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The Timing, the Treatment, the Question: Comparison of
Epidemiologic Approaches to Minimize Immortal Time
Bias in Real-World Data Using a Surgical Oncology
Example
Emilie D. Duchesneau1, Bradford E. Jackson2, Michael Webster-Clark1, Jennifer L. Lund1,2,
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ABSTRACT
◥

Background: Studies evaluating the effects of cancer treatments
are prone to immortal time bias that, if unaddressed, can lead to
treatments appearing more beneficial than they are.

Methods: To demonstrate the impact of immortal time bias, we
compared results across several analytic approaches (dichotomous
exposure, dichotomous exposure excluding immortal time, time-
varying exposure, landmark analysis, clone-censor-weight meth-
od), using surgical resection among women with metastatic breast
cancer as an example. All adult women diagnosed with incident
metastatic breast cancer from 2013–2016 in the National Cancer
Database were included. To quantify immortal time bias, we also
conducted a simulation study where the “true” relationship between
surgical resection and mortality was known.

Results: 24,329 women (median age 61, IQR 51–71) were includ-
ed, and 24% underwent surgical resection. The largest association
between resection and mortality was observed when using a dichot-

omized exposure [HR, 0.54; 95% confidence interval (CI), 0.51–0.57],
followed by dichotomous with exclusion of immortal time (HR, 0.62;
95% CI, 0.59–0.65). Results from the time-varying exposure, land-
mark, and clone-censor-weight method analyses were closer to the
null (HR, 0.67–0.84). Results from the plasmode simulation found
that the time-varying exposure, landmark, and clone-censor-weight
method models all produced unbiased HRs (bias �0.003 to 0.016).
Both standard dichotomous exposure (HR, 0.84; bias, �0.177) and
dichotomous with exclusion of immortal time (HR, 0.93; bias,
�0.074) produced meaningfully biased estimates.

Conclusions: Researchers should use time-varying exposures
with a treatment assessment window or the clone-censor-weight
method when immortal time is present.

Impact:Using methods that appropriately account for immortal
time will improve evidence and decision-making from research
using real-world data.

Introduction
The volume and availability of real-world data (RWD; refs. 1, 2)

present unique opportunities to study effects of medical interventions
in large and heterogenous populations. However, these opportunities
come with distinct challenges that can threaten the validity of RWD
evidence. Immortal time arises in studies when treatment occurs after
cohort entry, precluding the individual from experiencing the outcome
and rendering the time “immortal” or “immune” (Fig. 1) (3–5). If
unaddressed, immortal time can lead to bias exaggerating the effect of
treatment, making it seem more beneficial than it is. Several epide-
miologic and statistical approaches can be used to avoid immortal time
bias, including using a time-varying exposure (4), landmark analy-
ses (6, 7), and clone-censor-weight methods that emulate randomized

clinical trials (8–10); however, they remain underutilized in many
RWD analyses.

Studies evaluating the effects of cancer treatments are often prone to
immortal time bias. Studies typically identify patients at time of cancer
diagnosis, yet treatment often occurs after the start of follow-up. One
setting for which there is a clear potential for immortal time bias is in
evaluating the effect of surgical resection for the treatment of meta-
static breast cancer. While several retrospective studies using cancer
registries report substantial benefits among women who underwent
surgical resection (11–18), prospective studies and randomized trials
largely found no effect of treatment (19–21).

To date, there have been no formal efforts to quantify immortal time
bias in studies evaluating the effect of surgical resection in this patient
population. We aimed to demonstrate the impact of immortal time bias
on the observed treatment effect of surgical resection among women
with metastatic breast cancer. We hypothesized that treatment effect
estimateswould beoverestimatedwhen immortal timewas unaddressed
(e.g., when using a standard dichotomous exposure [yes/no resection])
or inappropriately addressed (e.g., when excluding immortal time from
the exposed group). To further demonstrate the potential impact of
immortal time bias anddifferent analytic approaches on treatment effect
estimates, we also conducted a simulation study where the “true”
relationship between surgical resection and all-cause mortality was
known (i.e., set by the researcher) and bias could be quantified.

