teleosts allow the
documentation of a broad array of host responses to gut microbiota (13), but zebrafish
have revealed advantages over mice in identifying microbial signaling pathways influ-
encing development (14, 56). However, while multigenerational gnotobiotic lines are
able to be maintained in mice (22), this is not yet possible in fishes.

FIG 2 The threespine stickleback is an appropriate model organism for studying the effects of host genetic background on microbial
community because wild populations exhibit genetic variation that is comparable to that of human populations. FST, a measure of genetic
divergence, among human populations ranges from about 0.08 to 0.15 (132) (top panel) and among stickleback populations from Alaska
ranges from almost 0 to 0.13 (133) (bottom panel).
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Gnotobiotic studies in zebrafish have revealed that the gut microbiota stimulates
intestinal epithelial cell proliferation (13, 14) through MyD88 signaling pathways (15)
and promotes shifts in epithelial glycan expression (14) as well as recruitment of
gut-associated immune cells (13, 16, 81). Germfree zebrafish intestines have decreased
secretory cell numbers and experience faster peristaltic contractions than convention-
ally reared individuals (14). Their guts are unable to fully develop and exhibit reduced
function, but these deficiencies can be reversed after introduction of bacteria (14, 16).
These studies reveal the varied roles that microbiota play in normal digestive devel-
opment and function.

Gnotobiotic studies of laboratory-reared oceanic and resident freshwater stickleback
have demonstrated that these two ecotypes have common gut microbial communities
and similarities in intestinal development, despite their separation in the wild for at
least 10,000 years (80). However, the two ecotypes differed in the intensity of their
inflammatory responses to microbes, highlighting the potential for gene-environment
interactions that influence host immune response (80).

INSIGHTS FROM WILD-CAUGHT VERSUS LABORATORY-REARED ZEBRAFISH

Wild-caught and laboratory-reared zebrafish populations have similar gut microbial
communities, suggesting the existence of a core gut microbiota (20), which may also be
true of mammals (82–84). However, neutral processes of drift and dispersal can
generate a great deal of diversity within and among individuals. Bacterial taxa that
deviate from neutral patterns and are more widespread than expected are likely
adapted to, and selected by, the host (63). These examples highlight the utility of
genetically variable model organisms that can be studied both in the wild and under
controlled laboratory conditions to examine how gene-environment interactions drive
microbial community dynamics.

INSIGHTS FROM WILD-STICKLEBACK POPULATIONS

The colonization of thousands of lakes throughout the Northern Hemisphere by
oceanic ancestral stickleback resulted in an adaptive radiation of freshwater popula-
tions that are locally adapted to their environments. This “natural experiment” allows
researchers to study the influences of environmental factors, such as water chemistry
and predation regimes, on the evolution of a vertebrate host (134, 135). Host-microbe
researchers are now beginning to use the natural variation found in wild populations
to unravel interactions among diet, genetic background, and environmental microbial
communities with respect to effects on gut microbiota composition. Such studies have
revealed that microbial community structure appears to be more strongly driven by
differences in host genotype than by differences in environment (85) and that food-
associated microbes drive gut microbial community diversity to a greater extent than
water-associated microbes (86). Inverse relationships between diversity in major histo-
compatibility complex class II (MHC-II) alleles and diversity in gut microbial community
suggest that adaptive immunity could restrict the diversity of commensal bacteria. Sex
also influences the degree and direction of influence of the MHC-II receptors as well as
the magnitude of effects of diet on microbiota composition (100): males have higher
phylogenetic diversity than females, and phylogenetic diversity increases with size
more strongly in males than in females. While associations have also been found
between MHC diversity and microbiota in mice (87), microbiota changes correlated
more strongly with body size in females than in males (88). Sex differences across taxa
are likely due to interactions among hormones, developmental rate, and/or gene
expression, which are all mechanisms that can be readily examined in laboratory
experiments.

INSIGHTS FROM OTHER FISH SPECIES

The changes in community composition that occur during development and mi-
gration in salmonids present the opportunity to explore how gene-environment inter-
actions shape the microbiome (89). A study of wild Atlantic salmon (Salmo salar)
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revealed differences between environmental and gut microbial communities that were
driven largely by ontogeny rather than geography (90). The intestinal microbiota of
rainbow trout (Oncorhynchus mykiss) has been shown to be highly variable temporally,
spatially, and interindividually (55, 91). Seasonal fluctuations in temperature were
correlated with changes in gut microbiota (92) in both rainbow trout and gulf killifish
(Fundulus grandis), with decreased bacterial counts in winter and increases in spring
that were associated with rising temperature (93, 94). Seasonal differences have also
been documented in wild-mouse populations (95).

Studies have also explored how antimicrobials change fish gut bacterial community
composition (96). For example, low levels of triclosan exposure resulted in differences
in microbial community structure in the fathead minnow (Pimephales promelas) (97).
However, the communities recovered to baseline after 2 weeks in clean water, sug-
gesting that short-term disruption to gut microbiota may be sufficient to harm a
developing host but that there is an opportunity to recover normal bacterial diversity
after disturbance.

