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Abstract 

New variants of SARS-CoV-2 show remarkable heterogeneity in their relative fitness over both time and space. In this paper we extend 
the tools available for estimating the selection strength for new SARS-CoV-2 variants to a hierarchical, mixed-effects, renewal equation 
model. This formulation allows us to estimate selection effects at the global level while incorporating both measured and unmeasured 
heterogeneity among countries. Applying this model to the spread of Omicron in forty countries, we find evidence for very strong 
but very heterogeneous selection effects. To test whether this heterogeneity is explained by differences in the immune landscape, 
we considered several measures of vaccination rates and recent population-level infection as covariates, finding moderately strong, 
statistically significant effects. We also found a significant positive correlation between the selection advantage of Delta and Omicron at 
the country level, suggesting that other region-specific explanatory variables of fitness differences do exist. Our method is implemented 
in the Stan programming language, can be run on standard consumer-grade computing resources, and will be straightforward to apply 
to future variants.

Key words: SARS-CoV-2 variants; selection effects; mixed effects model; omicron variant.

© The Author(s) 2022. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction
Since its emergence, the Severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) has continuously generated genetic variants 
that increase its transmission, e.g. D614G and variants of con-
cerns such as Alpha and Delta, causing waves of coronavirus 
disease 2019 (COVID-19) surges across the globe (Korber et al., 
2020; Davies et al., 2021; Volz et al., 2021; Dhar et al., 2021). 
Omicron, first detected in November 2021 in South Africa and 
Botswana, quickly spread globally, displaced Delta, and became 
the dominant variant in most countries. Initial studies on data 
from South Africa suggested that Omicron has a substantially 
higher transmission fitness than Delta, especially in individuals 
recovered from COVID-19 (Pulliam et al., 2022; Viana et al., 2022; 
Pearson et al., 2021). Experiments measuring plasma neutral-
ization activity from vaccinated individuals demonstrated lower 
neutralizing antibody activities against Omicron even in fully vac-
cinated individuals (Schmidt et al., 2022; Collie et al., 2022; Cele 
et al., 2021; Lu et al., 2021; Planas et al., 2021); however, a 
booster shot increased neutralizing antibody activity substantially 
(Schmidt et al., 2022; Nemet et al., 2022; Planas et al., 2021). This 
suggests that Omicron is able to evade immunity induced in vac-
cinated individuals, providing a likely explanation for the rapid 
surge in Omicron in countries where a large proportion of individ-
uals are fully vaccinated. Previous work has also quantified the 

reproductive number or relative growth advantage of Omicron in 
particular countries or settings, showing it to exceed that of previ-

ous emerging variants (Pearson et al., 2021; Weil et al., 2022) and 

to be greater among vaccinated individuals (Paton et al., 2022).

Although it is clear that Omicron has higher transmission 

fitness than Delta, we still lack a global perspective on the mag-

nitude of this advantage and its heterogeneity among countries. 
Analyses of other SARS-CoV-2 variants have shown large differ-
ences in their relative fitness among different countries and US 

states (van Dorp et al., 2021; Figgins and Bedford, 2021). It is 

expected that the transmission advantage of Omicron is also het-
erogeneous across countries, due to the difference in circulating 
variants in each country, the different immunological landscapes 

arising from natural infection and vaccination, the different non-
pharmaceutical intervention strategies adopted in different coun-
tries, and potentially many other factors. Unknown, however, 
is the extent to which among-country heterogeneity is actually 
explained by any identified factors.

To quantify the transmission advantage of Omicron across 
many countries and explore possible causes of its heterogene-
ity, we analyzed case count and variant frequency data with 
a renewal model (as Figgins and Bedford, 2021; Park et al., 
2022a) that is hierarchical across countries (as Paton et al., 
2022; van Dorp et al., 2021) and includes country-level covariates  
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(as Paton et al., 2022), while allowing for a shorter generation time 
of Omicron (which could otherwise bias the results, cf. Pearson 
et al., 2021). We found that across forty countries, a portion 
of the heterogeneity in Omicron’s fitness could be explained by 
immunological-related covariates. Additionally, we found some 
correlation across countries between the selective advantages of 
Omicron and Delta, suggesting that fixed country-level effects 
may exist. More generally, we demonstrate the efficacy of a hierar-
chical model structure in quantifying the overall variant fitness.