Materials and Methods
Data source and study design

We used the National Cancer Database (NCDB) 2017 Participant
Use File, a clinical database sourced from over 1500 commission-
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accredited cancer facilities in the US (22, 23). Importantly, NCDB
captures time to treatment, which allows researchers to measure time
between cancer diagnosis and surgical resection. Our study included
adult women (≥18 years) diagnosed with incident metastatic breast
cancer from 2013–2016. Women with cT0/x, cNx, missing cTNM,
prior cancer history, or missing surgery information were excluded
(Supplementary Fig. S1). Patients were followed from cancer diagnosis
until death, last contact, or the end of study follow-up (December 31,
2017).

The primary exposure was surgical resection, defined as a total or
partial mastectomy. Individuals who did not undergo resection,
including those who only underwent breast biopsies for tissue diag-
nosis, were categorized as not having surgery. Time to surgery was
calculated as the time from diagnosis to the date of the most definitive
surgical resection. The outcome of interest was 3-year all-cause
mortality, consistent with randomized trials and prospective studies
in similar populations (19–21, 24).

Statistical analysis
We estimated the association between surgical resection and mor-

tality using several approaches to define surgical status. Brief descrip-
tions of each are provided below, with additional details (and sample
SAS code) in the SupplementaryMethods andMaterials.Multivariable
Cox proportional hazards regression was used for all analyses.

Approaches that fail to account for immortal time
We first estimated the association between surgical resection and

mortality using two commonly used methods that do not appropri-
ately address immortal time—using a dichotomous exposure and
using a dichotomous exposure but excluding immortal time. Dichot-
omous exposures classify women who underwent surgery at any time
during follow-up as exposed for the entire study period, thus creating a
period of immortal time. Alternatively, excluding immortal time shifts
the start of follow-up to the date of surgical resection among exposed
patients, but starts follow-up at diagnosis for the unexposed, whichwill
not fully ‘fix’ the immortal time bias (25). Amore in-depth overview of
these approaches, as well as time-varying exposures and landmark
analyses, has been previously described (26).

Time-varying exposure(s)
The time-varying exposure allows treatment status to vary over time

and treated patients contribute both ‘exposed’ and ‘unexposed’

time (3, 4). In our study, the time between cancer diagnosis and
surgical resection was attributed to the unexposed group and the time
after surgery was attributed to the exposed group. The HR from this
model is interpreted as the average effect of undergoing surgical
resection at any time after diagnosis, compared with no resection
(Table 1).

However, the time between diagnosis and surgical resection can
vary widely between women, due to other treatments, prognosis, and
other clinical decision-making factors. This variation can make the
‘ever’ versus ‘never’ undergoing resection approach difficult to inter-
pret. One way to address this issue is to create a “treatment assessment
window”. To illustrate this, we fit two additional time-varying expo-
sure models that only considered surgical resection that occurred
within specific time windows, 8 and 12 months from diagnosis,
respectively. Women were able to change exposure status (from
unexposed to exposed) if they underwent surgery during the treatment
assessment window. The HRs from these models can be interpreted as
effect of undergoing surgery within 8 (or 12) months of diagnosis on
mortality, compared to never undergoing surgery or undergoing
surgery after 8 (or 12) months.

Landmark analysis
In this approach, instead of using a time-varying exposure, you

instead begin follow-up for individuals at the end of the treatment
assessment window (i.e., landmark; refs. 6, 7). Patients who died or
whowere censored before the end of the treatment assessment window
are excluded. The HR from these models is also interpreted similarly:
the effect of undergoing surgery within 8 (12) months, compared to no
surgery or later surgery, among patients who survived for at least 8 (12)
months after diagnosis.

Clone-censor-weight method
The clone-censor-weight method emulates a hypothetical clinical

trial by creating two copies of each patient at cohort entry and
allocating one copy or “clone” to each treatment arm (i.e., exposed/
treated and unexposed/no treatment) (8–10). Copies/clones are cen-
sored when they deviate from their assigned treatment. This means
that in the exposed/treatment arm, copy/clones are censored if they do
not undergo treatment by the end of a treatment assessment window.
In the no treatment arm, copy/clones are censored when they undergo
treatment. Otherwise, patients are followed normally and adminis-
tratively censored at the end of the study or loss to follow-up. In our

Figure 1.

