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In Brief

We present the novel
ReactomeGSA resource for
comparative pathway analy-
ses of multi-omics datasets.
ReactomeGSA is accessible
through Reactome’s web
interface and the novel
ReactomeGSA R Bioconductor
package with explicit support
for scRNA-seq data.We show-
case ReactomeGSA’s function-
ality by characterizing the role
of B cells in anti-tumour immu-
nity. Combining multi-omics
data of five TCGA studies
reveals marked opposing
effects of B cells in different
cancers. This showcases how
ReactomeGSA can quickly
derive novel biomedical insights
by integrating large multi-omics
datasets.
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ReactomeGSA - Efficient Multi-Omics
Comparative Pathway Analysis
Johannes Griss1,2,* , Guilherme Viteri1, Konstantinos Sidiropoulos1, Vy Nguyen2 ,
Antonio Fabregat1, and Henning Hermjakob1,*

Pathway analyses are key methods to analyze ‘omics
experiments. Nevertheless, integrating data from differ-
ent ‘omics technologies and different species still requires
considerable bioinformatics knowledge.
Here we present the novel ReactomeGSA resource for
comparative pathway analyses of multi-omics datasets.
ReactomeGSA can be used through Reactome’s existing
web interface and the novel ReactomeGSARBioconductor
package with explicit support for scRNA-seq data. Data
from different species is automatically mapped to a com-
mon pathway space. Public data from ExpressionAtlas and
Single Cell ExpressionAtlas can be directly integrated in
the analysis. ReactomeGSA greatly reduces the technical
barrier for multi-omics, cross-species, comparative path-
way analyses.
We used ReactomeGSA to characterize the role of B cells
in anti-tumor immunity. We compared B cell rich and poor
human cancer samples from five of the Cancer Genome
Atlas (TCGA) transcriptomics and two of the Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC) proteomics
studies. B cell-rich lung adenocarcinoma samples lacked
the otherwise present activation through NFkappaB. This
may be linked to the presence of a specific subset of tumor
associated IgG1 plasma cells that lack NFkappaB activa-
tion in scRNA-seq data from humanmelanoma. This show-
cases how ReactomeGSA can derive novel biomedical
insights by integrating largemulti-omics datasets.

Increasingly available approaches such as transcriptome
sequencing (RNA-seq), MS-based shotgun proteomics, and
microarray studies enable us to characterize genome- and
proteome-wide expression changes. This leads to the chal-
lenge of deriving relevant biological insights from lists of hun-
dreds of regulated genes and proteins.

Pathway analysis techniques have emerged as a solution
to this problem. Resources like the Gene Ontology (GO) (1),
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(2), the Molecular Signatures Database (MSigDB) (3), or
Reactome (4) organize existing biological knowledge into

gene sets or pathways. Pathway analysis approaches can
use these resources to represent long lists of regulated
genes and proteins as biologically defined pathways. This
leads to a more intuitive interpretation of the data and
increases the statistical power. Although single genes or pro-
teins may only show small, nonsignificant changes, synchro-
nous changes within a pathway may reveal a biologically im-
portant effect. Thereby, pathway analysis has become an
essential resource for ‘omics data analyses.

The increasing availability of public ‘omics datasets has
made it common practice to include these into analyses.
These data integration is commonly complicated if datasets
were created in different species or using different ‘omics
approaches. Pathway analysis approaches offer a solution to
this problem because data can be mapped to the more gen-
eral and comparable pathway space.

Existing web-based pathway analysis resources, such as
PANTHER (5), the Database for Annotation, visualization and
Integrated Discovery (DAVID) (6) or Reactome’s pathway anal-
ysis (7) all provide over-representation analyses. This type of
pathway analysis only tests whether a list of genes is overre-
presented in a specific pathway. These approaches have the
advantage that the user input is simple, but ignore any under-
lying quantitative information at the cost of reduced statistical
power. Moreover, users must manually separate up- and
down-regulated genes and process them in separate analy-
ses. Thereby, any result is only a partial representation of the
underlying biological changes.

The recently developed iLINCS resource extends the con-
cept of single-resource pathway analysis to a powerful multi-
omics and multi-resource analysis (8). It tests whether a list
of gene/protein identifiers correlates with a large set of pre-
computed signatures. These signatures are often the result
of differential expression analyses. Therefore, like the afore-
mentioned resources, iLINCS ignores any underlying quanti-
tative information in the final comparison. Additionally, the
comparison with public data are limited to pre-defined
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experimental designs and comparisons whose results are
stored as pre-computed signatures. Therefore, a large por-
tion of the data remains unused.