2. Methods
2.1 Data
Variant counts per country per day were obtained from the Global 
Initiative on Sharing Avian Influenza Data (GISAID) metadata 
(Elbe and Buckland-Merrett, 2017; Global Initiative on Sharing All 
Influenza Data, 2008), downloaded on 11 March 2022. The known 
problematic samples were removed according to the Nextstrain 
‘ncov’ quality control pipeline (Hadfield et al., 2018; Nextstrain, 
2022). For each analysis we chose one focal variant—Delta or Omi-
cron, as assigned in the GISAID metadata—and grouped all other 
variants into an ‘other’ category.

Many countries showed a pattern in which a few early cases 
of a focal variant were followed by many days without it, before 
an eventual strong rise in variant frequency. Early stochastic 
dynamics like this are expected, but they lead to poor fits of our 
deterministic model. (In particular, the logistic shape of the vari-
ant’s frequency becomes too shallow, leading to underestimates 
of the strength of selection.) To avoid this left tail in the data, we 
began the time series for each focal variant in each country on 
the first day at which three criteria were met: a variant frequency 
on that day of at least 10 per cent, at least 10 cumulative variant 
cases, and at least 0.05 per cent cumulative of the eventual num-
ber of variant cases. For Omicron, start dates were all in November 
and December 2021. For Delta, start dates ranged from January to 
July 2021. For each country, we ended the time series 9 weeks after 
it began for Omicron and 15 weeks after it began for Delta; the 
Delta time series was longer because its rise was slower than Omi-
cron’s. (The model is not sensitive to the end date, provided the 
focal variant has not yet been replaced by another and the whole 
population has not yet been infected.) We further required that a 
country has at least 21 days with any sequence data and at least 
1,000 sequences of the focal variant and of any other variants. 
This yielded forty countries for Omicron and fifty-six countries for 
Delta.

To use the prevalence of Delta as a covariate for Omicron’s 
relative fitness, we computed for each country the proportion 
of variant cases that were Delta in the week prior to Omicron’s 
arrival. We also considered the vaccination status and two proxies 
for country-level immunological status: excess deaths and num-
ber of cases occurring before the first day of the study period for 
each country. Vaccination data were obtained from Our World in 
Data (OWID) (Ritchie et al., 2020), downloaded on 6 January 2022. 
The percentage of fully vaccinated people (‘fullvax’ covariate) 
was defined as the number of fully vaccinated people from OWD 
divided by the 2020 population size multiplied by 100, and the per-
centage of boosted people (‘boostvax’ covariate) was defined as 
the number of booster shots administered divided by the popu-
lation size in 2020 multiplied by 100. The excess deaths data were 
also obtained from OWD (Ritchie et al., 2020) and were normalized 
by the population size in 2020 multiplied by 100 (‘death’ covari-
ate). The ‘cases’ covariate was computed as the sum of reported 
cases in the period before the first day of the study period for each 

country. For the immunological status proxy variables, we con-
sider both a short (2 weeks) and long period (25 weeks) preceding 
the first day of the study period. Distributions of covariates across 
countries are shown in Fig. S1.

2.2 Model
Previously (van Dorp et al., 2021), we used a hierarchical logistic 
regression model for the increase in frequency of a new vari-
ant over time. As we noted there, this model may be sensitive 
to spatial and temporal variation in the effective reproduction 
number because the region-specific effects represent the differ-
ence in growth rates of the two competing variants. This means 
that when the incidence is growing (effective reproduction num-
ber 𝑅𝑒 > 1), we would estimate a larger selective advantage than 
in an otherwise identical region where the incidence is decreas-
ing (𝑅𝑒 < 1). The effective reproduction number within a region 
can also vary significantly over time, for instance due to imple-
mented non-pharmaceutical interventions in anticipation of a 
recently discovered variant. To account for these confounding 
effects, we make use of regional case count data Ct to estimate 
the time-varying effective reproduction number 𝑅wt

𝑡 = 𝑅𝑡 of the 
wild-type variant. We assume that the reproduction number of 
the mutant (focal variant) is given by 𝑅mt

𝑡 = (1 + 𝑠)𝑅𝑡. The inci-
dence of wild-type (𝑦wt

𝑡 ) and mutant (𝑦mt
𝑡 ) variants is governed by 

the discrete-time renewal equation 

Here 𝐾wt and 𝐾mt denote the (discrete) probability mass func-
tions of the generation time TG of wild-type and mutant variants, 
respectively. By allowing for 𝐾wt ≠ 𝐾mt, we take into account that 
the generation time can differ between variants. In Table 1 we give 
an overview of the variables and parameters of the model.