Depiction of immortal time bias in observational studies. Hypothetical data from a longitudinal observational study for an individual who received an exposure (e.g.,
surgical resection) following the cohort entry date (e.g., date of metastatic cancer diagnosis). The “Misclassified immortal time” and “Exclusion of immortal time”
approaches do not appropriately categorize time into “exposed” and “unexposed” periods. The “Correctly classified immortal time” correctly assigns time between
cohort entry and exposure to the unexposed group and time after the exposure to the exposed group.
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analyses, we used the same treatment assessment windows as our prior
analyses: 8 and 12months. The interpretation of theHRs is the same as
those from the time-varying exposure model with treatment assess-
ment windows.

Because women are assigned to each exposure group at baseline,
there is no baseline confounding (covariates are balanced across
groups). However, informative censoring (i.e., selection bias) must be
accounted for since womenmay deviate from their assigned treatment
strategies during the assessmentwindow. In our analysis, we accounted
for informative censoring by calculating inverse-probability of cen-
soring weights (e.g., when a woman undergoes surgical resection when
assigned to the unexposed group) (27). Additional details on methods
to address confounding and estimation of censoring weights are
provided in the Supplementary Methods and Materials (28, 29).

Plasmode simulation
To further demonstrate the differences between the aforementioned

approaches, we conducted a plasmode simulation where we were able
to set the ‘true’ relationship between surgical resection and mortali-
ty (30). Plasmode simulations are useful for emulating RWD, since the
distribution of patient characteristics and other variables are derived
from actual clinical databases. We extracted patient demographic and
cancer characteristics from the original NCDB cohort of women with
metastatic breast cancer, and simulated treatment (surgical resection)
and patient outcomes (mortality).

We created 1,000 plasmode datasets by drawing 10,000 womenwith
replacement from the metastatic breast cancer cohort. In each plas-
mode dataset, time to surgical resection and time to mortality were
separately simulated using Weibull distributions. For demonstration

Table 1. Summary of analytic techniques that can address immortal time, using surgical resection amongwomenwithmetastatic breast
cancer as an example.

Analytic approach Description Interpretation

Time-varying exposure (yes/no
surgery) (3, 4), ever/never treated

Included: All women with metastatic cancer Effect of ever undergoing resection, compared to
never, on mortality.Treatment status: Surgical resection during any point

during follow-up. Women are classified as being
‘unexposed’ until the date of surgery; after the date of
surgery they are classified as exposeda.

Follow-up: Starts at date of diagnosis. Women are
followed until death, loss to follow-up, or end of study
period.

Time-varying exposure (yes/no
surgery) (3, 4) with specified
treatment window

Included: All women with metastatic cancer Effect of undergoing resection within 8 months of
diagnosis, compared to never or undergoing
resection later, on mortality.

Treatment status: Surgical resection within a specified
treatment window (e.g., 8 months after diagnosis).
Women are classified as being ‘unexposed’ until the
date of surgery; after the date of surgery they are
classified as exposeda. Women who undergo
resection after the treatment window are classified as
unexposed.

Follow-up: Starts at date of diagnosis. Women are
followed until death, loss to follow-up, or end of study
period.

Landmark approach (6, 7) Included: All womenwithmetastatic cancer andwho are
alive and not lost to follow-up before landmark

Effect of undergoing resection within 8 months of
diagnosis, compared to never or undergoing
resection later, on mortality, among women who
survive at least 8 months after diagnosis.

Treatment status: Women who undergo resection prior
to the landmark are considered exposed, and
individuals who do not are unexposed.

Follow-up: Starts at a landmark time-point (e.g.,
8 months) following cancer diagnosis. Women are
followed until death, loss to follow-up, or end of study
period.

Clone-censor-weight method (8–10) Included: All womenwithmetastatic cancer are included
twice; once in each treatment arm (surgical resection
and no resection)

Effect of undergoing resection within 8 months of
diagnosis, compared to never or undergoing
resection later, on mortality.

