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Abstract
Neuropilins (NRP1 and NRP2) are multifunctional receptor proteins that are involved in nerve, blood vessel, and tumor
development. NRP1 was first found to be expressed in neurons, but subsequent studies have demonstrated its surface expression in
cells from the endothelium and lymph nodes. NRP1 has been demonstrated to be involved in the occurrence and development of a
variety of cancers. NRP1 interacts with various cytokines, such as vascular endothelial growth factor family and its receptor and
transforming growth factor b1 and its receptor, to affect tumor angiogenesis, tumor proliferation, and migration. In addition,
NRP1+ regulatory T cells (Tregs) play an inhibitory role in tumor immunity. High numbers of NRP1+ Tregs were associated with
cancer prognosis. Targeting NRP1 has shown promise, and antagonists against NRP1 have had therapeutic efficacy in preliminary
clinical studies. NRP1 treatment modalities using nanomaterials, targeted drugs, oncolytic viruses, and radio-chemotherapy have
gradually been developed. Hence, we reviewed the use of NRP1 in the context of tumorigenesis, progression, and treatment.
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Introduction

Neuropilins (NRPs) is unique to vertebrates and is a highly
conserved multifunctional type I single-pass transmem-
brane protein about 130,000 to 140,000 Da in size. It is
involved in various physiological and pathological pro-
cesses in the body.[1-5] NRPs include two subtypes, that is,
NRP1 and NRP2. They regulate cell function by acting
as co-receptors for multiple ligands. NRPs have been
demonstrated to be involved in angiogenesis, cell migra-
tion, immune cell regulation, axon growth, and so on.[6-11]

NRP1 is essential for the development of neurons and
the cardiovasculature, while NRP2 plays a key role in
neuronal patterns and lymphangiogenesis.[1,12-14]

Increasing evidence has demonstrated that high NRP1
expression is closely associated with tumor occurrence,
progression, invasion, metastasis, and prognosis.[15-19]

NRP1 can not only form complexes directly with vascular
endothelial growth factor A (VEGFA) and vascular
endothelial growth factor receptor 2 (VEGFR2) to enhance
angiogenesis, but also promote RhoA activation after
binding with VEGFA to directly affect the growth and
metastasis of tumor cells and promote tumor development.
In addition, NRP1 can also accelerate tumor progression
by stabilizing the function of regulatory T cells (Tregs) and
preventing tumor-associated macrophages (TAM) from
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entering the normoxic tumor area.[19] NRP1 has become a
key therapeutic target for tumor therapy. Antagonists that
target NRP1 have shown promise in several studies.[20]
Structure, Expression, and Function of NRP1 Protein

The structure of NRP1 protein

NRP1 was discovered in 1987 and was originally named
A5. It was discovered as an antigen of a monoclonal
antibody that was bound to neuronal cell surface proteins
in the Xenopus nervous system.[6] The NRP1 gene is
112 kb in length and is located on the human chromosome
10q12. It contains 17 exons and 16 introns.[21] NRP1 has
an intracellular, transmembrane, and extracellular do-
main. Its intracellular domain is relatively small, lacks an
inherent kinase domain, and does not participate in signal
transduction. Its extracellular domain consists of five
subdomains, that is, a1, a2, b1, b2, and c, with each
subdomain associated with different molecular and/or
cellular interactions [Figure 1].
The expression of NRP1 protein

NRP1was originally found to be expressed in neurons, but
later, was observed to be also expressed on the surface of
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Figure 2: Cell types expressing neuropilin-1 (NRP1). NRP1 is expressed in several cell
types, including endothelial cells, T lymphocytes, myeloid cell subsets, microglia, nerve
cells, keratinocytes, osteoblasts, dendritic cells, bone marrow fibroblasts, fat cells, hepatic
stellate cells, and glomerular interstitial cells.