The reproduction number of the wild type (Rt) is modeled using 
a discrete-time geometric Gaussian process 

where 𝐵𝑡 = ∑𝑡
𝑡′=1 𝑍𝑡′  is the sum of t independent standard-normal 

increments 𝑍1,…,𝑍𝑡. The diffusion coefficient 𝜏 determines the 
randomness of the process, and the term − 1

2 𝜏2𝑡 makes sure that 
Rt has constant expectation. Notice that in this notation R0 is not 
the basic reproduction number, but just the effective reproduction 
number at time t = 0.

To link incidence yt with observed cases Ct, we have to compute 
the expected number of observed cases at each observation time 
t. Let 𝐻𝑣

𝑡  denote the probability that a person infected t days ago 
with variant 𝑣 ∈ {wt,mt} is counted as positive today. The number 
of expected cases at time t is then equal to 

Note that the reporting delay applies to case counts, not 
sequences; sequence data may be deposited weeks after sampling, 
but they are dated with the sampling day. As we are primarily 
interested in the dynamics of the reproduction number and not 
in the absolute incidence, we will assume that the total report-
ing probability is equal to one (∑∞

𝑡=1 𝐻𝑣
𝑡 = 1). Notice that we ignore 

potential differences in the reporting rate between the two vari-
ants. Furthermore, we make the simplifying assumption that the 
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Table 1. Components of the discrete renewal model.

Symbol Description

Observed quantities
Ct Observed cases at time t
𝐹 wt

𝑡 , 𝐹 mt
𝑡 Observed sequences at time t of 

wild-type and mutant variants, 
respectively

Model variables
𝑦wt

𝑡 , 𝑦mt
𝑡 Incidence at day t of wild-type and 

mutant variants
𝐻wt

𝑡 , 𝐻mt
𝑡 Probability of reporting today if 

infected t days ago
𝑌 wt

𝑡 , 𝑌 mt
𝑡 Incidence at day t corrected for a 

delay in reporting
Rt Time-dependent effective repro-

duction number of the wild-type 
variant

𝐾wt, 𝐾mt Probability mass function of the 
generation time (TG) of each variant

Bt, Zt Wiener process and its independent 
Gaussian increments determining 
the trajectory of Rt

pt Fraction of mutant variant at time t, 
as predicted by the model

𝑝agr
𝑤 Predicted fraction of mutant variant, 

aggregated over week w
Model parameters
s Selection coefficient for the mutant 

variant
𝜏 Diffusion coefficient
𝜙 Dispersion of variant count data
𝑦wt

0 , 𝑦mt
0 Initial incidence of wild-type and 

mutant variants
b0 Initial mutant frequency
𝜎C Standard deviation of case counts
Constants
𝛼, 𝜇wt,𝜇mt Shape and means of distribution of 

the generation time (TG)

probability densities for reporting are identical to the probability 
densities for the generation time (𝐻𝑣

𝑡 = 𝐾𝑣
𝑡 , with 𝑣 ∈ {wt,mt}).

To model the expected mutant frequency pt, we assume that 
sequences are taken from individuals that are reported positive at 
time t. Hence, we simply take 

We use a beta-binomial distribution for the likelihood of the 
observed number of wild-type and mutant sequences. This choice 
allows for over-dispersion in the variant count data due to biased 
sampling (e.g. over-reporting of Omicron as it was emerging, Scott 
et al., 2021), with the caveat it does not remove systematic biases. 
Let 𝐹 wt

𝑡  and 𝐹 mt
𝑡  denote the number of collected sequences at time 

t for wild-type and mutant variants, respectively. We then have 

where 𝜙 determines the dispersion of the distribution. In the limit 
𝜙 → ∞ this converges to a binomial distribution.

We choose a discretized Gamma distribution as generation 
time distribution with shape parameter 𝛼 = 4 and mean 𝜇 equal 
to 6, 4, and 3 days for Alpha, Delta, and Omicron, respec-
tively (Hart et al., 2022a; Hart et al., 2022b; Abbott et al., 2022; 

Park et al., 2022b). The rate parameter is then given by 𝛽 = 𝛼/𝜇. 
The discretization is as follows: 𝐾𝑡 ∝ 𝛽𝛼

Γ(𝛼) ∫𝑡
𝑡−1

𝑒−𝛽𝑥𝑥𝛼−1𝑑𝑥 for 𝑡 =
1,2,…,𝑊, where W is a cutoff value equal to 15 days. The values 
Kt are then normalized such that they sum to 1.