Treatment status: Assigned. Treatment is defined to
occur within a specified time frame (e.g., 8 months)

Follow-up: Starts at date of diagnosis. Patients are
followed until their treatment is no longer compatible
with the treatment assignment (e.g., “unexposed”
women are censored at the time of resection and
“exposed”women are censored at 8months if they do
not undergo resection), death, loss to follow-up, or
end of study period.

aWhile in our analyseswe assumed a ‘once exposed, always exposed’ approach given that our treatment of interest was surgery, thesemethods allow for individuals
to be switched fromunexposed to exposed and vice versa across the entire study period; studies onmedication adherenceor other treatmentsmaywant to reclassify
individuals as unexposed as treatment is discontinued; lag effects of treatments can also be incorporated.
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purposes, we assumed that surgery had no impact on mortality (HR¼
1). Additional details on the simulation methods are provided in the
Supplementary Methods and Materials.

We estimated the association between surgical resection and all-
causemortality using themethods above in each of the 1,000 plasmode
datasets, and then averaged the results to estimate the HR. SEs were
estimated as the mean standard deviation across plasmode datasets
and 95% confidence interval coverage (CIC) was estimated as the
proportion of 95% confidence intervals that contained the true HR.
Bias was estimated for each approach as the log average HR across the
1,000 datasets minus the true log HR.

All analyses were conducted using SAS version 9.4 (SAS Inc.). This
study was determined to be exempt by the University of North
Carolina Institutional Review Board (IRB# 20-1493).

Data availability
The American College of Surgeons National Cancer Database

(NCDB) were used under license and not publicly available. However,
all SAS programming for the study are included in the Supplementary
Methods and Materials.

Results
NCDB analyses

Overall, 24,329 women with metastatic breast cancer met study
inclusion criteria, of which 5,847 underwent surgical resection at some
time during their follow-up. Median time to resection, among women
who underwent surgical resection, was 160 days (interquartile range
35–215, full range 0–1,016). Demographic and tumor characteristics,
stratified by ever undergoing resection, are provided in Supplementary
Table S1.

The estimated associations between resection and mortality using
the different analytic approaches are presented in Table 2. The
biggest association between resection and mortality was observed
when using a dichotomous exposure (HR, 0.52; 95% CI, 0.49–0.55).
The observed association was slightly attenuated when we excluded
immortal time (HR, 0.62; 95% CI, 0.58–0.65). Results from the
time-varying exposure, landmark, and clone-censor-weight analy-
ses were all closer to the null, although all three analyses showed
some protective association between resection and all-cause mor-
tality (HR, 0.65–0.88). Varying the treatment assessment window
did not meaningfully change results.

Plasmode simulation
Results from the plasmode simulation are presented in Table 3. As

expected, when using a dichotomous exposure (HR, 0.84; bias,
�0.177), even when immortal time was excluded (HR, 0.93; bias,
�0.074) produced biased estimates. Notably, none of the dichotomous
exposure simulations produced confidence intervals that included the
true effect (95% CIC¼ 0%). Alternatively, the time-varying exposure,
landmark, and clone-censor-weight models all produced unbiased
HRs (bias¼�0.003 to 0.016). Precision (range log SE¼ 0.028–0.038)
and CIC (range ¼ 0.919–0.955) were similar across the three
approaches that accounted for immortal time.

Discussion
Our study demonstrates the impact of immortal time on the

estimated treatment effect of surgical resection onmortality in women
with metastatic breast cancer using both a case study and plasmode
simulation. In the case study, our findings suggest that analyses that do

not appropriately account for immortal time are overestimating the
protective association between surgical resection andmortality among
women with metastatic breast cancer. This is further supported by the
simulation results, which found that using a dichotomous exposure,
evenwhen immortal timewas excluded, produced biased results, while
the time-varying exposure, landmark, and clone-censor-weight anal-
yses produced unbiased estimates.