Here, we present the novel Reactome gene set analysis
system “ReactomeGSA.” ReactomeGSA supports the com-
parative pathway analysis of multiple independent datasets.
Datasets are submitted to a single pathway analysis and rep-
resented side-by-side on the pathway level. It uses gene set
analysis methods that take the quantitative information into
consideration and thereby performs the differential expres-
sion analysis directly on the pathway level. Data from differ-
ent species is automatically mapped to a common pathway
space through Reactome’s internal mapping system. All
supported gene set analysis methods are optimized for dif-
ferent types of ‘omics approaches including single cell
RNA-sequencing (scRNA-seq) data. Public datasets can be
directly integrated from ExpressionAtlas and Single Cell
ExpressionAtlas (9). We used ReactomeGSA to show that
B cell receptor signaling is surprisingly down-regulated in B
cell-rich lung adenocarcinoma in contrast to four other
human cancers. We could further link this to IgG1 plasma
cells in scRNA-seq data. ReactomeGSA thereby provides
easy access to multi-omics, cross-species, comparative
pathway analysis to reveal key biological mechanisms by
integrating large ‘omics datasets.

EXPERIMENTAL PROCEDURES

The ReactomeGSA analysis system is accessible through
Reactome’s web-based pathway browser application (https://
www.reactome.org) and the “ReactomeGSA” R Bioconductor
package. Both access ReactomeGSA’s web-based application
programming interface (API) which is also publicly accessible at
https://gsa.reactome.org.

The backend is a Kubernetes application (https://kubernetes.io/)
currently consisting of six deployments. Each deployment represents
one Docker container (Docker Inc, https://www.docker.com). All data
are stored in a Redis instance (https://redis.io/). The different compo-
nents are linked through a message system provided by RabbitMQ
(Pivotal, https://www.rabbitmq.com/). All components of the Reacto-
meGSA backend are developed in Python. The actual gene set anal-
ysis is performed using R Bioconductor (10) packages through the
rpy2 (https://rpy2.github.io/) Python interface to the R language in
the worker node (Fig. 1).

A key advantage of this setup is that the complete ReactomeGSA
application can be described in one so-called YAML file - a Kuber-
netes configuration file. Because all Docker containers are freely
available on Docker Hub (https://hub.docker.com) the ReactomeGSA
system can be deployed using the single “kubectl apply -f reactome_
gsa.yaml” command. We created a single YAML-formatted configu-
ration file to quickly adapt ReactomeGSA to different use cases (ie.
the number of resources available to the different nodes). Detailed
information on how to adapt ReactomeGSA can be found on
the GitHub repository (https://github.com/reactome/ReactomeGSA).
Thereby, users can set up their own version of the ReactomeGSA sys-
tem within minutes and deploy it locally or in the cloud.

Multi-Omics Gene Set Analysis—At the time of writing, Reacto-
meGSA supports three different analysis methods: Camera through
the “limma” (11) package, PADOG through the “PADOG” package
(12), and the single-sample gene set enrichment analysis (ssGSEA)

(13) through the “GSVA” (14) package. All pathway analyses are per-
formed by the worker node in the ReactomeGSA system (Fig. 1).

The workflow in ReactomeGSA follows the following briefly
described steps: First, the user’s input data are validated in terms of
experimental design, validity of submitted identifiers, and data for-
mat. Next, all identifiers are mapped to the respective human UniProt
identifiers (see below). Then, the selected pathway analysis is per-
formed for each of the submitted datasets. The parameters for the
pathway analysis (such as the kernel to use for the ssGSEA analysis)
is automatically chosen based on the selected data type. Finally, the
pathway analysis result is converted to Reactome’s internal data for-
mat to render the result in the PathwayBrowser.

Reactome’s manual curation is based on human UniProt identi-
fiers (15). Thus, as a first step in the analysis, the submitted identi-
fiers are mapped to human UniProt using Reactome’s identifier
mapping system. A key issue in mapping identifiers between different
identifier systems and across species is to resolve one-to-many
mappings. In these cases, the ReactomeGSA system keeps an inter-
nal record of all mappings. Genes that map to multiple UniProt iden-
tifiers which all belong to the same pathway are only added once to
this pathway. Thereby, one-to-many mappings are resolved at the
pathway-level and inaccuracies introduced through identifier conver-
sions are greatly reduced.