To compute the incidence at times 𝑡 = 1,…,𝑊, we require the 
incidence at times −𝑊 + 1,−𝑊 + 2,…,0. For this, we assume that 
prior to time t = 1 the effective reproduction number was constant 
and equal to Rv

0. We can then compute the incidence at these prior 
time points by making the ansatz 𝑦𝑣

−𝑡 = 𝑦𝑣
0 exp(−𝑟𝑣𝑡), where rv is the 

exponential growth rate of variant v. Plugging this into the renewal 
equation, we get 

and hence 𝑅𝑣
0𝔼[exp(−𝑟𝑣𝑇𝐺)] = 1, which is known as the Lotka–Euler 

equation. We then ignore the fact that we use a discrete-time 
model and use the moment-generating function of the continuous 
Gamma distribution, and we can find rv by solving 

This leads to 𝑟𝑣 = 𝛽( 𝛼√𝑅𝑣
0 − 1). This calculation is done for both the 

wild type and mutant, using variant-specific parameters 𝛼 and 𝛽. 
The initial incidence for wild type and mutant is parameterized 
as follows. We introduce parameters y0 and b0, denoting the total 
initial incidence, and the fraction due to the mutant, respectively. 
Then, we set 𝑦mt

0 = 𝑏0𝑦0 and 𝑦wt
0 = (1 − 𝑏0)𝑦0.

We use a phenomenological log-normal observation model to 
fit the predicted case counts (𝑌𝑡 = 𝑌 wt

𝑡 + 𝑌 mt
𝑡 ) to the observed case 

counts 𝐶𝑡 ∼ Lognormal(log(𝑌𝑡),𝜎𝐶). To remove weekend patterns 
in under-reporting in the data, we aggregate the daily observa-
tions (case counts and number of sequences collected for both 
variants) to the week level. The same aggregation is done for 
the model predictions of these observations, so that we can 
compute the likelihood of the aggregated observations. For the 
aggregation of the predicted frequencies, we used a weighted aver-
age, thereby accounting for the fact that case counts can vary 
markedly within a week. More precisely, the aggregated predicted 
mutant frequency 𝑝agr

𝑤  at week w is equal to 

where 𝑌 agr
𝑤  is the aggregated predicted case count at week w.

As we wish to estimate effects of covariates on the selective 
advantage in different regions, we use a Bayesian mixed-effects 
model (or hierarchical model) in which region-specific parameters 
are determined by unobserved random effects and possibly fixed 
effects dependent on the covariates. The selective advantage, s, 
can thus take a different value for each region. The z-scores of 
the covariates described above are collected in the design matrix 
M, and we write ws for the vector of weights of these covariates. 
We assume that 1 + 𝑠 has a log-normal distribution with location 
𝜇𝑠 + 𝑀𝑤𝑠 and scale 𝜎s. The dispersion parameter and initial inci-
dence similarly vary among countries, with hyperparameters 𝜇𝜙, 
𝜇𝑦0

, and 𝜎𝑦0
, but for these parameters only random effects are

modeled.
The model is summarized in Tables 1 and 2. We focus our 

results on the selective advantage, s, of the focal variant in each 
country and on the mean of its distribution across countries. We 
implemented the model in Stan (Stan Development Team, 2021).
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Table 2. Priors of the Bayesian mixed-effects model.

Parameter Prior Hyper-prior

Region-specific parameters
Selective advantage (s) 1 + 𝑠 ∼ Lognormal

(𝜇𝑠 + 𝑀𝑤𝑠,𝜎𝑠)
𝜇𝑠 ∼ 𝒩(0,10), 
𝜎𝑠 ∼ Exp(0.1)

Initial mutant frequency (b0) 𝑏0 ∼ Exp(10) –
Dispersion parameter (𝜙) 1/𝜙 ∼ Exp(1/𝜇𝜙) 𝜇𝜙 ∼ Exp(100)
Initial incidence (y0) 𝑦0 ∼ Lognormal

(𝜇𝑦0 ,𝜎𝑦0)
𝜇𝑦0 ∼ 𝒩(0,10), 
𝜎𝑦0 ∼ Exp(0.1)

Initial reproduction number (R0) 𝑅0 ∼ Lognormal
(0,1)

