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Abstract

Heterogeneity is an often unappreciated characteristic of stem cell populations yet its importance in fate determination is
becoming increasingly evident. Although gene expression noise has received greater attention as a source of non-genetic
heterogeneity, the effects of stochastic partitioning of cellular material during mitosis on population variability have not
been researched to date. We examined self-renewing human embryonic stem cells (hESCs), which typically exhibit a
dispersed distribution of the pluripotency marker NANOG. In conjunction with our experiments, a multiscale cell population
balance equation (PBE) model was constructed accounting for transcriptional noise and stochastic partitioning at division as
sources of population heterogeneity. Cultured hESCs maintained time-invariant profiles of size and NANOG expression and
the data were utilized for parameter estimation. Contributions from both sources considered in this study were significant
on the NANOG profile, although elimination of the gene expression noise resulted in greater changes in the dispersion of
the NANOG distribution. Moreover, blocking of division by treating hESCs with nocodazole or colcemid led to a 39%
increase in the average NANOG content and over 68% of the cells had higher NANOG level than the mean NANOG
expression of untreated cells. Model predictions, which were in excellent agreement with these findings, revealed that
stochastic partitioning accounted for 17% of the total noise in the NANOG profile of self-renewing hESCs. The
computational framework developed in this study will aid in gaining a deeper understanding of how pluripotent stem/
progenitor cells orchestrate processes such as gene expression and proliferation for maintaining their pluripotency or
differentiating along particular lineages. Such models will be essential in designing and optimizing efficient differentiation
strategies and bioprocesses for the production of therapeutically suitable stem cell progeny.
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Introduction

Human pluripotent stem cells (hPSCs) including embryonic

(hESCs) and induced pluripotent stem cells (hiPSCs) self-renew

extensively and under appropriate conditions give rise to multiple

cell types. These properties make hPSCs invaluable both as tools

for studying development and as a source of therapeutics for

regenerative medicine. The switch between self-renewal and

differentiation as well as commitment along a particular lineage

are often thought as a series of choices between binary alternate

states mediated by coordinated actions at multiple levels, i.e. from

gene networks to extracellular factor-activated signaling cascades

[1,2].

Nevertheless, a commonly observed but unappreciated attribute

of stem cell ensembles in vivo/vitro is their heterogeneity. Cells in

the inner cell mass of mouse blastocysts express Oct4, Nanog and

Gata6 in a mutually exclusive and seemingly random ‘salt-and-

pepper’ pattern [3] depending on extracellularly-induced signaling

cascades. Cultured ESCs also exhibit inhomogeneous expression

of POU5F1 (Oct4), Nanog, SSEA1, SSEA3, Stella and Rex1

[4,5,6,7,8,9,10]. Heterogeneity is also noted in other stem/

progenitor cells including neural [11], intestinal [12,13] and

hematopoietic stem cells (HSCs) [14]. Hence, heterogeneity is a

characteristic of stem/progenitor cell populations affecting their

ability to self-renew and differentiate but its exact physiological

role(s) remains unclear. For instance, the heterogeneous expression

of genes from genetically identical hESCs has been linked to

lineage primed subpopulations co-expressing pluripotency and

lineage-specific markers. Heterogeneity may also underlie the

variable response of stem cells to differentiation cues resulting in

particular tissue patterns.

Nanog is a key pluripotency regulator that shows relatively

lower expression levels and more significant heterogeneity among

hESC populations than other core stemness transcription factors

such as OCT4 and SOX2 [15,16,17,18]. For instance, ,20% of

mouse ESCs (mESCs) have no detectable expression of Nanog

(Nanog2) and despite their expression Oct4 and SSEA1 [5] they

can reconstitute the original mESC population including Nanog+

cells. The downregulation or transient depletion of Nanog is linked

to loss of pluripotency and commitment [5,19,20] whereas its
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overexpression prevents ESCs from differentiating. Then, sources

of Nanog variability conceivably influence the balance between

self-renewal and differentiation. To date, Nanog heterogeneity has

been attributed to stochasticity in its gene expression. A

transcriptional noise-driven excitable system featuring a feedback

loop with Oct4 (gene regulatory network) was constructed to

describe the dynamics of Nanog expression in mESCs [21]. The

model reveals noise-induced excursions from a Nanoghigh to a

Nanoglow state in which the cells are prone to differentiate in the

presence of appropriate cues. Whether the time it takes for cells to

transition between the two states is adequate to explain the

residence of cells in the latter state is an open question. Alternative

scenarios of Nanog regulation through fluctuations or oscillations

of its expression have also been investigated [22].

Although stochastic gene expression has received increased

attention, the emergence of heterogeneous cell populations is also

influenced by other processes, notably cell division and the

associated stochastic partitioning of cellular material [23,24,25].

Each of the daughter cells generated from a mESC expressing

GFP from the Nanog locus exhibits different Nanog levels based on

GFP fluorescence [21]. Cell mitosis may contribute to the

stochastic fluctuations of Nanog as it inevitably leads to

partitioning of the Nanog mRNA/protein and factors (e.g.

transcription factors) pertinent to its synthesis and degradation in

the two newborn cells. Therefore, Nanog levels in hPSCs may be

regulated through the interplay between Nanog mRNA/protein

expression, degradation and dilution due to mitosis. In fact, cell

division (and thus partitioning) and protein degradation have

comparable effects especially in moderately proliferating cells [23]

influencing protein levels along with gene expression. Interestingly

enough, the G1 phase is a critical window for the differentiation of

hESCs exposed to proper signals [26,27,28]. Consequently, the

decision of hESCs to select a particular fate trajectory may be

more sensitive to the fluctuation of Nanog immediately after

division. This is also consistent with the support of hESC self-

renewal by a shortened G1 phase preventing loss of pluripotency

[29]. Furthermore, overexpression of Nanog results in faster

growth of hESCs and shorter time for S-phase entry [30]. These

findings link the maintenance of pluripotency, Nanog level and cell

cycle dynamics and point to a universal role of cell division in stem

cell fate selection processes.

In this study we investigated the heterogeneity in Nanog

expression of self-renewing hESC populations arising from

stochasticity in gene expression and partitioning at cell mitosis.

For this purpose, a population balance equation (PBE)-based

quantitative framework was developed for pluripotent hESCs

taking into account these two sources of heterogeneity. The state

vector comprised hESC size and Nanog expression as descriptors

of proliferation and pluripotency, respectively. The model was

coupled to experimental observations and parameters were

determined via Monte Carlo (MC) simulations. Subsequently,

the NANOG profile was predicted for growth-arrested hESCs and

the results were compared to measurements in hESC populations

treated with anti-mitosis agents. More importantly, the relative

contributions of cell partitioning and gene expression noise to the

expression dynamics of Nanog in self-renewing hESCs were

quantified for the first time.