Figure 1: Schematic of the neuropilin (NRP) molecular structure. NRP1 and NRP2 are
unique transmembrane glycoproteins in vertebrates. In humans, NRP1 is located on
chromosome 10, and NRP2 is located on chromosome 2. They have about 44% sequence
homology at the amino acid level. The overall structure of the two NRPs is similar, including
a large N-terminal extracellular domain, a short transmembrane domain, and a small
cytoplasmic domain. The extracellular domain is divided into three domains: the
complement protein binding homology domain (CUB domain or a1a2 domain), coagulation
factor V/VIII homology domain (b1b2 domain), and the MAM domain (c domain). The a1a2
b1 domain binds to SEMA3, the b1b2 domain binds to vascular endothelial growth factor
(VEGF), and the c domain is considered to play a role in NRP1 oligomerization. The C-
terminus of NRP contains a three amino acid (Ser-Glu-Ala) sequence called SEA, which
binds to the kinase through the PDZ domain.
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several types of cells. High expression levels of NRP1 have
been observed in osteoblasts, nerve cells, immune cells,
adipocytes, glomerular stromal cells, endothelial cells, and
hepatic stellate cells, and so on[22-25] [Figure 2]. Almost all
tumor cells express NRP1 or NRP2 or both. These include
certain leukemias, malignant melanomas, malignant
gliomas, osteosarcomas (OSs), lung cancer, gastric cancer,
and so on. Expression of both NRP1 and NRP2 has been
associated with poor prognosis.[26,27]
The function of NRP1 protein

NRP1 was initially identified as a co-receptor for class 3
semaphorins (Sema3A). It forms a dimer with plexin A3
and is involved in axon guidance and nervous system
development.[28] Later studies have found that NRP1
could form cis-acting complexes with the vascular
endothelial growth factor (VEGF) family and its receptor
(VEGFR) on the same cell to promote tumor angiogene-
sis.[29,30] Recent studies have shown that NRP1 could
interact with glycosylation-dependent galectin-1 to acti-
vate transforming growth factor b1 (TGF-b1) and its
receptors to accelerate liver fibrosis. In addition, NRP1
could promote cell migration induced by hepatocyte
growth factor (HGF) or platelet-derived growth factor
(PDGF) by phosphorylating p130Cas. Furthermore,
NRP1 activates fibroblast growth factors (FGFs) and their
receptors by interacting with heparin-binding proteins.
NRP1 interacts with a variety of activated tyrosine kinase
receptors and integrins to enhance tumor growth, survival,
and invasion. NRP1 has been shown to play a regulatory
role in the immune system. Overexpression of NRP1 on the
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surface of dendritic cells (DC) and Tregs has been
demonstrated to play a role in promoting tumor develop-
ment.[31-33]
NRP1 Functions in a Variety of Immune Cells

NRP1 is widely expressed in lymphoid and myeloid cells.
In vitro and in vivo studies have demonstrated its
important role in the immune response, cell proliferation,
chemotaxis, and cytokine production in DC.[34-36] The
occurrence and development of tumors have been linked to
immune cell function.
The role of NRP1 in Tregs

T cells, an important type of immune cell in the body, are
involved in all aspects of tumor progression. A subset of T-
cells, Tregs, are involved in inhibiting anti-tumor immuni-
ty. Tregs that infiltrate tumors inhibit the anti-tumor
effects of CD4+ and CD8+ T cells through multiple
pathways. This results in immune escape and tumor
progression, that is, anti-cancer immunity of the micro-
environment (TME).[37-40] In recent years, NRP1 has been
demonstrated to play a role in the stability and function of
Tregs. NRP1 interacts with the ligand Semaphorin-4a
(Sema4a) expressed on Tregs to enhance the function and
survival of Tregs in tumors. This in turn restricts the anti-
tumor immune response.[41-44] In mouse models, knockout
of the NRP1 gene acting on Tregs could reduce tumor
growth. This highlights the importance of NRP1 in
suppressing anti-tumor immunity.

NRP1 has also been shown to act on DC. Sema4A secreted
by DCs bind toNRP1 on Tregs and recruit PTEN to inhibit
AKT phosphorylation. This in turn promotes the nuclear
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Figure 3: Schematic depicting the role of neuropilin-1 (NRP1) in dendritic cells (DC) and regulatory T cells (Tregs). NRP1 is mainly associated with the inhibitory function of Tregs. NRP1 is
important for the formation of immune synapses between dendritic cells (DC) and T cells. Sema4A secreted by DC binds to NRP1 and recruits phosphatase and tensin homolog deleted on
chromosome ten (PTEN) to inhibit protein kinase B (AKT) phosphorylation, thereby promoting the nuclear translocation of Forkhead box O3 (Foxo3a). This is important for the survival and
stability of Tregs. NRP1 also plays an important role in the migration of Tregs into the tumor microenvironment in response to tumor cell-derived vascular endothelial growth factor.
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translocation of Foxo3a, which is important for the
survival and stability of Tregs[45] [Figure 3]. Jung et al[20]

demonstrated enhanced anti-tumor activity by inhibiting
the function of Tregs in a mouse tumor model using NRP1
antagonists. In addition, Overacre-Delgoffe et al[46] dem-
onstrated that a high percentage of NRP1+ Tregs in
patients with melanoma and squamous cell carcinoma of
the head and neck were associated with poor prognosis.