–

Global parameters
Diffusion reproduction number (𝜏) 𝜏 ∼ Exp(1) –
Standard deviation cases (𝜎C) 𝜎𝐶 ∼ Exp(1) –
Covariate weight vector (ws) 𝑤𝑠 ∼ 𝒩(0,10) –

3. Results and Discussion
Our model outputs case counts, variant frequencies, and epidemic 
growth rates over time shown in Fig. 1 for Omicron in selected 
countries and Fig. S2 and Fig. S3 for Omicron and Delta in all coun-
tries. Overall, the model fit the data very well, with, for Omicron, a 
mean absolute error in the variant frequency of only 2.5 percent-
age points for data aggregated by week, or 5.3 percentage points 
for daily data (Fig. S4). Fits for Delta were only slightly worse, with 
mean absolute errors of 5.8 and 8.6 percentage points by week 
and day, respectively. Aggregating up to the week scale addressed 
nearly all the structural anomalies in the epidemiological data, 
notably non-uniform reporting by day of week, without altering 
the total number of cases. Even for remaining anomalous data (e.g. 
the spike in UK case counts due to sudden reporting of past rein-
fections, Fig. 1), the model predicted a reasonably smooth estimate 
of the trend. 

The selection coefficient inferred for a focal variant is influ-
enced by its generation time (serial interval) relative to the back-
ground variants against which it is competing. In particular, other 
methods that assume the same generation time for the focal and 
other variants (e.g. van Dorp et al., 2021; Chen et al., 2021) will 
underestimate the strength of selection when the focal variant 
has a shorter generation time, as did both Delta and Omicron (Park 
et al., 2022a). For example, our main results use a mean generation 
time for Omicron of 3 days, yielding a point estimate of 0.69 for the 
overall selective advantage of Omicron. Decreasing the mean gen-
eration time to 2 days, consistent with some early studies (Abbott 
et al., 2022), decreases this value to 0.64 (Fig. S5). Note, however, 
that this is still far larger than zero, arguing that shorter genera-
tion times are not solely responsible for the increased fitness of 
Omicron. Conversely, assuming that the Omicron generation time 
is the same as the background variants (4 days, because most were 
Delta) increases the value to 0.84, substantially overstating the 
selective advantage.

3.1 Describing heterogeneity in selective 
advantage
Comparing the model-fitted estimates of Omicron’s selective 
advantage, s, among countries shows wide variation in their val-
ues (Fig. 2A). This is consistent with previous work for other 
variants, which also found large heterogeneity among countries 
and US states (van Dorp et al., 2021; Figgins and Bedford, 2021). 
Our model assumes that the ratio of reproduction numbers (1 + 𝑠) 
for each country is drawn from a log-normal distribution, which is 
simultaneously estimated from the data. This hierarchical struc-
ture minimizes the influence of structural biases in any one coun-
try’s data, leading to a more robust and interpretable estimate of 
both the overall selection effect and the heterogeneity at country 
level.

Figure 1. Example model fits to the rise of Omicron. (Fits for all countries are shown in Fig. S2.) Top row: case counts, binned by week. Middle row: 
variant data, also binned by week. Number of sequences is shown by gray histograms for Omicron at the top and all other variants at the bottom.
The observed frequency of Omicron is shown by the black dots, and model predictions are in blue. Bottom row: growth rates, predicted by day. 
Model-predicted growth rates are shown for the epidemic as a whole (both variants with their true frequencies; blue) and for only the non-Omicron 
variant(s) (as if the Omicron frequency were zero; gray). Model predictions are shown with solid lines (median), dark shading (95 per cent credible 
interval [CrI], which includes uncertainty in the model parameters), and light shading (95 per cent posterior predictive interval, which additionally 
includes sampling noise).
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Figure 2. (A) Estimates of the selection coefficient, s, for each country, 
under the hierarchical or nonhierarchical models. Points and lines show 
the median and 95 per cent CrI. The slope of the data is steeper than the 
1:1 line, meaning that the estimates are less extreme for the hierarchical 
model. (B) Summaries of estimates for the mean value of s for Omicron 
and for the distribution of values of s across countries, computed from 
the hierarchical or nonhierarchical models. Points show the median or 
mean, and thick and thin lines show the 50 per cent and 95 per cent CrI 
or CI.