Our study partially explains why studies using observational RWD
found that surgical resection was associated with improved survival
among patients with metastatic breast cancer, while subsequent
randomized studies did not. Published results from studies assessing
the surgery-survival association in women with metastatic breast
cancer using Surveillance, Epidemiology, and End Results (SEER)
data have estimated HRs ranging from 0.53 to 0.63, suggesting a large
protective benefit of surgery (11, 15–17). However, information on
treatment timing is not captured in SEER,meaning that immortal time
cannot be accounted for even if researchers wanted to use appropriate
methods. Other studies using NCDB have also found similar, strong
protective associations, suggesting that appropriate methods to
account for immortal time were not used (12–14, 18).

We found that the estimated HR for resection on survival was
substantially attenuated when immortal time was appropriately han-
dled (HR, 0.65–0.88), suggesting that immortal time bias partially
explains the discrepancies between the clinical trials and observational
study findings. Notably, a recent study using NCDB that accounted for
immortal time bias found similar results to our clone-censor-weight
analysis (HR, 0.82; 31). If resection truly has no impact on outcomes, as
clinical trials and prospective studies have found (HR, 1.04–1.09;
refs. 19–21), then residual confounding may also partially explain the
persistent discrepancies. For example, fitness for surgery is generally
unavailable in limited observational datasets and may confound these
associations. Selection/exclusion criteria in clinical trials and prospec-
tive studies may also play a role.

It is important to note that the hazard ratios using the clone-censor-
weight approach (8-month: HR, 0.86, 12-month: HR, 0.88) were
higher than the hazard ratios using time-varying exposures (8-month:
HR, 0.67, 12-month: HR, 0.66) and landmark analysis (8-month: HR,
0.68, 12-month: HR, 0.67). While all three of these approaches can be
used to address immortal time bias, they produce different estimands,
which may explain the differences in findings. In addition, landmark
analyses draw inference for a less generalizable study population since
they restrict to survivors of the landmark period. A key advantage of
the clone-censor-weight method is that it operates under a target trial
emulation framework, which may explain why results from this
analysis were more similar to those reported in RCTs. This approach
ensures no baseline confounding, although confounding is replaced by
selection bias due to informative censoring, which can be accounted for
using censor weights.

As RWD become more commonplace in clinical research, a more
in-depth understanding of study design and analytic approaches is
needed to ensure researchers are generating robust and valid estimates
of treatment effects. While confounding and selection bias are rela-
tively well understood (32, 33), immortal time bias has historically not
been widely discussed, despite its potential to substantially bias results.
Who can forget the famous study that erroneously found that Oscar
winners had improved survival in the early 2000s? (34, 35) Even more
recently (2018–2019) papers have had to be retracted in high impact,
peer-reviewed journals after readers pointed out potential immortal
time bias; when the authors went back and used appropriate methods,
they found the treatment actually had no effect (36–39). These events
have prompted journals to publish additional guidance on immortal
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time bias (40) and calls for more effective use of reporting guidelines
for observational research (41), such as STrengthening the Reporting
of OBservational studies in Epidemiology (STROBE; refs. 42, 43),
REporting of studies Conducted using Observational Routinely col-
lected health Data (RECORD; ref. 44), and RECORD for Pharmacoe-
pidemiology (RECORD-PE; refs. 40, 41, 45). We hope that these
events, in addition to our results, increase awareness of the need for
rigorous peer review of potential immortal time bias prior to publi-
cation and the use of appropriate analytic methods.

Choosing the appropriate dataset and analytic approach to avoid
immortal time bias (as well as other forms of bias) when using RWD
can be challenging. We encourage researchers to avoid studying

treatments where immortal time is a concern in databases where dates
or timing of treatment cannot be captured (e.g., SEER).When timing is
known, there are still decisions to be made about which analytic
approach to use. As we show in our plasmode simulation, only
methods that address immortal time are expected to produce unbiased
estimates. However, these approaches each have strengths and limita-
tions. The landmark approach may be the most straight-forward to
implement and exact dates are not needed, so long as researchers can
verify that an exposure occurred during a pre-specified treatment
assessment window. However, using a landmark can impact gener-
alizability, especially if the treatment assessment window is long or if
early mortality is high (e.g., lung cancer). Results from landmark

Table 2. Results from analysis of NCDB data using various methods to account for immortal time.