Wang et al[47] found that NRP1 signaling-mediated
accumulation of Tregs in tumors may play a key role in
aggravating ischemic brain damage in tumor-bearing mice.
When anti-NRP1 was combined with anti-PD-1 immuno-
therapy, it could enhance CD8+ T cell proliferation,
cytotoxicity, and tumor control.[48] Hence, targeting
NRP1 in combination with immunotherapy may be a
promising approach.

The role of NRP1 in TAM

In addition to Tregs, TAM also play a role in promoting
tumor progression. TAMs are macrophages in the tumor
stroma. They participate in the process of tumorigenesis,
growth, infiltration, and spread, and has been associated
with tumor angiogenesis and lymphangiogenesis.[49-54]

Deletions in the NRP1 gene in macrophages facilitate the
entry of TAMs into the area of normoxic tumors. This
reduces the pro-angiogenic and immunosuppressive func-
tions of TAMs and inhibits the growth and metastasis of
tumors.[44,55,56] Conversely, when TAM are recruited to
avascular areas, tumor progression could be main-
tained.[55] These results were supported by the study
conducted by Miyauchi et al[57] Hence, modulation of
NRP1 in peripheral macrophages or microglia could make
them more anti-tumorigenic, reduce neovascularization,
and modulate glioma adaptive immune response.
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Correlation Between NRP1 Expression and Tumor-initiating
Cells (TIC)

Recent studies have demonstrated the relationship between
NRP1 expression and TIC. TIC have the capacity for self-
renewal and are responsible for the initiation and
maintenance of a tumor.[19,58-61] TICs have been exten-
sively investigated for their function.[62]

Recent studies have demonstrated that endothelial pro-
genitor cells could be identified by their expression levels of
NRP1. NRP1 is essential for the proliferation and cell
migration of adult mesenchymal stem cells.[63-66] In
addition, NRP1 maintains a tumor-initiating phenotype
in gliomas and skin cancer cells.[67] Jimenez-Hernandez LE
et al and others have also demonstrated that cells
expressing NRP1 exhibit similar characteristics as TIC
with high clonal ability. This suggests that NRP1+ lung
cancer cells have tumor-initiating properties.[19] These
findings provide new insights for cancer treatment and
potential biomarkers for the study of TIC.
NRP1 Promotes Tumor Angiogenesis

Angiogenesis is essential during tumorigenesis and malig-
nancy. Angiogenesis is a complex mechanism that induces
new capillary formation from pre-existing vessels. The
signaling pathways include the involvement of NRP1 and
VEGF and their interactions with receptor VEGFRs.[68-71]

Studies have confirmed that knocking out NRP1 in mice
can affect the development of nervous and cardiovascular
systems.

VEGFA is the predominant VEGF and is one of the main
stimuli to induce angiogenesis. Within the VEGFA family,
VEGF165 has a major role in neovascularization. The
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Figure 4: VEGFA induces RhoA protein activation through NRP1 to promote tumor cell proliferation. When VEGFA binds to NRP1, it promotes the interaction between NRP1 and GIPC1 (a
scaffold protein) and enhances the assembly of the molecular complex of GIPC1 and Syx, resulting in GTP binding of RhoA. The active form is increased and activated RhoA contributes to the
degradation of p27kip1. This promotes tumor cell proliferation. GIPC1 has anti-apoptotic effects in human breast cancer and colorectal cancer cells. Syx is involved in endothelial cell
migration and endothelial cell connection integrity, barrier function, and vascular leakage. GTP: Guanosine triphosphate; NRP1: Neuropilin-1; RhoA: ras homolog family member A; Syx:
Synectin-binding guanine exchange factor; VEGFA: Vascular endothelial growth factor A.
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carboxy terminus of the gene encodes exons 7 and 8 and
binds with the b1/b2 domain of NRP1.[72-75]