To examine the effect of the hierarchical model structure on 
our results, we additionally fit a nonhierarchical equivalent of 
our model in which s for each country is not affected by other 
countries (Fig. 2). We highlight two outcomes from this compar-
ison: estimates for individual countries and conclusions drawn 
across countries. First, with both the hierarchical and nonhierar-
chical models, we found substantial heterogeneity in the selection 
coefficient, s, at the country level for Omicron (Fig. 2A). In the hier-
archical model, more extreme values of s—which might arise from 
real effects or data quality issues—are reined in by the moderat-
ing effects of other countries. Second, there are different ways to 
summarize the overall selective advantage of Omicron, encom-
passing the heterogeneity across countries (Fig. 2B). One approach 
is to provide a typical value. For the hierarchical model this is the 
mean of the higher-level distribution, which has an associated 
uncertainty (0.69 [0.63, 0.76] 95 per cent CrI). For the nonhierar-
chical model, this could be the mean of the country-level point 
estimates of s, with uncertainty summarized as the standard error 
of the mean (0.71 [0.68, 0.73] 95 per cent confidence interval [CI]). 
Another approach is to describe the variation across countries. For 
the hierarchical model this is the higher-level distribution itself, 
with 𝑠 ∼ Lognormal(𝜇𝑠,𝜎𝑠) − 1 (Table 2), including the uncertain-
ties on those parameters (0.68 [0.32, 1.08] 95 per cent CrI). For 
the nonhierarchical model, we summarized s across countries by 

concatenating the Markov chain Monte Carlo samples from s for 
all countries (0.65 [0.38, 1.27] 95 per cent CrI). Overall, regardless 
of the statistics used, Omicron has a very large selective advan-
tage, and its typical value can be estimated much more precisely 
than the variation among countries.

3.2 Explaining heterogeneity in selective 
advantage
With so much variation in s among countries, we asked whether 
causes of that variation could be identified. We looked for associ-
ations between country-level s and other country-level attributes, 
both in the model structure and in the model outputs.

Because Omicron has been shown to evade immunity from 
prior infection or vaccination, we used our mixed-effects model 
to test whether the extent of immunity in a country at the 
time of Omicron’s arrival explained variation in Omicron’s selec-
tive advantage. Three of our four proxy variables for natural 
immunity—based on the numbers of cases or deaths in the weeks 
leading up to Omicron’s arrival in the country—showed a signif-
icant effect (Fig. 3). The signs of the effects mean that Omicron 
had a stronger selective advantage in countries with more natu-
ral immunity, consistent with the idea that the part of Omicron’s 
fitness advantage is immune escape. To understand the effect 
size, for each significant covariate, we compared the predicted s
in a hypothetical population where the covariate was 0 against 
a hypothetical population where the covariate took the highest 
empirical value in the data (2.11 per cent for ‘cases2wk’, 10.21 
per cent for ‘cases25wk’, and 0.03 per cent for ‘deaths2wk’). This 
comparison yielded a difference in s of 0.26, 0.30, and 0.33, respec-
tively. Neither past cases or excess deaths are ideal proxies for the 
population-level immunological status of different countries, due 
to differences in age-stratified infection and death risk in addition 
to likely heterogeneity in case detection rate between and within 
countries. However, the significant correlation of both recent cases 
and excess deaths with increasing s suggests that country-level 
immunological status could partially explain the differences in 
selection effects. 

The selective advantage we estimate for each focal variant is 
by definition relative to the fitnesses of the preexisting variants 
against which it is competing. Modeling all variants explicitly 
would substantially expand the complexity of our model, so we 
instead explored this topic in three simpler ways. First, we hypoth-
esized that Omicron might have a lesser selective advantage when 
it was competing primarily against Delta (than against other vari-
ants, which were outcompeted by Delta in much of the world), but 
including the prevalence of Delta as a covariate showed no signif-
icant effect (Fig. 3). Second, we wondered if the higher selective 
advantage of Omicron in some countries could be explained by the 
prevalence of later Omicron subvariants in those countries, but we 
found no association between selective advantage and the genetic 
composition of Omicron (Fig. S6). And third, we compared our 
selection estimates against the amount of diversity in the preex-
isting, background variant landscapes, as measured by either the 
number of unique Pango lineages (variant richness) or the proba-
bility that any two sequences drawn at random are from different 
Pango lineages (Simpson’s 1 − 𝐷, which incorporates abundances) 
(Fig. S7). We found a consistently positive correlation between 
background diversity and the point estimate of s, although it 
was only significant in some cases. One interpretation is that 
higher-diversity background variant communities lack a relatively 
high-fitness variant and thus pose less competition for the invad-
ing focal variant. We also wondered if uncertainty in the s for a 
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Figure 3. Effects of each of seven country-level covariates on s. The median, 50 per cent, and 95 per cent CrI for the mean of the hierarchical 
distribution (left) and the estimated weight of the covariate in the model are plotted. Covariate weights are shown on a standardized, transformed 
scale, but the natural scales are shown in Fig. S1, and the effect magnitudes on the natural scales are discussed in the results text.