Materials and Methods

Human Embryonic Stem Cell Culture
The hESC line H9 (passages 30–60) was obtained from the

WiCell Research Institute (Madison, WI) and its use was approved

by the Committee for Stem Cell Research Oversight at SUNY-

Buffalo. Cells were cultured in dishes coated with Matrigel (BD

Biosciences, San Jose, CA) and in mTeSR1 medium (StemCell

Technologies, Vancouver, BC). The cultures were maintained in

5% CO2/95% air at 37uC. Medium was replaced every day, and

the cells were passaged every 5–6 days by enzymatic dissociation

with collagenase type IV (GIBCO, Grand Island, NY).

Cultured cell viability was assessed by Trypan Blue staining

(Sigma-Aldrich, St. Louis, MO) and counting in a hemocytometer.

Alternatively, cells were stained with 20 mg/ml fluorescein

diacetate (FDA-live cells; Sigma-Aldrich) in PBS for 5 min and

after being washed twice with PBS, they were analyzed by flow

cytometry. Karyotypic analysis of cultured hESCs is routinely

performed at the SKY/FISH facility at Roswell Park Cancer

Institute (Buffalo, NY).

Flow Cytometry
Colonies on Matrigel-coated dishes were dissociated into single

cells with Accutase (Innovative Cell Technologies Inc., San Diego,

CA) and collected by centrifugation at 2006g for 5 min. Cells

were fixed for 10 min in 3.7% formaldehyde solution (Sigma-

Aldrich, St. Louis, MO), washed with PBS (Mediatech Inc.,

Manassas, VA) and blocked with 3% normal donkey serum

(Jackson ImmunoResearch Laboratories, West Grove, PA) for

30 min before incubation with a monoclonal PE-conjugated

mouse anti-human NANOG antibody (cat. no. 560483) or an

isotype control (cat. no. 554680; both from BD Biosciences,

Franklin Lakes, NJ) for 1 hr at room temperature. The specificity

of the NANOG antibody was tested and verified in hESCs,

differentiated hESCs and non-stem cells (Fig. S1). Sample analysis

was carried out on a FACS Calibur flow cytometer with the

CellQuest software (BD Biosciences). Data were further analyzed

with the FCS Express V4.0 suite (De Novo Software, Los Angeles,

CA). Cells were registered as positive if their emitted fluorescence

level was above 98% of that of isotype control samples. Quantum

PE MESF (Molecules of Equivalent Soluble Fluorochrome

intensity) beads (Bangs Laboratories, Fishers, IN) were used for

calibration [31] and conversion of relative fluorescence intensities

to MESF units and FSC data to cell size (Fig. S2).

Growth Arrest Experiments and Cell Cycle Analysis
Four to five days after plating, cells were treated with 200 ng/ml

nocodazole (Sigma-Aldrich) or 100 ng/ml colcemid (GIBCO) for

12–20 hr [29] as stated. Subsequently, the cells were washed twice

with PBS and cultured with fresh medium (recovery studies) or

immediately fixed in ice-cold 70% ethanol for 1 hr, stained with

propidium iodide/RNase (Trevigen Inc., Gaithersburg, MD) and

washed with PBS before analyzed by flow cytometry. The

distribution of cells in different phases of the cell cycle was

determined with the Multicycle module of the FCS Express V4.0

software.

Numerical Solution of the PBE Model
Numerical solutions of the stem cell PBE models described in

this study were obtained via MC simulations considering the

interruption of quiescence in the population by the division of a

cell. A similar methodology has been applied to other systems of

microbial populations, coalescing droplets and chemical reactions

[32,33,34]. The time T between successive divisions of any two

cells (i.e. interval of quiescence between t and tzT ) is a random

variable with a cumulative distribution function MT (tDt) defined as

the probability that time T will be less or equal to t conditional on

the state of the stem cell population at instance t [35]. If the

probability for Twt conditional on the state of the population at

time t is PT (tDt), then.

Modeling Stem Cell Population Heterogeneity
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MT (tDt)~1{PT (tDt) ð1Þ

The probability PT (tDt) is expressed as

PT (tzdtDt)~PT (tDt)½1{
XKt

i~1

C(xi(tzt))dt� ð2Þ

where xi is the state vector for the ith cell in the population of Kt

stem cells. The second term on the right-hand side represents the

probability that division will not interrupt quiescence during the

interval ½tzt,tztzdt�. Division of Eq. 2 by dt?0 and the initial

condition PT (0Dt)~1 (i.e. the quiescence time is always .0) yield

dPT

dt
~{PT

XKt

i~1

C(xi(tzt)) ð3Þ

and thus,

MT (tDt)~1{ exp½{
ðt

0

XKt

i~1

C(xi(tzl))dl� ð4Þ

The quiescence interval T can be calculated from the above

equation by setting the distribution MT equal to a random

number (ran1) from a uniform distribution, i.e.

1{ exp½{
ðT

0

XKt

i~1

C(xi(tzl))dl�~ran1 ð5Þ

When only the hESC size was considered in the state vector of

the PBE (see Eq. 7), the above expression was coupled to the rate of

growth r1(x) (shown in Eq. 8) which was calculated with the explicit

Euler forward difference method for each cell over the quiescence

interval and the state vector xi was updated. With the inclusion of

the NANOG level in the state vector (Eq. 12), the NANOG content

for each cell during the interval T was updated by solving the set of

Kt stochastic differential equations (Eq. 13) by the Euler-Maruyama

algorithm [36]. Once the time T to the next division was calculated

(by the Newton-Raphson method), the jth cell undergoing division

was identified by generating a second random number (ran2) from a

uniform distribution to calculate the probability.

Pj{1

i~1

C xi tzTð Þð Þ

PKt

i~1

C xi tzTð Þð Þ
vran2ƒ

Pj

i~1

C xi tzTð Þð Þ

PKt

i~1

C xi tzTð Þð Þ
ð6Þ

The cell sizes and NANOG content of the two daughter cells were

determined by selecting two more random numbers (ran3 and ran4)

from a uniform distribution according to the partition functions

P(xDx’) and P(N DN ’) (Eq. 9 and 15), respectively. For the cell size-

based PBE, only ran3 was selected. The initial population size

Kt0~Kt(t~0) was set to 5,000 hESCs. During simulation, the

number of cells increased to an upper limit Ktmax~10,000{20,000
cells as stated (constant volume MC [37]) by replacing the dividing

mother cell with its daughter cells in each step. These values for Kt0

and Ktmax provided adequate resolution for comparison of the

simulation results with our experiments. Once Ktmax was reached,

the algorithm became a constant (cell) number MC [37]. For this

purpose, the mother stem cell was replaced by the first daughter cell

while another cell from the population was randomly selected and

swapped with the second daughter cell. The simulation was

terminated when the time reached a predetermined limit (e.g.

ttotal = 16 hr). A description of the algorithm is also shown in Figure

S3. Codes were written in FORTRAN and post-processing was

performed in MATLAB (Mathworks, Natick, MA).