The formation of cis NRP1-VEGFA-VEGFR2 complexes
within cells plays a crucial role in enhancing angio-
genesis.[76-78] However, trans-NRP1-VEGFA-VEGFR2
complexes across cells play an inhibitory role in
angiogenesis.[78] Pan et al[79] using a mouse xenograft
tumor model, determined that antibodies that blocked
VEGFA binding to NRP1 enhanced the anti-tumor effect
of anti-VEGFA antibodies. Interestingly, in acute myeloid
leukemia (AML), SEMA3A may partially reverse AML
progression by inducing VEGFA overexpression. Howev-
er, it is generally believed that SEMA3A binding to NRP1
plays a role in neurological development.[80] In addition,
the VEGFR2/NRP1 complex plays a role in the early
signaling of liver regeneration.[81]

In addition to interacting with VEGF, NRP1 also interacts
with other pro-angiogenic cytokines, including FGF and
HGF.[23,82-86] NRP1 binds to and promotes PDGF-b, as
well as, TGF-b1 signaling pathway, thereby contributing
to the activation and recruitment of perivascular
cells.[22,87] Genetic studies have provided strong evidence
that NRP1 is required for vascular morphogenesis. NRP1
deficiency leads to vascular reconstruction and branching
defects. NRP1 expression has been shown to increase
tumorigenicity in several tumor models such as murine
hepatocellular carcinoma, human colon cancer, and non-
small cell lung cancer. This may be by promoting VEGF-
mediated angiogenesis.[42,88-91]
NRP1 Promotes Tumor Proliferation and Migration

Tumor infiltration and migration are important processes
in tumor development and are the main reasons for poor
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prognosis. NRP1 promotes tumor cell growth, migration,
invasion, and survival by interacting with several growth
factors and their cognate signaling receptors.[92-96] Binding
of VEGFA to NRP1 promotes RhoA activation and then,
activated RhoA contributes to the degradation of p27kip1,
which in turn, promotes tumor cell proliferation. This has
been demonstrated in skin cancer, prostate cancer, and
glioblastoma[60,97-99] [Figure 4]. In addition, PDGF and its
receptor (PDGFR) are angiogenic factors closely associated
with tumorigenesis and progression, and their over-
expression is a common feature in different can-
cers.[100-102] Binding of NRP1 to PDGF and PDGFR
promotes the phosphorylation of PDGF and consequently
stimulates tumor growth.[22,103] Abelson tyrosine kinase
(ABL), a non-receptor tyrosine kinase, itself promotes cell
adhesion and migration, while NRP1 can promote
endothelial cell migration through the NRP1-ABL1
pathway. This has been demonstrated in non-small cell
lung and breast cancers.[24,104-106] In addition, NRP1
could affect the expression of the Bcl-2 protein family and
block the mitogen-activated protein kinase signaling
pathway. Inhibition of NRP1 has been shown to
significantly inhibit the proliferation of glioma cells.[107]

NRP1 is highly expressed in the metastatic MDA-MB-231
and MDA-MB-435 breast cancer cell lines, but not in the
non-metastatic MDA-MB-453 breast cancer cell lines.[108]

NRP1 not only directly promotes tumor growth and
migration but alsomodulates the tumormicroenvironment
by interacting with integrins and remodeling the extracel-
lular matrix to influence tumor growth.[4]
NRP1 in Cancer Treatment

Based on the function of NRP1 and its interactions with
proteins involved in tumorigenesis, targeting NRP1 could
have potent anti-tumor activity for several cancers. In
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Table 1: Anti-tumor therapy targeting NRP1.

Items Targeted association Drugs or agents
Cancer models and

cell lines References

Block pathway Block tumor
angiogenesis

Bevacizumab
EG00229
Nb-HS45

Glioma, squamous
cell carcinoma,
and so on

[109-113,114-116,117]

NRP1-Tregs Release anti-tumor
immune response

Fc(AAG)-TPP11 [20]

Reduce expression Decrease the expression
of NRP1

miR-130a, miR-130b
miR-9–5p, miR-628
miR-1247
miR-9
5. NDGA

Epithelial ovarian
cancer, Gastric
cancer,
Osteosarcoma,
ALL,
Adenocarcinoma,
and so on

[125,15,126,127,128,4]

Competitive
inhibitors
of NRP1

Inhibition of NRP1
binding
to its downstream
targets

Combination of
Sema3A protein
and VEGFA inhibitor
The SEMA3A point
mutant

AML, Pancreatic
cancer, and so on

[80,5]

NRP1 alternative
splicing variants

Competitive NRP1
combination

s12NRP1, s11NRP1,
sIIINRP1, sIVNRP1
NRP1-D7

Breast cancer,
Prostate cancer,
and so on

[130-132,17]