To increase the coverage of Reactome pathways, pathways can
be extended through medium and high confidence interactions
derived from IntAct (16). This function considerably extends Reac-
tome’s coverage.

At the time of writing, the ReactomeGSA system supports five
types of quantitative ‘omics data: Microarray intensities, transcrip-
tomics raw and normalized read counts, and proteomics spectral
counts and intensity-based quantitative data. Internally, these differ-
ent types of data are processed using two different methods: statis-
tics for discrete quantitative data (in case of raw transcriptomics read
counts and spectral counting based quantitative proteomics data)
and statistics for continuous data. For Camera and PADOG, discrete
values are normalized using edgeR’s (17) calcNormFactors function.
Then, the data are transformed using limma’s voom function (18).
Continuous data are directly processed using limma (11) and normal-
ized using limma’s normalizeBetweenArrays function. The pathway
analysis is subsequently performed using limma’s camera function or
PADOG as implemented in the respective Bioconductor R package
(19). For the ssGSEA method (13) the analysis is performed using the
GSVA Bioconductor R package (14). Discrete data are processed
using a poisson kernel and continuous data using a gaussian kernel.
Thereby, multiple types of ‘omics data can be supported.

scRNA-Seq Pathway Analysis—The analysis of scRNA-seq data
are supported through the ReactomeGSA R package’s “ana-
lyze_sc_clusters” function, as well as through the direct import of
data from the Single Cell Expression Atlas (9). In both cases, we cal-
culate the mean expression of genes within a cluster. For the R pack-
age, this is done through either “Seurat”’s (20) “AverageExpression”
function, or through scater’s (21) “aggregateAccrossCells” function
depending on the input object. Single cell data retrieved from
the Single Cell Expression Atlas is processed using custom python
code (see https://github.com/reactome/gsa-backend for details). This
approach to create pseudo-bulk RNA-seq data resembles previously
described methods to calculate differentially expressed genes (22).
Thereby, all pathway analysis methods supported by the Reacto-
meGSA analysis system are accessible to scRNA-seq data as well.

TCGA B Cell Analysis—The TCGA transcriptomics data for mela-
noma (TCGA-SKCM) (23), lung adenocarcinoma (TCGA-LUAD) (24),
lung squamous cell carcinoma (TCGA-LUSC) (25), ovarian cancer
(TCGA-OV) (26), and breast cancer (TCGA-BRCA) (27) were retrieved
using the “TCGAbiolinks” R Bioconductor package (28). For all
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datasets apart from melanoma, only primary tumor samples were
retained. Genes that were expressed in less than 30% of the sam-
ples with at least 10 reads were removed.

The abundance of plasmablast-like B cells (TIPB) was quantified
using the single-sample Gene Set Enrichment Analysis (ssGSEA)
method (13) as implemented in the “GSVA” R Bioconductor package
(14). Plasmablast-like B cells were described as CD38, CD27, and
PAX5 (29). Samples were classified as TIPB-high and -low split by
the median expression of the TIPB signature in all samples of the
cohort. Overall survival was assessed using the R “survival”
package.

The comparative pathway analysis was performed using the Reac-
tomeGSA R Bioconductor package. In all studies, plasmablast “high”
and “low” samples were compared with each other using PADOG
(12).

The complete R code of this analysis, including the detailed ver-
sions of all R packages used is available in the respective Jupyter
notebook (see Data availability).

CPTAC Data Analysis—Data processed through the common
data analysis pipeline (CDA) was downloaded from the CPTAC data
portal (breast cancer at https://cptac-data-portal.georgetown.edu/
cptac/s/S015, ovarian cancer at https://cptac-data-portal.georgetown.
edu/cptac/s/S020). For breast cancer (30), we used the proteome-level
iTRAQ summary, for ovarian cancer (31) the PNNL-based protein-level
iTRAQ summary. Samples were matched to the respective TCGA sam-
ples through the short barcode using the first 11 characters. Only
unambiguous matches were retained. Plasmablast abundance-based
groupings were transferred from the respective TCGA data set. The
data were analyzed using the ReactomeGSA R package and PADOG.