Statistical Analysis
Statistical analysis including ANOVA and the post-hoc Tukey

test was performed using Minitab (Minitab Inc., State College,

PA). P values less than 0.05 were considered as significant. The

Pearson’s product-moment correlation coefficient was used to

calculate the correlation Corr(x,N) between the size (x) and

NANOG (N) in distributions obtained by flow cytometry or PBE

model simulations.

Results

Size-based Stem Cell PBE Model
Initially the PBE model below was constructed for self-renewing

hESCs considering only their size x in the state vector.

LF(x,t)

Lt
~{

L½r1 xð ÞF x,tð Þ�
Lx

z2

ðxmax

x

C x
0� �

F x
0
,t

� �
P xDx

0� �
dx
0
{C xð ÞF x,tð Þ

ð7Þ

F(x,t) is the probability density function where F(x,t)dx

represents the number of hESCs per unit culture volume with size

between x and x+dx at time t. The size x corresponds either to the

cell volume or mass since the buoyant density of cells does not vary

throughout the cell cycle [38,39]. The first term on the right-hand

side describes the disappearance of cells with size x due to their

growth with a rate r1(x). Single cell size increases exponentially as

was recently shown in an elegant study by Tzur et al. [40], i.e.

r1 xð Þ~ dx

dt
~

ln 2ð Þ
Td

:x ð8Þ

with Td being the hESC doubling time.

The second right-hand side term in the PBE corresponds to the

division of a mother cell with size x’ to two newborn cells. Since

the partitioning of the content of the mother cell to its daughter

cells is random, a partition probability density function P(xDx0) is

introduced. This function, which represents the probability that a

mother cell x’ will produce two daughter cells with sizes x and (x’-

x), was taken to be [41].

P xDx
0� �

~
1

B q,qð Þ
: 1

x
0
: x

x
0

� �q{1

: 1{
x

x
0

� �q{1

ð9Þ

with B(q,q) being a symmetric beta distribution. Obviously,

P xDx
0� �

~P(x
0
{xDx

0
) and the total x’ is conserved during mitosis.

The last term in Eq. 7 represents the loss of cells with size x due

to their division. The mitotic cell size conforms to a Gaussian

Modeling Stem Cell Population Heterogeneity
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distribution G(x) (with mean m and standard deviation s) [40]

allowing to deduce the following function [41,42] for the cell

division rate.

C xð Þ~ G(x)

1{
Ð x

0
G x

0� �
dx
0
:r1 xð Þ ð10Þ

Formulation of the PBE assumes that all hESCs actively

proliferate and cell death is negligible. Cultured hESCs exhibit a

short G1 phase minimizing the likelihood of their entrance to the

G0 state [26,29]. As a result, the vast majority of hESCs remain

mitotically active in culture [29]. Moreover, we routinely measure

over 90–95% viability of self-renewing hESCs.

The cell size in the state vector of the PBE was obtained by flow

cytometry utilizing the data in the forward light scatter channel

(FSC) [43,44,45] (Fig. S2). Human ESCs were heterogeneous with

respect to size as relevant distributions show (Fig. 1A). The volume

of hESCs was defined through the variable x[ 0,1½ � normalized

from FSC data. Size-wise the hESCs maintained a time-invariant

state and we chose the FSC-based size distribution at day 5 as the

initial probability density function (F(x,0)) for our simulations.

Parameters for the cell division probability C(x) and the

partitioning function P(x|x’) were obtained from FSC data

(Fexperiment(x,t)) by coupling the solution of the PBE (Fmodel(x,t);

Fig. 1B) to a minimization of the objective function.

Z(x,t; m,s,q)~
XKtmax

i~1

(Fexperiment xi,tð Þ{Fmodel(xi,t))
2 ð11Þ

by the Nelder-Mead algorithm [46]. Data from at least seven

experiments were used for parameter estimation (Table 1). It should

be noted that the calculated values for m, s and q satisfied relevant

constraints (0,m,1, s.0 and q.0). In addition to the MC method

described above, we also implemented a time-explicit finite

difference method by discretizing the cell size domain via a hybrid

leapfrog/Lax-Friedrichs scheme [41] and imposing regularity

conditions at the boundaries [47]. The solutions obtained from

both algorithms were in excellent agreement (Fig. 1B). Moreover, the

temporal evolution of the size of individual hESCs can be tracked

with the model (Fig. 1C). Taken together, the stem cell size-based

PBE model illustrates that self-renewing hESCs in culture exhibit a

stable size distribution over time as reflected by the FSC data.

Stem Cell PBE Model: Cell Size and NANOG Expression
Our objective was to investigate the contribution of stochastic

partitioning during cell division to the NANOG profile exhibited

by hESCs. With the parameters related to hESC size and growth

calculated from experimental data, the model was extended to

include the intracellular NANOG level:

LF x,N,tð Þ
Lt

~{
L r1 xð ÞF x,N,tð Þ½ �

Lx
{

L r2 Nð ÞF x,N,tð Þ½ �
LN

z2

ðxmax

x

ðNmax

N

C x
0� �

F x
0
,N
0
,t

� �
P xDx

0� �
P
0

NDN
0� �

dx
0
dN
0

{C xð ÞF x,N,tð Þ

ð12Þ

A schematic of the PBE model is depicted in Fig. S4. Here,

F(x,N,t)dxdN represents the number of stem cells per unit volume

of culture with size between x and x+dx and NANOG expression

between N and N+dN at time t.

NANOG expression dynamics were modeled based on the

stochasticity of gene transcription with the noise propagating to

the NANOG protein production (see Methods S1 for derivation of

r2(N)):

r2 Nð Þ~ dN

dt
~a{d:Nzd:e tð Þ ð13Þ

The stochastic differential equation includes a white (Gaussian)

noise term d.e(t) centered at 0 and with a standard deviation (noise

amplitude) d, which models heuristically the effect of stochastic

fluctuations in the NANOG expression, e.g. due to transcription

and translation [48,49]. NANOG was assumed not to affect the

hESC division potential (Eq. 10), i.e.

C x,Nð Þ~C xð Þ ð14Þ

Stochasticity in NANOG partitioning during division was

introduced with the function P(x,N|x’,N’). We assumed that

cellular content (size x) and NANOG (N) is divided independently

leading to factorization of the partitioning probability density

function:

P x,NDx
0
,N
0� �

~P xDx
0� �
:P NDN

0� �
ð15Þ

The same symmetric beta distribution was assumed for P(N|N’)

(so that P(N DN ’)~P(N ’{N DN ’)) as for cell size partitioning (Eq.

9) with the same parameter q.

Concurrently with the development of the model, we analyzed

the expression of NANOG in self-renewing hESCs by flow

cytometry. Before proceeding further with our analysis, we

examined the adaptation status of cultured hESCs [50]. Human

ESC culture adaptation typically results in extensive loss of

heterogeneity with differences in morphology and the reduced

potential for lineage commitment compared to normal hESCs. For

instance, hESCs in our cultures formed colonies with well-defined

edges and surrounding fibroblast-like cells were observed (Fig.