Multi-drug combination
therapy

Enhance treatment
effect

Nrp1 coupled
multifunctional drug
nanocarrier
NRP1 complex
iRGD+5-FU

Glioblastoma,
Gastric cancer, and
so on

[137,138,139]

EG00229: (S)-2-(3-(benzo[c][1,2,5] thiadiazole-4-sulfonamido)thiophene-2-carboxamido)-5- ((diaminomethylene)amino)pentanoic acid; Nb-HS45:
Nanobody HS45; Fc(AAG)-TPP11: NRP1 antagonist; miR: MicroRNAs; NDGA: Nordihydroguaiaretic acid; ALL: Acute lymphoblastic leukemia;
AML: Acute myeloid leukemia; s12NRP1, s11NRP1, sIIINRP1, sIVNRP1, NRP1-D7: Soluble forms of NRP1; iRGD: Tumor homing peptide; 5-FU: 5-
Fluorouracil.
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recent years, NRP1 has been extensively studied, and the
main therapeutic focus has been summarized in the
following areas [Table 1].
Blocking the NRP1 pathway interaction to block tumor
angiogenesis

NRP1 primarily promotes tumor angiogenesis by forming
NRP1/VEGF/VEGFR2 complexes with the VEGF family
and its receptors.

The anti-VEGFA antibody, bevacizumab, has been
clinically used to treat patients.[109-113] To date, the most
characteristic inhibitor of NRP1 is EG00229. It interacts
with the extracellular b1b2 domain of NRP1 and has been
identified as a specific inhibitor of NRP1 interaction with
VEGFA. It has significant tumor-suppressive effects in
gliomas and squamous cell carcinomas.[114-116] Rizzolio S
et al were also successful in generating an NRP1-specific
nanoantibody HS45 that showed high levels of affinity to
human NRP1.[117]
Inhibiting NRP1 in Tregs to increase anti-tumor immune
response

NRP1 is barely detectable in human peripheral Tregs,
however, it is expressed in tumor Tregs. NRP1+ Tregs have
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been shown to significantly suppress anti-tumor immune
responses.[20,115,118,119] The reduction of NRP1+ Tregs in
cancer has been strongly associated with chemotherapy
success.[22] Jung et al[20] synthesized an NRP1 antagonist,
Fc(AAG)-TPP11, that selectively inhibits the function and
survival of NRP1+ Tregs to enhance anti-tumor activity in
TME. They validated their findings in a mouse model with
no apparent toxicity.
Improving tumor efficacy by inhibiting NRP1 expression

There are several types of NRP1 inhibitors, and micro-
RNAs, as one of them, can regulate gene expression at the
post-transcriptional level by forming RNA-induced silenc-
ing complexes. This leads to translational repression or
degradation of target genes. It has been shown that
microRNAs targeting NRP1 could be used for the
treatment of cancers.[120-124] NRP1 was a target of miR-
130a and miR-130b and was the first to report that NRP1
was associated with multidrug resistance in ovarian
epithelial carcinoma.[125] In gastric cancer cells, miR-9-
5p and miR-628 bind to NRP1 and inhibit NRP1
expression to inhibit the proliferation and invasion of
gastric cancer cells, while at the same time, increasing the
sensitivity of gastric cancer cells to chemotherapeutic
agents.[15,126] In OS, NRP1 was identified as a direct target
of miR-1247 and has been shown to inhibit the viability
and metastasis of OS cells.[127] In acute lymphoblastic
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leukemia (ALL), it was demonstrated for the first time that
NRP1 was a direct downstream target of miR-9 in ALL.
These suggested that the development of novel therapeutic
interventions targeting the miR-9/NRP1 signaling path-
way could be a therapeutic option for ALL patients.[128] In
the adenocarcinoma A549 cell line, miR-9 was found to
directly target NRP1, and was found to enhance radio-
sensitivity in A549 cells.[129]

Certain drugs can also affect NRP1 expression. Nordihy-
droguaiaretic acid (NDGA) is a natural product that
down-regulates NRP1 expression. NDGA could inhibit
NRP1 expression and attenuate cell motility and adhesion
of cancer cells to the ECM, in addition to attenuating
tumor metastasis in a nude mouse model.[4]
Competitive inhibitors of NRP1 binding proteins

Inhibition of NRP1 binding to its downstream targets will
inevitably lead to an attenuation of NRP1 oncogenic
signaling. SEMA3A could partially reverse the binding of
VEGFA to the NRP1 receptor. Combining the SEMA3A
protein with a VEGFA inhibitor may be beneficial for the
treatment of AML.[80] Similarly, Gioelli et al[5] designed
and generated a safe, non-intestinal-delivery, non-NRP1-
dependent subtype of the SEMA3A point mutant. This
SEMA3A point mutant could bindwith nanomolar affinity
to PLXNA4 compared to the wild-type SEMA3A.