Example scRNA-Seq Analysis—Raw read counts of the scRNA-
seq data set by Jerby-Arnon et al. (32) were retrieved from the Gene
Expression Omnibus (GEO, identifier GSE115978). The data were
processed using “Seurat” version 3.1 (20) following the new scTrans-
form normalization strategy regressing out the patient and cohort
properties. To identify the B cells from the total number of cells we
used the first 35 components of the principal component analysis for
the subsequent steps. The neighbor graph and clustering was per-
formed using the default parameters. B cell clusters were identified

based on a high expression of CD20 (MS4A1), CD79A, CD19, and
CD138 (SDC1).

B cells were extracted from the data set and re-processed, start-
ing with the normalization step. Here, the top 11 components of the
principal component analysis were used for the respective analysis
steps. B cell clusters were subsequently classified following the strat-
egy by Sanz et al. (33). Plasmablast-like B cells and plasma cells
were differentiated based on a low expression of MS4A1 (CD20) in
plasmablast-like B cells. Finally, the ssGSEA analysis was performed
using the ReactomeGSA R packages’ analyze_sc_clusters function.

The complete workflow including the detailed versions of all used
R packages can be found in the respective Jupyter notebook (see
Data availability).

RESULTS

ReactomeGSA can be accessed through Reactome’s
web interface (https://www.reactome.org/PathwayBrowser/#
TOOL=AT) or through the novel “ReactomeGSA” R Biocon-
ductor package (https://doi.org/doi:10.18129/B9.bioc.
ReactomeGSA, Fig. 1). Both access the public API (https://
gsa.reactome.org) to perform the pathway analysis. The anal-
ysis system is a Kubernetes application based on the micro-
service paradigm that automatically scales to current demand
(see Methods for details). This infrastructure enables us to
offer computationally expensive pathway analysis methods
through an open interface. ReactomeGSA currently supports
three methods: PADOG (12), Camera through the limma R
package (11), and the ssGSEA (13) through the GSVA (14) R
package (see Experimental Procedures for details). Although
PADOG more often ranks biologically important pathways
higher than other approaches, it is computationally more ex-
pensive. In such cases, Camera, which does not rely on per-
mutations but linear models, results in faster results. ssGSEA
is not a gene set enrichment analysis but aggregates

FIG. 1. Schema of the ReactomeGSA system. All requests are sent to a public web-based API through the ReactomeGSA Bioconductor R
package or Reactome’s web-based PathwayBrowser. The system is a Kubernetes application based on the microservices architecture. All
requests are distributed through an internal message queue using RabbitMQ. Worker nodes are responsible for the complete pathway analysis,
including identifier mapping and the creation of the visualization data in Reactome’s pathway browser. Data nodes are responsible to load data
from external resources such as ExpressionAtlas. Finally, report nodes create PDF and Microsoft Excel files as a static report of the analysis
results. All data are stored in a central Redis instance. All nodes are Docker containers that are orchestrated by Kubernetes and automatically
scaled based on current demand. Thereby, the application can dynamically adapt to changing usage levels.
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expression values on the pathway level. This is helpful if the
analyzed samples cannot be attributed to clear phenotypes
or are to be correlated with continuous parameters such as
survival time. The API and its complete specification is
publicly available at https://gsa.reactome.org. Thereby,
ReactomeGSA can easily be integrated into any other
software infrastructure.

ReactomeGSA is fully integrated in Reactome’s existing
web-based pathway browser application (Fig. 2). After choos-
ing the new “Analyse gene expression” tab and the desired
analysis method, the user can add any number of datasets to
the analysis request. Public datasets are directly loaded from
Expression Atlas and the Single Cell Expression Atlas (9).
Results can be sent as emails including static PDF and Micro-
soft Excel reports. Finally, the complete gene set analysis result
is visualized in Reactome’s interactive pathway browser. The
pathway browser enables users to view Reactome’s complete
pathways from a tree-based, hierarchical overview, down to
the single gene- and protein-level reactions. The results of dif-
ferent datasets can be switched at the click of a button or
automatically changed every few seconds like a slideshow
across all results. Thereby, differences between the analyzed
datasets are immediately visible and can subsequently be
interactively investigated down to the single gene or protein
level.