Surgical resection No resection

Model Deaths Na
Time
(Months) IRb Deaths Na

Time
(Months) IRb HR (95% CI)

Dichotomous exposure with misclassified immortal timec 1,569 4,795 131,226 12.0 7,534 14,453 291,752 25.8 0.52 (0.49–0.55)
Dichotomous exposure with exclusion of immortal
person-timec

1,569 4,795 107,887 14.5 7,534 14,453 291,752 25.8 0.62 (0.58–0.65)

Time-varying exposurec

Ever/never treated 1,569 4,795 107,887 14.5 7,534 14,453 315,091 23.9 0.65 (0.62–0.69)
8-month treatment window 1,364 3,994 92,603 14.7 7,736 15,243 330,375 23.4 0.67 (0.64–0.72)
12-month treatment window 1,542 4,609 104,873 14.7 7,558 14,628 318,105 23.8 0.66 (0.63–0.70)

Landmark modelc

8-month landmark 1,053 3,633 76,416 13.8 4,372 11,212 212,982 20.5 0.68 (0.63–0.73)
12-month landmark 1,027 3,993 73,015 14.1 3,273 9,500 159,742 20.5 0.67 (0.62–0.72)

Clone-censor-weight methodd

8-month treatment window 4,728 19,237 209,995 22.5 7,736 19,237 330,375 23.4 0.86 (0.83–0.90)
12-month treatment window 5,827 19,237 263,236 22.1 7,558 19,237 318,105 23.8 0.88 (0.85–0.91)

Abbreviations: IR, incidence rate; NCDB, National Cancer Database.
aIndividuals with missing covariate information were excluded from all analyses (n ¼ 5,081).
bCrude IR per 1,000 person-months.
cHRs were calculated by fitting inverse-probability of treatment weighted Cox regression models. Inverse probability of treatment weights were estimated using a
logistic regressionmodelwith surgery as the dependent variable and the following patient characteristics as independent variables: age, race, insurance, comorbidity
index, median income quartile, year of diagnosis, histology, clinical T stage, clinical N stage, and cancer subtype and interaction terms for age and comorbidity index.
Facility type and region were not adjusted for since they are restricted in the NCDB in women <40.
dHRs were calculated by fitting inverse-probability of censoring weighted Cox regressionmodels. Models to estimate weights included the same covariates listed in
footnote c.

Table 3. Results from analyses of plasmode simulation using various methods to account for immortal time.

Model HRa log SE 95% CICb Bias (log scale)c

Dichotomous exposure with misclassified immortal time 0.84 0.029 0.000 �0.177
Dichotomous exposure with exclusion of immortal person-time 0.93 0.030 0.348 �0.074
Time-varying exposure

Ever/never treated 1.02 0.030 0.919 0.016
8-month treatment window 1.01 0.032 0.946 0.012
12-month treatment window 1.01 0.031 0.938 0.014

Landmark model
8-month landmark 1.00 0.038 0.946 �0.001
12-month landmark 1.00 0.038 0.955 �0.001

Clone-censor-weight method
8-month treatment window 1.00 0.029 0.949 0.001
12-month treatment window 1.00 0.028 0.948 �0.003

Abbreviation: CIC, confidence interval coverage.
aMean HR across all 1,000 plasmode simulation datasets.
bProportion of 95% CIs that include the true HR of 1.00.
cDifference between the log average HR across the 1,000 plasmode datasets and the true log HR (0); larger absolute numbers indicate more bias. Negative bias
makes surgical resection appear more protective, positive bias makes surgical resection appear more harmful. In our example, since the true log HR is 0, bias equals
the log of the average HR. In simulations where the true HR is not null (1.00), this will not be the case.
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analyses do not apply to individuals who die or are lost to follow-up
prior to the landmark.