S5A–B) as expected for normal hESCs and in contrast to cultures

of hESC variants [50]. The cells also maintained a normal

karyotype (Fig. S5C). Moreover, hESCs subjected to directed

differentiation expressed markers of mesoderm, ectoderm and

definitive endoderm (Fig. S5D–F). Human ESC-derived definitive

endoderm cells were further coaxed to posterior foregut cells

expressing PDX1 (Fig. S1). These data provide evidence that our

hESCs did not resemble culture-adapted hESCs, which typically

represent a population with higher homogeneity.

The heterogeneity of NANOG expression among hESCs

becomes evident when the dispersion of NANOG profile

(Fig. 2A) is compared to that of MESF beads. The distribution

of NANOG by cultured hESCs on day 3 exhibited significantly

greater dispersion than that of MESF beads as the respective

coefficients of variation (CV) were 0.632 and 0.19 (p = 3.1461023,

n = 3). As with hESC size, the NANOG distribution remained

fairly constant over time under routine culture conditions (Fig. 2B).

The CV of NANOG protein distribution did not change

significantly 4 (0.588) or 5 (0.643) days after passaging. Taken

Modeling Stem Cell Population Heterogeneity
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together, our data show that self-renewing hESCs maintain a

polydispersed and stable distribution of NANOG expression.

Flow cytometry data for NANOG were then used to evaluate

parameters pertinent to the expression dynamics of NANOG. For

this purpose, NANOG data (AU) were converted to actual

NANOG molecules/cell utilizing the MESF beads (Fig. S2). The

PBE was solved by the MC method based on interval-of-

quiescence calculations. During each interval, the NANOG

content was updated for each cell by solving the set of Kt stochastic

differential equations (r2(N)) whereas changes in cell size were

calculated according to r1(x). Values for a, d and d (Table 1) in

r2(N) were calculated from experimental data through minimiza-

tion of the objective function Z(x,t;a,d,d) as in Eq. 11. Of note, the

model delivers information on the temporal evolution of NANOG

in individual cells (Fig. 2C). With these parameter values,

simulations yielded results which were in close agreement with

the data acquired from experiments (see below Fig. 3).

Collectively our findings show that self-renewing hESCs exhibit

stable but heterogeneous patterns of size and NANOG expression

(Movie S1) in line with previous reports. The stochastic PBE

model developed based on experimental data captures the

NANOG heterogeneity of hESCs taking into account the noisy

gene expression and stochastic partitioning during mitosis.

Gene Expression and Cell Division Effects on NANOG
Expression

With the PBE framework in place, we set out to investigate the

impact of partitioning at cell division and expression noise on the

NANOG profile of self-renewing hESCs. Simulations were run in

the presence or absence of these two sources of heterogeneity

(Fig. 3). The Euclidian distance was calculated as a measure of

divergence between simulation and experimental data (Fig. 3A).

This was found to be the lowest when both cell division and

NANOG expression noise were considered (Fig. 3B). In addition,

two scenarios were run: (i) Cells continued to proliferate with

deterministic NANOG kinetics (i.e. the noise term in r2(N) was set

to zero; Fig. 3C). (ii) Cells expressed NANOG stochastically and

Figure 1. Human ESC size distributions obtained by flow cytometry and simulation. (A) FSC (transformed to normalized cell size) data
distributions at day 3, 4 and 5 after plating hESCs on Matrigel-coated dishes. Each distribution is representative of at least three independent
experiments. (B) Simulation results are shown of the cell size-based PBE using the MC and finite difference methods. Experimental data obtained by
flow cytometry are also shown. Estimation of parameters values from experimental data is described in the text. (C) Model predictions of the size
dynamics of four randomly selected hESCs and their daughter cells. Division events are denoted by arrows.
doi:10.1371/journal.pone.0050715.g001

Table 1. Parameter values calculated based on data from
experiments (n = 3–7).

Parameter Mean ± st. dev.

m 0.46360.048

s 0.10060.025

q 39.51962.291

a (x103 molecules/hr) 7.8760.239

d (x1022/hr) 7.6160.591

d (x104 molecules/hr) 1.7460.0039

doi:10.1371/journal.pone.0050715.t001

Modeling Stem Cell Population Heterogeneity
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grew with rate r1(x). Once a cell was determined as ready to divide

(equivalent to G2/M phase), it was placed in a blocked-division

pool where cells did not grow further (i.e. r1(x) = 0; see Fig. S3).

The results from both scenarios diverged from the experimental

data even though to a lesser extent when only cell division was

blocked (Fig. 3D).

The difference in the above scenarios was also mirrored in the

correlation (Corr(x,N)) of x and N. Overall, the hESC size and the

level of NANOG should increase concomitantly during the cell

cycle leading to a positive correlation under non-differentiating

conditions without any implied causal relation between the two

variables. Indeed, a correlation of 0.439 was calculated from flow

cytometry distributions of x and N and this was close to the value

(0.333) calculated from the full PBE model. Correlation values

were significantly different when only cell division (0.678) or gene

expression (0.003) was considered. These findings demonstrate

that the stochastic PBE model is aligned with the behavior of the

hESC system observed in our experiments and that both sources

influence the NANOG profile in hESCs.

To further explore the relative contributions of stochastic

partitioning at cell division and transcriptional noise, we examined

the CV of NANOG distributions from the simulations described

above. The CV for the flow cytometry data of NANOG

expression was 0.578 (n = 3) while full model simulations yielded

results with a CV of 0.48. A distribution of NANOG (Fig. 3E–F)

with a CV value closer to that of the flow cytometry data was

obtained when only NANOG expression noise was taken into

account. Nonetheless, there was a pronounced discrepancy

between the experimental data and simulation for dividing hESCs

without transcriptional stochasticity. In this case the distribution

appeared narrower (CV = 0.224). These results indicate that gene

expression stochasticity has a more pronounced influence on

NANOG heterogeneity than cell division alone. Yet, our findings

support the notion that both gene expression noise and cell

division are important for the emergence of the observed NANOG

variation in hESC populations.

NANOG Expression Shifts when hESCs are Reversibly
Arrested in G2/M Phase

Our analysis thus far indicated that the NANOG profile is

influenced by both stochastic partitioning at cell division and

NANOG expression dynamics. The inclusion of transcriptional

noise in the model yields results with a CV closer to that of the

data from experiments. However, NANOG partitioning contrib-

utes less to its heterogeneity. This finding led us to hypothesize that

inhibiting cell division should not affect extensively the heteroge-

neous profile of NANOG in self-renewing hESCs. To that end,

hESCs were growth-arrested in culture by incubation with

nocodazole or colcemid as this method has been successfully used

for hESC cycle analysis [28,51]. Our results were compared with

the predictions from the stochastic PBE model.