Figure 4. Estimates of s for each country, for Omicron and Delta. The 
median and 95% CrI are shown as points and lines respectively. One 
country not fully shown has sdelta = 1.98. Note that even though Omicron 
universally outcompeted Delta, somicron can be less than sdelta because 
the selective advantage quantifies the fitness of the focal variant relative 
to the fitness of the background variant(s). Data are provided in Table S1.

country could be driven by diversity in its background variants, 
but we found no correlation between these quantities (Fig. S7).

Alternatively, variation among countries could be explained 
not by the landscape specifically faced by Omicron, but instead 
by national systemic differences. With so many possible fixed 
country-level covariates that are likely strongly correlated, iden-
tifying specific causes is fraught. However, if any such factors do 
play a consistent role, we would expect their effects to be seen for 

variants in addition to Omicron. We therefore compared country-
specific median estimates of s for Omicron with those for Delta 
and found a significant correlation (Pearson’s correlation r = 0.37, 
P = 0.02; Spearman’s correlation 𝜌 = 0.40, P = 0.01; Fig. 4). We thus 
suggest that systematic differences between countries play some 
role in explaining the selective advantage of new variants.

3.3 Conclusion
We found a very large selective advantage for Omicron (growth 
rate nearly 1.7× that of the previously circulating variants, mostly 
Delta), but also very large heterogeneity among countries (the 95 
per cent CrI spans 1.3× to 2.0×). With selection coefficients this 
large, it is important to recall that their magnitude is also affected 
by the absolute growth rate (van Dorp et al., 2021; Chen et al., 
2021). We thus used not only variant counts and a model of variant 
frequency dynamics, but also a renewal model that included case 
count data (as did Figgins and Bedford, 2021; Park et al., 2022a). 
Additionally, we found that the selective advantage for Omicron 
was robust to changes in the generation time assumptions, i.e. the 
advantage of Omicron is not due solely to a shorter generation 
time.

Our hierarchical modeling approach provides a natural way to 
express both the overall advantage of a variant and its distribu-
tion across countries. Previous work has used a similar strategy 
for smaller geographic scales (Paton et al., 2022) and for mutations 
across lineages (Obermeyer et al., 2022). The hierarchical approach 
is particularly useful for global-scale analyses, in which one would 
like to include data from all countries even though they have 
vastly different data qualities and quantities. It also extends well 
to multiple levels, allowing, for example, a future analysis that 
includes heterogeneity among states within countries, in addition 
to among countries.

Our mixed-effects framework allows one to test hypotheses 
about country-level properties that might explain differences in 
selective advantage among countries. That such fixed properties 
exist is supported by the significant positive correlation between 
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selection strength for Delta and Omicron at the country level. 
Identifying potential causal systemic differences may require a 
different approach, however, as there are many possible factors—
population density, national wealth, type of governance, or health-
care system, to name just a few—and likely strong correlations 
between them.

Previous work, both laboratory assays (Lu et al., 2021; 
Cele et al., 2021; Planas et al., 2021) and population-level 
studies (Pearson et al., 2021; Paton et al., 2022; Pulliam 
et al., 2022), shows that Omicron better escapes natural and 
vaccine-induced immunity than do other variants. Consistent 
with this and despite using covariates that are highly imper-
fect proxies for true population-level immunity, we found a 
higher selection coefficient for Omicron in countries with more
immunity.

Future studies of SARS-CoV-2 variant dynamics could focus 
on scientific explanations for heterogeneity in the spread of 
different variants and why some countries seem to slow the 
spread of new variants. The modeling framework and code 
presented in this paper facilitates this type of work by allow-
ing for joint estimation of selection effects and explanatory
variables.

Data availability
All data used in this study are publicly available. The scripts 
used for data processing and statistical inference can be found 
at https://github.com/eeg-lanl/sarscov2-selection.

Supplementary data
Supplementary data are available at Virus Evolution online.
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