Choice of the treatment assessment window also changes the causal
effect being estimated and the population of inference (i.e., the target
population) (46). In all of the approaches that incorporate a treatment
assessment window, clinical expertise should be used to determine the
treatment assessment window and/or landmark, and sensitivity anal-
yses using different windows (or landmarks) should be conducted to
ensure the cut point doesn’t impact results.

Time-varying exposures have the advantage that they do not require
dropping patients who die early. However, interpreting and imple-
menting findings into clinical practice can be difficult since treatment
received at any time during follow-up is compared to no treatment.
Incorporating a treatment assessment window into these analyses (e.g.,
resection within 8 months versus no resection or resection after
8 months) is an easy way to solve this issue. However, when using
time-varying exposures, researchers must also consider how to appro-
priately adjust for time-varying confounders. While outside the scope
of this study, marginal structural models or g-methods can be used to
address time-varying confounding and have been described in detail
elsewhere (47–49).

The clone-censor-weight method, which has recently gained trac-
tion in epidemiologic research, allows researchers to emulate a trial
using observational data (9). This has several strengths, including the
ability to ask causal research questions and removal of confounding
since treatment is “assigned”. However, because clones are censored
based on their actual, observed treatment, informative censoring due
to assigned treatment deviation must be accounted for by applying
inverse-probability of censoring weights. Maringe and colleagues
published a tutorial with R and Stata code using surgery among older
adults with early-stage lung cancer as an example (10). We are adding
to the literature of this approach by providing a SAS code tutorial in
our Supplementary Methods and Materials.

As with all studies that use RWD, analyses can still be subject to bias
from unmeasured confounding, missing data, and selection. Using the
clone-censor-weight method to emulate a target trial may help elu-
cidate some of these potential biases, especially selection bias, for
researchers. Overall, given the strengths and limitations of each
analysis approach, we recommend using either a time-varying expo-
sure with a treatment assessment window or the clone-censor-weight
method when immortal time is a concern. Both of these approaches
appropriately minimize immortal time bias.

Results from our comparison of analytic approaches using the
NCDB cohort should be interpreted in light of several limitations.
First, our analysis was restricted to a single dataset and results may not
be generalizable to all women with metastatic breast cancer. However,
NCDB captures 70% of all incident cancers in the US and is one of the
largest andmost comprehensive datasets that captures incident cancer
and timing of treatment. We followed individuals for up to three years
and individuals diagnosed later in the study period did not have the
opportunity for full follow-up. We accounted for this by administra-
tively censoring individuals at the end of their data availability. If loss to
follow-up is differential with respect to the exposure, this can induce
selection bias. Although not demonstrated in this paper, selection bias
due to informative censoring can be dealt with using inverse proba-
bility of censoring weights, similar to those employed in our clone-
censor-weight analyses (48).We recommend that researchers who use
censoring weights to apply the clone-censor-weight method and to
account for differential loss to follow-up use separate models for each
of these types of censoring. In addition, studies usingNCDB, including
ours, may be subject to residual confounding due to variables that are

not captured in the database, like frailty and other factors associated
with survival and clinical decision-making. Unlike our NCDB anal-
yses, the plasmode simulation can quantify bias since the true rela-
tionship between surgery and mortality is set by the researchers.
However, simulations are limited to the scenario that they present,
and alternate strategies for generating the exposure or outcome data
can lead to different results. Finally, our simulation only considered a
simplified example in which the proportional hazards assumption was
met. Future simulations should assess how these approaches to handle
immortal time perform in more complex scenarios, for example when
the hazard ratio is time-varying. Researchers should also consider
other methods when proportional hazards assumptions do not hold
(e.g., piecewise proportional hazards models, linear time functions,
accelerated failure time models) (50, 51). The methods outlined in our
paper to deal with immortal time bias can be extended to cases where
proportionality fails.

In conclusion, immortal time and immortal time bias are serious
concerns in studies that use RWD to estimate the effects of cancer
treatment on patient outcomes. These concepts also at least partially
explain why RCTs and observational studies evaluating the impact of
surgical resection in metastatic breast cancer patients present such
conflicting results. As the availability of RWD increases (1, 2), it is
critical for healthcare researchers to be aware of immortal time and use
methods that account for potential bias.
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