In untreated cultures 40.367.2% and 44.665.2% of the hESCs

were in the G1 and S phases respectively, whereas only 15.162%

was in the G2/M phase (Fig. 4A). Treatment with 200 ng/ml

nocodazole resulted in a significant reduction in the number of

hESCs in the G1 (7.661.3%) and S phases (9.562.9%) with a

concomitant increase of the G2/M phase hESCs (83%63.8%;

Fig. 4B). A similar shift was noted when hESCs were treated with

colcemid (Fig. 4C) suggesting that the results were not specific to

the particular drug used but due to the mitotic arrest of the cells.

Furthermore, this shift was reversible since withdrawal of

nocodazole reduced the G2/M phase cell fraction and increased

the cells in the G1 and S phases restoring the pre-treatment

distribution of cells in the cycle (Fig. 4D). Thus, nocodazole blocks

division in a reversible manner arresting hESCs in the G2/M

phase in line with previous reports [28,29].

Flow cytometry analysis of nocodazole-treated hESCs showed a

39% increase in the mean fluorescence intensity for NANOG

levels, i.e. to 7.476104 from 5.376104 (p = 0.0038) NANOG

molecules/cell for untreated hESCs (Fig. 4E). Interestingly

enough, the percentage of nocodazole-treated NANOG+ hESCs

with NANOG molecules/cell greater than the corresponding

mean value of the untreated hESC populations was 68% (p,0.05).

Yet, NANOG heterogeneity measured by CV for the untreated

(CV = 0.646) and growth-arrested cells (CV = 0.67) was un-

changed.

Figure 2. Heterogeneous NANOG expression by hESCs. (A)
NANOG expression of hESCs measured by flow cytometry. Arbitrary
units (AU) were converted to NANOG molecules per cell with the use of
MESF beads (inset). (B) NANOG expression profiles of cultured hESCs at
day 3, 4 and 5 after plating. (C) Simulated NANOG dynamics for four
randomly chosen cells. Division events are denoted by arrows.
doi:10.1371/journal.pone.0050715.g002

Modeling Stem Cell Population Heterogeneity

PLOS ONE | www.plosone.org 6 November 2012 | Volume 7 | Issue 11 | e50715



To better demonstrate the effect of division block on NANOG

distribution, we analyzed the NANOG+ hESC population by

defining NANOGlow (LN) and NANOGhigh (HN) regions in the

density plot of NANOG vs. FSC for untreated hESCs (Fig. 4F).

Each of the LN and HN regions included 20% of the cells with the

lowest and highest NANOG expression levels, respectively. The

same regions were overlaid on the NANOG (vs. FSC) distribution

of nocodazole- or colcemid-treated hESCs (Fig. 4G) and

Figure 3. Comparison of PBE simulation results with data from experiments on hESC size and NANOG expression. Data from (A) hESC
cultures were compared to those from the model considering (B) both cell division and NANOG expression noise, (C) only cell division, or (D) only
NANOG expression noise. In (B)-(D), the model was run for an interval of four doubling times. Color bars indicate cell count values (zero moment of
the density function). Plots are based on 10,000 cells. (E–F) Comparison of cell size and NANOG expression distribution between experiment and PBE
model with both cell division and NANOG expression distribution considered. Euclidian distance was calculated with respect to the experimental data
set. Correlation coefficients for hESC size and NANOG as well as the CV for NANOG distributions are also listed. Cell size was normalized to [0,1].
doi:10.1371/journal.pone.0050715.g003
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compared to those for untreated hESCs (Fig. 4H). The number of

hESCs in the HN region increased significantly from 20%

(untreated cells) to 41.7762.02% (nocodazole-treated;

p = 1.1761023) and 45.4369.43% (colcemid-treated; p = 0.021).

This was accompanied by a decrease in the fraction of hESCs in

the LN region. The observed fractions remained constant after a

12, 16 or 20 hr treatment of hESCs (Fig. S6). Interestingly

enough, the distribution of NANOG expression was restored to its

initial state 24 hr after withdrawal of nocodazole (Fig. 4H). The

data collectively show that after blocking division of hESCs the

average NANOG expression increased but with no significant

change in its heterogeneity.

Simulating the block in cell division with the PBE model (second

scenario in Gene expression and cell division effects on NANOG expression),

both the hESC size and NANOG expression levels shifted to

higher values (Figs. 5A–B) matching the experimental findings.

When cell division was blocked, its effect was eliminated, leading

to the shift of NANOG distribution at population level as shown in

Figures 5C–D (and Movie S2). This is also illustrated in Figure 5E

where a significant increase of hESCs in the HN region and a

decrease in the LN region were predicted by the model.

Nevertheless, the CV for NANOG data generated by the model

was 0.544 vs. 0.378 for hESC populations simulated assuming

growth arrest. Thus, NANOG heterogeneity is reduced in

simulations with the elimination of stochastic partitioning whereas

this was not evident from our experiments.

Cell Division as a Source of NANOG Expression
Heterogeneity

The experiments and model simulations revealed that the two

processes considered here 2partitioning during cell division and

gene expression noise2 impact the NANOG profile in hESCs.

Although transcriptional stochasticity has a significant effect on

NANOG expression [21,22], we discovered that blocking cell

division causes a shift in the average NANOG level in hESCs.

When cell growth arrest was simulated with the PBE model, the

dispersion in NANOG among individual hESCs decreased

although this was not apparent from corresponding experiments.

Therefore, the model was utilized to quantify the relative

contribution of cell partitioning to the observed variability of

NANOG in hESCs. To that end, NANOG heterogeneity was

Figure 4. Proliferation arrest of hESCs and NANOG expression distribution. (A–D) Cell cycle analysis performed via flow cytometry on (A)
untreated hESCs, and hESCs treated with (B) 200 ng/ml nocodazole or (C) 100 ng/ml colcemid for 16 hrs. (D) Human ESCs after a 2-hr recovery
following nocodazole treatment as in (B). Flow cytometry data (black curves) were analyzed using the FCS Express 4.0 software (red, green curves).
Results are shown as mean 6 standard deviation from at least three independent experiments. (E) Histograms of NANOG expression for (top)
untreated and (bottom) nocodazole-treated self-renewing hESCs. The dashed line denotes the mean NANOG fluorescence intensity (MFI) of
untreated hESCs. The fractions (%) show the cells with fluorescence intensity above the MFI value. (F) The LN and HN regions were defined by 20% of
hESCs with the lowest and highest NANOG expression, respectively. (G) The same gating criteria were applied to Nocodazole-treated NANOG+ hESCs;
(H) The percentage of LN and HN hESCs under the conditions indicated: (i) Untreated hESCs (normal hESCs), (ii) hESCs treated with 200 ng/ml
Nocodazole or (iii) 100 ng/ml colcemid for 16 hr, and (iv) hESCs recovered 24 hr after a 16-hr treatment with nocodazole. Error bars are calculated
from at least three independent experiments (*p,0.001).
doi:10.1371/journal.pone.0050715.g004
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represented by the ratio of the variance of the NANOG

distribution to the square of its mean (Eq. 16) according to

definitions of noise in biological systems [52]. A total noise (g2
total )

of 0.268 (Fig. 6A) was calculated based on flow cytometry data.