The ReactomeGSA R package has been included in Bio-
conductor since version 3.10 (Fig. 3). Like the web interface,
multiple datasets can be added to a ReactomeAnalysis-
Request object. Expression values and metadata can directly
be loaded from Bioconductor ExpressionSet, limma EList
(11) and edgeR (17) DGEList objects. Thereby, the Reacto-
meGSA package can easily be integrated into existing R-based
workflows. The analysis results are returned as a Reactome-
AnalysisResult object. This object contains the pathway analy-
sis results across all analyzed datasets, as well as the gene- or
protein-level results of the differential expression analysis. It
can directly open the interactive visualization in Reactome’s
web-based pathway browser (see above) and create plots to
visualize the comparative pathway analysis results. Thereby,
the multi-data set results generated by ReactomeGSA can be
natively processed in R.

The ReactomeGSA R package has dedicated features to
simplify pathway analyses of scRNA-seq data (Fig. 3). The
“analyse_sc_clusters” function can directly process Seurat
(20) and Bioconductor’s SingleCellExperiment objects (22). It
automatically retrieves the average gene expression per cell
cluster and performs an ssGSEA analysis on the cluster-level
expression values. This results in one pathway-level expres-
sion value per cell cluster. Thereby, cell clusters can quickly
be interpreted based on specific biological functions.

ReactomeGSA Reveals a Lack of B Cell Activation in B Cell-
Rich Lung Adenocarcinoma—We were among the first to show
that B cells play a crucial role in anti-tumor immunity in
human melanoma (29). In vitro, B cells differentiate toward a

TIPB phenotype in the presence of melanoma cells. The cor-
responding molecular TIPB signature predicts overall survival
in the TCGA melanoma cohort. Whether this effect is specific
to melanoma or whether it is a general part of the anti-tumor
immune response is currently unknown.

We analyzed the difference between TIPB-high versus
TIPB-low samples in the TCGA cohorts for melanoma (23),
lung adenocarcinoma (24), lung squamous cell carcinoma
(25), ovarian cancer (26), and breast cancer (27). Melanoma
and ovarian cancer patients with high levels of TIPB showed
significantly longer overall survival (likelihood ratio test p ,

0.01 for both, hazard ratio 0.56 melanoma, 0.69 ovarian can-
cer, Fig. 4A). There was no significant difference in overall sur-
vival for lung adenocarcinoma, lung squamous cell, and breast
cancer patients (likelihood ratio test p = 0.04, p = 0.2 and
p = 0.9 respectively). Therefore, the effect of TIPB on anti-
tumor immunity and patient survival differs across these
types of cancers.

We subsequently assessed pathway-level differences be-
tween patients with high- and low-levels of TIPB in the five
cohorts. The comparative pathway analysis was performed
using our ReactomeGSA R package and the PADOG gene
set enrichment analysis. 383 pathways were significantly
regulated in at least one of the datasets (FDR, 0.1, supple-
mental Data S1). 64 of these pathways showed a differential
regulation in one of the datasets compared with melanoma.
We previously showed in vitro that NF-kappaB activation was
significantly up-regulated in B cells after stimulation with mel-
anoma conditioned medium (29). Lung adenocarcinoma sam-
ples were the only ones that showed a significant down-reg-
ulation of the “Activation of NF-kappaB in B cells” pathway
(FDR=0.08). Even though these samples have a higher num-
ber of TIPB, overall B cell activation is reduced.

We specifically assessed how the lung adenocarcinoma
cohort differs from the melanoma cohort. In total, 18 path-
ways were significantly regulated in both the melanoma and
the lung adenocarcinoma cohort (Fig. 4B). Next to the down-
regulation of NF-kappaB related genes, there was an overall
down-regulation of B cell receptor signaling, but also p53
related DNA damage response, cell cycle and apoptosis
related pathways. This shows that lung adenocarcinoma
samples with a high number of tumor induced plasma-
blast-like B cells have a distinct different signaling state
compared with melanoma.

Pathways related to B cell receptor signaling and apopto-
sis correlate with the survival benefit observed through higher
numbers of TIPB. The melanoma and ovarian cancer cohort
both showed the strongest survival benefit which was linked
to the strongest up-regulation of apoptosis related pathways
but also B cell receptor signaling. These results highlight that
ReactomeGSA’s comparative pathway analysis can quickly
reveal clinically relevant conserved signaling events.

Cancer-Relevant Pathways Differ in Proteomics and Transcrip-
tomics Data—In our recent characterization of melanoma
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associated B cells, key phenotypic changes in B cells were
primarily observed on the protein but not the transcriptome
level. We performed a comparative pathway analysis of the
two TCGA cohorts that were also analyzed by CPTAC using
a global proteomics approach.