CONCLUSIONS AND FUTURE DIRECTIONS
What have we learned from studying fish models? Researchers have gained

novel insights into mechanisms underlying development of the digestive tract and
how microbiota contribute to disease states (13–18, 80, 81, 86, 90) (Table 1). We
have learned from studies of fishes and other vertebrates that gut microbiota are
dynamic and demonstrate complex successional patterns throughout development
(58, 101–103). Differences in microbial communities between captive fishes and
their wild counterparts argue for the use of model systems, such as threespine
stickleback, that can be studied in the wild as well as under controlled laboratory
conditions (98). Perhaps surprisingly, fish gut communities more closely resemble
those of mammals than those of organisms found in their environment (38, 104),
particularly with regard to abundances of Proteobacteria, Firmicutes, and Bacte-

TABLE 1 Studies using teleosts as model organisms have made major contributions to understanding host-microbe interactions

Contribution Reference(s)

Contributions of microbiota to host development
Stimulation of intestinal epithelial cell proliferation through MyD88 signaling pathways 13–15
Promotion of a shift in epithelial glycan expression 14
Stimulation of recruitment of immune cells 13, 16
Promotion of gut development 14
Maintenance of normal levels of secretory cells and peristaltic contractions 14, 16
Aiding in host growth and development 15, 17, 18

Process of gut colonization
Bacterial populations not uniformly distributed along gut 12
Establishment of bacteria during development 13, 14, 56
Quantification of bacterial population dynamics in a living host 65

Gene-environment interactions
Core gut microbiota 20, 80
Taxa that deviate from neutral patterns are more likely adapted to, and selected by, host environment 63
Microbiota more strongly driven by differences in host genotype than environment 85
Diet and host genetics influence on microbiota 18, 86, 98
Microbiota influenced more by host developmental stage than geography 90
Sex influences magnitude of relationship to diet 86
Temporal, spatial, and interindividual variation 20, 55, 91, 99
Seasonal variation in microbiota 92, 93

Immune system-microbiota interactions
Variation in strength of inflammatory response to microbes in genetically divergent populations 80
Correlations between MHC class II alleles and microbiota 100
Microbiota-induced neutrophil recruitment 81

Effects of antimicrobials: low levels of triclosan alter microbial community structure 97
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roidetes (38, 99, 105, 106), which further promotes the idea of their utility as model
organisms for human health research.

Where do we go from here? Teleost systems can be used to identify selective
pressures, including interactions among environment, diet, genetic background, and
development, that influence gut microbial community assembly. For example, interac-
tions among MHC diversity, sex, and diet raise the issue of how hormones, sexual
dimorphisms, metabolism, and gene expression influence host-microbe interactions
and susceptibility to disease. Epistatic interactions among a large number of genes can
be difficult to characterize or manipulate in an inbred model, highlighting the utility of
model organisms, such as threespine stickleback, that exhibit complex natural genetic
variation. Taking advantage of the natural genetic variation found in wild fish popula-
tions as well as the availability of powerful genetic tools, future studies should be able
to identify conserved genes and pathways that contribute to human genetic diseases
characterized by dysbiosis (107–129).

Studies examining the effects of exposure to antibiotics and other contaminants
suggest that juvenile dysbiosis can impact long-term fitness in contaminated
habitats (97). While previous work has focused on how clinical levels of antibiotics
(130) and antimicrobials (97) affect the abundance of specific taxa, what remains
largely unknown is how environmentally relevant levels of common contaminants
may disrupt the microbiota, resulting in developmental abnormalities and/or dis-
ease. Stickleback are already common model organisms for understanding the
effects of chronic exposure to aquatic contaminants on physiological development
(136) and can therefore easily be used to understand the effects of exposure to
environmentally relevant levels of aquatic pollutants on gut microbial community
and host development. The conservation of physiological and genetic pathways
among vertebrates will allow insights into the environmental factors that may
trigger dysbiosis in humans, as well.

How many teleost models do we need? Since fishes exhibit dramatic variations in
physiology, natural history, and ecology, they can be used as model organisms to
address a wide range of factors relevant to host-microbe interactions. For example,
studies of fishes that are of economic and cultural significance, such as salmonids, have
potential to improve aquaculture (131) and safe harvesting practices and to contribute
to our understanding of how populations may respond to climate and anthropogenic
changes. Focusing on widespread species that have undergone adaptive radiations,
such as whitefish (Coregonus), will allow further insight into the relative influences of
phylogeny and environment in shaping microbial communities. Fishes living in extreme
environments, such as Death Valley pupfish (Cyprinodon salinus) and Antarctic icefish
(Notothenioidei), can help us understand how microbes may enable vertebrates to
adapt to extreme environments. Finally, live-bearing fishes have advantages in under-
standing colonization dynamics early in development. Now that so much is known
about how microbial communities influence many aspects of a host’s life, including its
physiology, immune response, and behavior, fish models can help us better understand
the effects of microbial community diversity and disruption on host development and
adaptation to its environment.
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