Human ESC populations were simulated without transcriptional

noise yielding NANOG distributions with a total noise (g2
division) of

0.046 (Fig. 6B). This is 17% of the value of noise obtained from

experiments with all sources of heterogeneity present. This result

demonstrates that the effect of cell division on cell-to-cell variation

is considerable.

g2
total~

s2
N

SNT2
~g2

divisionzg2
othersources ð16Þ

Similar calculations of noise components have been reported in

bacteria [53] and yeast cells [54]. In these systems, single-gene

dual reporter experiments are set up to quantify the contributions

of intrinsic and extrinsic noise sources on population heterogene-

ity. Cells are engineered to express two reporter genes (e.g. CFP

and YFP) from identical promoters. The difference in the

fluorescence of the two reporters is attributed to the inherent

stochasticity of transcription and translation (intrinsic noise) [53].

Fluctuations in other cellular components linked to these processes

lead indirectly to the same variation of both reporters within

individual cells and are considered extrinsic noise.

Engineering hESCs to express NANOG proteins fused to

reporter proteins such as CFP and YFP would entail considerable

technical hurdles. Yet, such ‘virtual’ experiment can be carried out

with the PBE model described here (Fig. 6C). To that end, the

PBE state vector comprised three variables, i.e. cell size, and two

NANOG variants such as NANOG-CFP and NANOG-YFP ([x

Nc Ny]). Its solution was achieved using the same MC algorithm

as in the case of the 2D (t,x) and 3D (t,x,N) PBE models. Each

reporter partitioned independently after cell division into the two

newborn cells according to same partitioning function P(N|N’)

used for NANOG in the 3D PBE model. The total noise and its

contributions from intrinsic and extrinsic sources was calculated as

[52]:

g2
total~g2

intrinsiczg2
extrinsic ð17Þ

g2
intrinsic~

S Nc{Nyð Þ2T
2:SNcT:SNyT

ð18Þ

g2
extrinsic~

SNc:NyT{SNcT:SNyT
SNcT:SNyT

ð19Þ

where ST is the expected value of a variable (e.g. the mean of

NANOG-YFP intensities is SNyT). For this purpose, the expected

values were calculated from the respective probability density

functions of the two NANOG variants based on the solution of the

stochastic PBE (Fig. 6A). The intrinsic noise contributing to the

heterogeneity of NANOG was quantified to be g2
intrinsic~0:223

while the contribution of extrinsic noise was g2
extrinsic~0:044

(Fig. 6D). The extrinsic noise was about 17% of total noise

(
g2

extrinsic

g2
total

) i.e. the same as the result obtained above for the

Figure 5. Cell size and NANOG profiles from simulation of hESCs with blocked division. (A) The cell size and (B) NANOG expression are
shown for hESCs at t = 0 (blue curves) and after 16 hr (red curves) according to the PBE model with blocked division. Corresponding density plots for
(C) size and (D) NANOG are also shown. The density function scale is represented by the color bar. Plots were generated a total of 10,000 hESCs. (E)
Model prediction of the fraction of hESCs in LN and HN regions right before and after 16 hr of blocking cell division. Regions are defined as in Figure 4
and results are shown as mean 6 std.dev. from three simulations with different random number generator seeds.
doi:10.1371/journal.pone.0050715.g005
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calculation of g2
division. Most notably, the full model was employed

for the calculation of intrinsic and extrinsic noise components

without setting the gene expression noise to zero unlike in the

computation of g2
division.

Overall, the stochastic PBE model presented here allows the

calculation of the relative contribution of stochastic partitioning

accompanying cell division to the heterogeneous expression of

NANOG in populations of self-renewing hESCs. This is a first

attempt to estimate intrinsic and extrinsic noise contributions to

the profile of NANOG in hESCs. The results show that

partitioning is an appreciable 2although not the predominant2

source of NANOG heterogeneity.

Discussion

The present study was undertaken to quantify the effect of

partitioning during cell division in conjunction with gene

expression noise on the NANOG profile of populations of self-

renewing hESCs. Although multiple reports have focused on gene

expression dynamics, the role of cell division in the observed

heterogeneity of stem cell populations has not been studied. To

that end, a stochastic PBE model was developed for the first time

to describe populations of hESCs based on proliferation and

expression of the pluripotency marker NANOG. In agreement

with our experiments, the model predicted that the average

expression of NANOG increases when mitosis (and thus

partitioning) is blocked. Moreover, hESC division-associated

partitioning contributes 17% of the total noise exhibited by the

NANOG profile. These findings may ultimately provide insights

into mechanisms of NANOG regulation and the observed

heterogeneity in pluripotent stem cell populations. The computa-

tional framework discussed here will aid in the development of

strategies for the efficient generation of differentiated progeny for

therapeutic applications.

The role of stochastic gene expression in the heterogeneity of

isogenic bacteria and yeast cell populations is well-documented

[48,55,56,57,58,59] but its effects on the non-genetic diversity of

stem cell ensembles are less well understood. A model has been

described for Nanog in a genetic circuit with Oct4 as its repressor

and featuring transcriptional noise as a source of population

variability [21]. Bimodal distributions of Nanog (Nanoglow,

Nanoghigh) have been predicted for mESCs under the assumptions

of particular gene network kinetics and ergodicity for the cell

population. A similar model of Nanog and Oct4-Sox2 heterodi-

mers has yielded comparable Nanog profiles [22]. Mouse

hematopoietic progenitor cells reportedly exhibit metastable states

linked to noise operating on the transcription of the Sca-1 (Ly6a)

gene [56].

Nevertheless, a significant gap remains in our knowledge

regarding the role on population heterogeneity of cell division

and the concomitant random partitioning of cellular material

among daughter cells. In the aforementioned study [21], sorted

Nanoglow mESCs reconstitute the Nanog profile of the original

mESC population in 11 days. This period is well beyond the time

scale of gene expression processes making cell doubling time

pertinent to the heterogeneity exhibited by the population.

Splitting of cellular material at division unavoidably alters the

levels of various molecules including pluripotency regulators and/

Figure 6. Quantitation of noise in NANOG expressed by hESCs. Total noise in NANOG expression profile (A) obtained by flow cytometry
analysis of cultured hESCs and (B) as predicted by the model with gene expression noise set to zero. (C) Scatter plot from simulation of a dual-
reporter assay with 10,000 cells expressing NANOG-CFP and NANOG-YFP. Both stochastic partitioning and gene expression were taken into account.
(D) Quantification of intrinsic and extrinsic noise components (Eq. 17–19).
doi:10.1371/journal.pone.0050715.g006
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or transcription factors. Indeed, mitotically-arrested hESCs have

higher levels of NANOG than hESCs with an intact cycle.

Consequently, the amount of NANOG in each stem cell is

determined not only by the Nanog mRNA/protein production

and decay rates but also by Nanog dilution due to cell division.