99 samples of the breast cancer CPTAC study (30) and 62
samples of the CPTAC ovarian study (31) could be directly
mapped to samples from the respective TCGA study. As our
TIPB signature was only validated for transcriptomics data,
sample grouping into TIPB-high and -low samples was
transferred from the TCGA data. The pathway analysis
was performed using our ReactomeGSA R package and
PADOG. 113 and 96 pathways were significantly regulated
(FDR,0.05, supplemental Data S2) in the proteomics and
transcriptomics data from the breast and ovarian cancer

study respectively. Out of these, 13 showed a different
direction of regulation in the breast study, and one in the
ovarian cancer study between proteomics and transcrip-
tomics measurements. In breast cancer, these included
VEGF signaling, EGFR signaling, and IGF1R signaling
related pathways (all up-regulated in transcriptomics and
down-regulated in proteomics). In ovarian cancer, FGFR
signaling was significantly up-regulated in the transcrip-
tomics but down-regulated in proteomics data. All of
these pathways are linked to proliferation and are relevant
pathways to tumor biology. B cell receptor signaling asso-
ciated pathways were significantly up-regulated in all
datasets. This highlights how ReactomeGSA can quickly
reveal biologically relevant differences and similarities
between ‘omics datasets.

FIG. 2.ReactomeGSA is fully integrated into theweb-basedReactome pathway browser (https://reactome.org).Users can either upload
their own datasets or import public data from ExpressionAtlas. The gene set analysis is performed through the ReactomeGSA API. Results are
visualized in Reactome’s interactive pathway browser and sent as static reports in PDF andMicrosoft Excel format via E-mail.
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IgG1 Plasma Cells Show Reduced NFkappaB Activation—
Specific subtypes of B cells seem to be primarily responsible
for the B cell triggered anti-tumor response (29, 34–36). We
therefore assessed whether the observed difference in
NFkappaB activation is B cell subtype specific.

The extracted B cells from the scRNA-seq data set by
Jerby-Arnon et al. (32) formed 13 distinct clusters using
Seurat (see Methods for details). Based on canonical B cell
markers (33) we classified these clusters as double negative
B cells, seven types of memory-like B cells, memory-
switched resting and -activated B cells, naive B cells, plasma
cells, and plasmablast-like B cells (Fig. 5A). Consistent with
their transitional phenotype between B cells and plasma
cells, plasmablast-like B cells were the only to express SDC1
(CD138) and low levels of MS4A1 (CD20). This classification
already highlights issues in classifying B cell subtypes as we
had to classify seven clusters as memory B cells even though
they showed marked differences in overall gene expression.

We used ReactomeGSA R package’s analyse_sc_clusters
function to quantify pathways in these B cell clusters. There

was a considerable heterogeneity between the memory B cell
clusters, as well as plasmablast and plasma cells in terms of B
cell receptor signaling (Fig. 5B). In the latter, this matches the
previously described lack of functional B cell receptors in IgG
positive plasma cells (37). Consistently, plasma cells but not
plasmablast-like B cells expressed high levels of IgG as deter-
mined through Fc fragment of IgG receptor and transporter
(FCGRT) expression (Fig. 5C). Plasma cells and plasmablast-like
B cells further differed in NTRK signaling which regulates cell
survival, proliferation and motility (38). Our original TIPB signa-
ture is too coarse to perfectly differentiate between plasma cells
and plasmablast-like B cells. Therefore, the lack of B cell recep-
tor signaling in lung adenocarcinoma samples points toward the
high abundance of IgG1 plasma cells. These were shown to be
negative prognostic factors in lung adenocarcinoma (39) which
may explain the reduced survival benefit of TIPB there.

DISCUSSION

ReactomeGSA greatly decreases the technical challenge
to perform pathway analyses of unrelated datasets irrespective