SEMA3A is a direct binding co-receptor for NRP1, which
in turn, is associated with PLXN receptor signaling.
However, PLXN receptor signaling is critical for cancer
vasculature. SEMA3A point mutants can competitively
bind with PLXNA4 and prevent NRP1 from binding to
PLXNA4. This accelerates vascular normalization, reduces
tissue hypoxia, and increases perfusion to inhibit tumor
growth. The effectiveness of the SEMA3A point mutants
for the treatment of cancer has been successfully
demonstrated in a mouse model of pancreatic cancer.[5]
Application of recombinant sNRP-1 in tumor treatment

In addition to the anti-tumor therapy directly targeting
NRP1, the emergence of NRP1 alternative splicing
variants (sNRP1) is also a new direction of tumor
treatment. At present, s12NRP1, s11NRP1, sIIINRP1,
and sIVNRP1 are the most studied NRP1 variants. The
proteins encoded by s12NRP1 and s11NRP1 mRNA
contain a1a2 and b1b2 domains and some b/c junc-
tions.[130,131] They are known as VEGF165 antagonists.
s12NRP1 can inhibit the binding of VEGF165 to NRP1-
expressing cells and inhibit the tyrosine phosphorylation of
VEGFR-2 induced by VEGF165. In the rat model of
prostate cancer, overexpression of s12NRP1 results in a
high percentage of apoptotic cells, intratumoral hemor-
rhage, and few blood vessels. Both sIIINRP1 and sIVNRP1
contain a1a2 and b1b2 domains, but no c domain or the
rest NRP1 sequence. It has been found that these two
recombinant proteins sIIINRP1 and sIVNRP1 can inhibit
the migration of MDA-MB-231 breast cancer cells
mediated by NRP1.[132] Recently, Hendricks et al[17]

characterized a novel splicing variant NRP1-D7, which
lost seven amino acids on two residues downstream of
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O-glycosylation site compared with NRP1. The prolifera-
tion, migration, and anchorage-independent growth of
cells with increased NRP1-D7 expression decrease signifi-
cantly in vitro, and NRP1-D7 inhibits the growth and
angiogenesis of prostate tumor in vivo.

Multi-drug combination therapy targeting NRP1

Regarding cancer, a single drug often fails to achieve the
desired therapeutic effect. Hence, a multi-drug combina-
tion therapy is generally used in clinical practice.[133-136]

Teijeiro-Valino et al[137] coupled a multifunctional drug
nanocarrier consisting of hyaluronic acid nanocapsules to
NRP1. This significantly improved drug delivery capacity
and demonstrated good efficacy. Benachour et al[138]

generated polysiloxane nanoparticles chelated to NRP1
targeting peptides and 1,4,7,10 tetraazacyclododecane-N,
N’,N,N’-tetraacetic acid (DOTA) derivatives. This was
therapeutically efficacious in eliminating intracranial U87
glioblastomas in a rat model Zhang et al[139] demonstrated
that a novel tumor homing peptide, iRGD, increased
tumor penetration of chemotherapeutic agents and that the
NRP1 protein was the key mediator of iRGD. Hence,
combining iRGD with 5-fluorouracil, the standard first-
line chemotherapeutic agent for locally advanced or
metastatic gastric cancer, maybe a novel and effective
approach to improving tumor prognosis.

Conclusions and Future Directions

NRP1 plays a key role in the occurrence and development
of tumors. It is involved in angiogenesis, cancer migration,
and tumor immunity. Some of the NRP1 signaling
pathways have been mentioned earlier in this report.
Targeting these pathways may be efficacious in treating a
variety of cancers. However, additional studies need to be
performed to decipher the molecular mechanism of NRP1
as it relates to cancer progression and metastasis. For
effective cancer therapy, inhibitors of NRP1 function have
to be combined with other treatment modalities, including
immunotherapy, radiotherapy, and chemotherapy to
achieve a complete response in patients with cancers.
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