Given that protein dilution rate is decided by the cell cycle time,

division most likely affects the levels of other transcription factors

as well. Accordingly, Eden et al. [60] reported that division-

induced dilution is a major determinant of protein levels in human

lung cancer cells, which exhibit similar cycle kinetics with hESCs,

and its effect may even surpass those of protein degradation.

Aided by our model, we calculated the noise related to

stochastic partitioning in two ways. First, we considered the PBE

solution taking gene expression to be deterministic. This led to a

division-related noise that was 17% of the total noise in the

NANOG profile of self-renewing hESCs. Second, a ‘virtual’ dual

reporter experiment was performed similar to those reported for

bacteria and yeast cells [53,54] for the analysis of noise in terms of

its broadly defined intrinsic and extrinsic components. The ratio

g2
extrinsic

g2
total

was also found to be 17% considering the distributions of

the NANOG variants returned by the full model without

eliminating either source of heterogeneity. The agreement

between
g2

division

g2
total

and
g2

extrinsic

g2
total

may be in part due to the fact that

we only considered stochastic partitioning during mitosis (extrinsic)

and gene expression (intrinsic) noise in our model. Yet, in an

actual dual reporter experiment will be more challenging to

deconvolve the various noise components as other sources of

heterogeneity are likely to come into play. For instance, the levels

of RNA polymerases and other transcription factors, which are

themselves gene products, act on the expression of NANOG and

may contribute to its fluctuation. Nevertheless, the 17% of total

noise attributed to partitioning in our study is in line with a recent

report [61] in which the combined noise due to cell division and

protein degradation ranges between 33% to 75% of the total noise

of the population. To our knowledge, this is first time the effect of

stochastic partitioning on NANOG expression is quantified.

Since partitioning influences the amount of stemness factors in

hESCs, it is also expected to affect cell fate determination. A less

than two-fold increase in Oct4 leads to differentiation of ESCs to

primitive endoderm and mesoderm whereas its repression induces

trophoectoderm formation [62]. Reduction in Nanog also causes

hESCs to exit self-renewal whereas its overexpression suppresses

spontaneous hESC differentiation [15,19,20] with accelerated G1-

to-S phase transition by targeting CDK6 and CDC25A [30]. In fact,

the G1 phase represents a window of increased sensitivity for

hESCs exposed to differentiation signals [63]. To that end, the

subpopulation of cells prone to differentiate in the presence of

suitable exogenous stimuli can be identified by incorporating an

appropriate threshold [18] of NANOG expression in the PBE,

which provides the temporal evolution of NANOG profile for each

cell in the population.

As already mentioned, cultured hESCs were treated with

nocodazole or colcemid to arrest their proliferation, thereby

minimizing the effect of partitioning at division on population

heterogeneity. Nocodazole treatment has been successfully used

for hESC cycle and gene (including Nanog) expression analyses

[28,30,51,64]. Consistent with these reports, we observed that

nocodazole reversibly arrested the proliferation of hESCs and did

not cause differentiation or increase death substantially. However,

a recent report [65] indicated the irreversible decrease in NANOG

expression with concomitant increase in apoptotic hESCs after a

24-hr exposure to nocodazole. The differences between the

findings in this report and those in ours (and in the above-

mentioned studies) are challenging to explain but may be

attributed to variations in the methods for culturing hESCs. It

should be noted that the fraction of NANOG+ cells from untreated

cultures was significantly lower (up to 60%) than in our

experiments (over 80%; Fig. S1).

Similar to our observation of increased NANOG after growth

arrest of hESCs, Wang et al. [66] reported that mESCs treated

with olomoucine II (an inhibitor of cyclin dependent kinases) shift

their cycle profile to the G2/M phase with a concomitant increase

in the protein levels of Nanog and Oct4. Obviously, differences in

the regulation of Nanog and Oct4 between hESCs and mESCs

cannot be ruled out but blocking division leads to increased Nanog

levels and this may be extended to Oct4 as well. Although we have

not carried out a detailed analysis of OCT4 expression in our

hESC populations, the model presented here can be expanded in a

straightforward manner to encompass more pluripotency markers

(e.g. OCT4, SOX2). Additional layers of regulation (e.g. gene

regulatory networks) specific to each marker can be incorporated

in the PBE model (e.g., through rate functions such as r2).

When analyzed by flow cytometry, self-renewing hESCs

reproducibly exhibited a NANOG profile with a single peak

whereas a bimodal Nanog protein distribution was recently

reported for mESCs [21]. Whether Nanog exhibits a similar

bimodal distribution in hESCs as in mESCs is still unclear. A

graded Nanog distribution was observed in hESC lines with GFP

knocked in the NANOG locus [67]. Discrepancies in measurements

of Nanog expression in these lines based on the actual NANOG

protein or the GFP fluorescence could arise from differences in the

stability of the respective mRNA and/or proteins. Moreover, the

NANOG(GFP)low cells most likely have exited self-renewal as

suggested by their upregulated expression of differentiation

markers. In our experiments, hESCs with potentially very low or

undetectable Nanog content may have overlapped with the isotype

controls. These were thus marked as NANOG2 and were

excluded from our analysis of self-renewing hESCs.

Probing the profile of NANOG in hESCs by flow cytometry

provides statistical distributions of cell properties (e.g., antigen

presentation) with single cell resolution. As such, this technique is

well-suited to capture the marker expression variability within

clonal hESC populations. We found that self-renewing hESCs

maintained time-invariant distributions of NANOG and size

(FSC). Even when cells were mitotically arrested, shifts in

population properties were manifested within a cell doubling

period. Hence, examination of population snapshots by flow

cytometry provided sufficient information for the construction of

the PBE model considered here [68]. Moreover, potential artifacts

stemming from the preparation of cells (e.g. fixation, antibody

staining) were minimized with the inclusion of proper isotype

controls and standardized beads. Nevertheless, future studies are

planned with hESC populations subjected to differentiation, which

will affect global gene expression and cell cycle dynamics and their

contributions to population heterogeneity. For these studies, time-

lapse microscopy/microfluidics [69] for tracking single cells will

complement flow cytometry by delivering kinetic information

during hESC commitment. This information will be essential for

expanding the PBE model to include complex regulatory networks

with gene partners of Nanog or other pluripotency factors. Single-

cell microscopy data will also facilitate distinguishing between fast

stochastic fluctuations in gene expression (as we have assumed in

this study for Nanog based on previous reports [21,23]) and

asynchronous deterministic oscillations [22].
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Cell PBE models are inherently multiscale as they depict

processes with different kinetics (e.g. gene transcription and cell

mitosis) within diverse system boundaries (e.g. intracellular,

multicellular) to convey information for individual cells and their

ensembles. Such models afford great latitude for formulating and

testing hypotheses as our adaptation of the PBE to in silico dual

reporter assays demonstrates. These experiments are challenging

to perform with cultured hESCs. In principle, engineering of

hESCs with each gene (e.g. NANOG) allele fused with a distinct

reporter gene is significantly more complex than the genetic

manipulation of yeast cells or bacteria and there are no reports of

such hESC lines to date. Moreover, there is no guarantee that the

activity of the NANOG protein resulting from the translation of

the fusion genes will be the same as that of the native gene

product.