FIG. 3. TheReactomeGSABioconductor R package can directly process data from themost commonly used data structures for ‘omics
analyses. The pathway analysis is performed through the ReactomeGSA analysis system andmade available through a native R object. Conven-
ient plotting functions give a quick overview of howwell two datasets correlate on the pathway level. Volcano plots further highlight themagnitude
of the observed changes in individual datasets. Additionally, pathway analysis of scRNA-seq data are simplified through the single “analy-
se_sc_clusters” function.
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of ‘omics technology and investigated species. The iLINCS
resource (8) is comparable in terms of the integration of differ-
ent ‘omics data types and public datasets. In contrast to
iLINCS, ReactomeGSA does not rely on pre-computed signa-
tures for public datasets. This limits the number of public data-
sets that can be integrated into a single analysis. At the same
time, it gives the researcher complete freedom in terms of
experimental design and data analysis strategy to use. Our
analysis of TCGA datasets based on a custom signature,
for example, would not be supported by iLINCS. Addition-
ally, ReactomeGSA directly supports quantitative ‘omics
data as input. Thereby, we can use gene set analysis
approaches with increased statistical power compared
with simple overrepresentation analysis (19). The support
for sample-level quantitative data enables us to integrate
gene set variation analyses which we found especially
helpful in the analysis of scRNA-seq data. We, thus,
believe that the ReactomeGSA system is a considerable
step forward in giving researchers easy access to com-
plex, more sophisticated pathway analysis methods.

Nevertheless, ReactomeGSA is still limited to three “clas-
sic” ‘omics technologies. Future plans involve supporting
methods such as chromatin accessibility sequencing data.
Internally, ReactomeGSA is already designed to handle differ-
ent types of quantitative data. ReactomeGSA thus provides
an infrastructure that is well suited to cover a large variety of
‘omics technologies.

A key decision in multi-omics pathway analyses is how to
integrate different types of ‘omics data. Methods such as the
Gene Set Omic Analysis (GSOA) (40) or the PAthway Recog-
nition Algorithm using Data Integration on Genomic Models
(PARADIGM) (41, 42) merge different ‘omics measurements
into a single result. Thereby, only data from the same or
highly similar samples can be integrated. Moreover, differen-
ces between the different ‘omics measurements disappear.
As highlighted in our example data and previous studies,
such differences are to be expected (29, 30). We deliberately
developed a system that can highlight such differences that
researchers can interactively investigate with the Reactome
pathway browser. Moreover, the user can quickly choose

FIG. 4. Comparison of TIPB-high versus -low samples from TCGA studies on melanoma (TCGA Mel), ovarian cancer (TCGA Ovarian),
lung adenocarcinoma study (TCGA Lung), lung squamous cell carcinoma (TCGA Lung SCC), and breast cancer (TCGA Breast). A,
Overall survival of patients with high (blue line) or low (red line) expression of the TIPB signature (split by the median expression in the data set). B,
Average gene fold-changes per pathway. Only pathways significantly regulated (FDR,0.1) in the TCGAmelanoma and the TCGA lung adenocar-
cinoma cohort with a different direction of regulation in these two cohorts are shown. Shades of yellow represent a down-regulation, shades of
blue an up-regulation.
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between different pathway analysis algorithms that all have
different strengths and weaknesses (43). ReactomeGSA pro-
vides a novel multi-omics pathway analysis infrastructure
that is tailored to expert bioinformaticians and nonexperts
alike.

DATA AVAILABILITY

The complete source code of the ReactomeGSA backend,
the web-based pathway browser, and the ReactomeGSA
Bioconductor R package are available under a permissive
open source license on GitHub (https://github.com/reactome).
All docker images of the ReactomeGSA analysis system are
publically available on Docker Hub (https://hub.docker.com).
Central links to all components of the ReactomeGSA system
can be found at https://reactome.github.io/ReactomeGSA.
The source code of the backend (ie. the Kubernetes applica-
tion) can be found at https://github.com/reactome/gsa-
backend. The source code of the R package is available
at https://github.com/reactome/ReactomeGSA. Additionally, a
detailed documentation on how to set up the ReactomeGSA
analysis system on a local Kubernetes instance can be found
on https://reactome.github.io/ReactomeGSA.

The detailed API specification of the ReactomeGSA sys-
tem is available on https://gsa.reactome.org. Therefore, the
complete analysis capabilities can easily be integrated into
any other existing software platform.

The code to analyze the example datasets presented in
this manuscript can be found as Jupyter notebooks on
https://github.com/Reactome/ReactomeGSA-tutorials.
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FIG. 5.Analysis of B cell subtypes from the data set by Jerby-Arnon et al. (32)A, UMAP plot of the identified B cell clusters. Cell type annota-
tions are based on canonical B cell markers (33).B, ReactomeGSA gene set variation based pathway-level expression in the identified B cell clus-
ters of the Jerby-Arnon et al. Data set. Expression values were z-score normalized by pathway. C, Expression of IgG estimated through FCGRT
abundance in the B cell clusters.
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