Nevertheless, a dual reporter line utilizing the Nanog locus was

recently described for mESCs [70]. The expression of Nanog at

various stages in early mouse development (e.g. pre-implantation

embryo, late blastocyst) is allelically regulated and similar patterns

are exhibited by mESCs in culture under different conditions.

Based specifically on the expression of Nanog (but not Oct4)

cultured mESCs can be divided into four groups, i.e. one with

biallelic expression of the gene, two with monoallelic expression

(from each of the two alleles) and one group exhibiting no

expression of Nanog. These findings provide compelling evidence

that allelic regulation may contribute not only to the observed

Nanog heterogeneity and also to Nanog bimodality in mESCs in

contrast to proposed mathematical models featuring positive

feedback loop processes. It remains to be determined if the same

layer of Nanog regulation is active in hESCs. Despite the focus of

our study on hESC gene expression noise and mitosis as sources of

NANOG heterogeneity, the PBE model could be expanded to

encompass separate PBEs for each group of ESCs based on their

allelic expression of Nanog (or other pluripotency markers if

applicable). Equations will be coupled through functions repre-

senting the switching between expression modes (biallelic,

monoallelic or no expression). If allelic switching is a feature of

Nanog expression in hESCs, then such framework will allow

further deconvolution of this kind of regulation from other sources

of heterogeneity considered.

The wide applicability of the PBE framework is also evident by

its amenability to context-dependent extensions. For instance, a

PBE model can be constructed to study the dynamics of stem cell

populations in their niche. A mass-structured PBE coupled to

material balances for growth factors, extracellular matrix compo-

nents and nutrients has been presented for mesenchymal stem cell

differentiation [71]. Moreover, gene regulation can be incorpo-

rated in a PBE (e.g. via r2(N) in our study) as mentioned above.

Accordingly, this modeling modality can be employed in the

context of cell population reprogramming, which is emerging as a

highly stochastic process [72]. A PBE framework connecting

different moments of the cell mass distribution to operational

variables such as the dilution rate and substrate concentration has

also been applied to bioreactor cell cultures and their non-linear

feedback control [73]. Similar PBE approaches will benefit the

development and robust operation of stem cell bioprocesses for the

production of therapeutically useful progeny in medically relevant

quantities. The multidimensional PBEs required for these appli-

cations become exceedingly challenging to handle numerically

especially with traditional finite difference and finite element

schemes [74,75]. Such challenges can be tackled with multi-tier

algorithms [76], MC and cell ensemble techniques, which have

been utilized successfully to simulate six- and thirteen-dimensional

population distributions [77,78], as well as the continuous increase

in available computing power. We expect that quantitative

approaches complementing experiments will become more com-

monplace furthering our knowledge in stem cell biology and

accelerating the development of enabling stem cell-based technol-

ogies.

Supporting Information

Figure S1 Specificity of the NANOG antibody utilized in
this study. (A) HEK293 cells, (B) mouse embryonic fibroblasts

(mEFs), (C) undifferentiated hESCs and (D) hESC-derived foregut

cells were stained with the NANOG antibody (black curve) or

isotype control (gray curve). Human ESCs were differentiated

toward posterior foregut as described in Methods S1. (E) PDX1

expression of hESC-derived foregut cells was analyzed by flow

cytometry after staining with a primary (goat anti-human PDX1/

IPF1 antibody, cat. no. AF2419, R&D Systems) and a secondary

antibody (donkey anti-goat DyLight 488 antibody, cat. no.

ab96931, AbCam). (F–G) Differentiation control cells were treated

with the same media but without differentiation factors (see

Methods S1). The gray curves in (E), (G) correspond to respective

cell samples stained with the secondary antibody only.

(TIF)

Figure S2 (A) Curve of the molecules/MESF bead vs.

fluorescence intensity (AU). The curve was used for converting

fluorescence intensity units to NANOG molecules/hESC. (B)

Comparison of FSC data and cell diameter, area and size

distributions [43,44,45]. FSC data of hESCs were normalized to

the [0,1] and compared to data obtained by image analysis

(ImageJ) of hESCs populations with respect to single cell diameter,

area and volume (left-side graph). Flow cytometry FSC channel

data varies from 0 to 1024 and the normalization is done based on

FSCnormalized = FSC/1024. A representative data set from day 5

hESCs is shown. On the right-side graph the distribution resulting

from the transformation of FSC data (FSCRFSC3/2) is shown

compared to those of diameter, area and volume of hESC

populations.

(TIF)

Figure S3 Monte Carlo algorithm for numerical solu-
tion of the PBE model. (A) Solution method for the full PBE

model and (B) when a block is imposed on cell division.

(TIF)

Figure S4 Schematic of the PBE considering both cell
size and NANOG level in the state vector.

(TIF)

Figure S5 Assessment of the adaptation status of
cultured hESCs in this study. (A) H9 hESC cultured on

Matrigel-coated dishes with chemically defined medium form

colonies with well-defined edges. The arrow indicates cells with

fibroblast-like morphology typically found near colonies of normal

hESCs. (B) For comparison, hESCs grown on mEFs are also

shown. Bars in (A, B): 100 mm. (C) Karyotypic analysis of cultured

hESCs. As evidence of their differentiation potential, cells were

successfully subjected to differentiation toward (D) definitive

endoderm, (E) mesoderm and (F) ectoderm. The expression of

characteristic markers for each lineage was assessed by qPCR and

immunostaining. In qPCR results, white bars correspond to

hESCs, gray bars correspond to hESCs incubated with differen-

tiation medium but no differentiation factors (control) and hatched

bars correspond to hESCs subjected to directed differentiation.

For NANOG and POU5F1 qPCR: *p,0.05 or **p,0.005

compared to undifferentiated hESCs. For lineage-specific marker
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qPCR: #p,0.05 compared to control (no differentiation factor)

cells. For methods see Methods S1.

(TIF)

Figure S6 Fractions of hESCs with the lowest (LN) and
highest (HN) NANOG content after treatment with
200 ng/ml nocodazole for 12–20 hr. The LN and HN

regions were defined as containing each 20% of the untreated

(control) hESCs with the lowest and highest NANOG content,

respectively. *p,0.01.

(TIF)

Table S1 Primers used for qPCR in this study.
(DOCX)

Methods S1 Supplemental information.
(DOCX)

Movie S1 Changes in the density plots of cell size vs.
NANOG for hESCs cultured under normal conditions
(self-renewal).

(WMV)

Movie S2 Changes in the density plots of cell size vs.
NANOG for hESCs cultured under conditions arresting
their proliferation.

(WMV)
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