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Annotated draft genome sequences of three species
of Cryptosporidium: Cryptosporidium meleagridis isolate
UKMEL1, C. baileyi isolate TAMU-09Q1 and C. hominis
isolates TU502 2012 and UKH1
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TU502.2012 and UKH1, and C. meleagridis, will accelerate research on Cryptosporidium parasites.
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ABSTRACT

Human cryptosporidiosis is caused primarily by Cryptosporidium hominis, C. parvum and C. meleagridis. To accelerate research
on parasites in the genus Cryptosporidium, we generated annotated, draft genome sequences of human C. hominis isolates
TU502.2012 and UKH1, C. meleagridis UKMEL1, also isolated from a human patient, and the avian parasite C. baileyi
TAMU-09Q1. The annotation of the genome sequences relied in part on RNAseq data generated from the oocyst stage of
both C. hominis and C. baileyi. The genome assembly of C. hominis is significantly more complete and less fragmented than
that available previously, which enabled the generation of a much-improved gene set for this species, with an increase in
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average gene length of 500 bp relative to the protein-encoding genes in the 2004 C. hominis annotation. Our results reveal
that the genomes of C. hominis and C. parvum are very similar in both gene density and average gene length. These data
should prove a valuable resource for the Cryptosporidium research community.
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Cryptosporidium parasites (Phylum: Apicomplexa) infect a wide
range of vertebrates, from fish to humans, and are the causative
agents of cryptosporidiosis in humans (Upton and Current 1985;
Tzipori 1988; Widmer and Sullivan 2012). A recent, large, mul-
ticenter study of the etiology of moderate-to-severe diarrhea
(MSD) in infants in the developing world found Cryptosporid-
ium hominis to be among the four predominant pathogens as-
sociated with MSD in children under 5 years of age (Kotloff
et al. 2013). Some Cryptosporidium species are capable of zoonotic
transmission (Ryan, Fayer and Xiao 2014). Comparative analy-
sis of genomes from diverse Cryptosporidium species and related
protists is essential to fully understand the biology, pathology,
host specificity and evolution of this genus.

The reference C. parvum IOWA II genome (Abrahamsen et al.
2004) is essentially complete, with its eight chromosomes dis-
tributed among 18 contigs, including full-length chromosomes.
In contrast, the reference assembly of C. hominis, based on iso-
late TU502, published in 2004 (Xu et al. 2004), is a highly frag-
mented draft genome consisting of 1422 contigs. To accelerate
research on these pathogens of public health and veterinary sig-
nificance, we sequenced, assembled and annotated four Cryp-
tosporidium genome sequences belonging to three species as part
of a community White Paper undertaking. Two sequences were
generated from a species infective to humans, C. hominis iso-
lates TU502.2012 and UKH1. In addition, sequences were gener-
ated from the generalist species C. meleagridis, isolate UKMEL1,
and from the TAMU-09Q1 isolate of C. baileyi, an avian-infecting
parasite. All three species are enteric parasites. Cryptosporidium
baileyi can complete its entire life cycle in embryonated chicken
eggs, making it a useful laboratory model to address some as-
pects of Cryptosporidium biology. Cryptosporidium meleagridis ap-
pears to lack host specificity, as it is known to infect both avian
and mammalian species (Akiyoshi et al. 2003).

Cryptosporidium hominis UKH1 and C. meleagridis UKMEL1
oocysts were isolated from fecal samples of naturally infected
humans. Cryptosporidium meleagridis oocysts were propagated in
immunosuppressed adult CD-1 mice, and C. hominis UKH1 in
neonatal gnotobiotic pigs. Cryptosporidium hominis TU502.2012
originates from C. hominis TU502 isolate maintained by serial
propagation in gnotobiotic pigs (Tzipori et al. 1994; Xu et al.
2004). Cryptosporidium baileyi oocysts were extracted from exper-
imentally infected embryonated chicken eggs. Prior to isolat-
ing DNA, extracted oocysts were purified on density gradients
(Widmer, Feng and Tanriverdi 2004) and surface-sterilized with
bleach to minimize contamination with host and bacterial DNA.
RNA samples were obtained from C. hominis TU502_2012 and C.
baileyi TAMU-10GZ1 oocysts <4 months old, and sequenced to
high coverage using strand-specific RNASeq (Parkhomchuk et al.
2009). De novo assembly of the genomic reads was performed us-
ing MaSuRCA version1.9 (Zimin et al. 2013) (Table 1).

All the genomes except C. hominis UKH1 were annotated us-
ing a semi-automated approach. We trained Augustus (Stanke
et al. 2004) using a set of previously manually curated genes.
Consensus predictor EVidence Modeler, EVM (Haas et al. 2008),
was used to generate annotations based on predictions from

Augustus and GeneMark-ES (Borodovsky and Lomsadze 2011),
transcripts assembled from RNAseq reads and matches to a
set of highly conserved eukaryotic genes—the Core Eukaryotic
Genes Mapping Approach genes (Parra, Bradnam and Korf 2007).
In addition, 394 genes (~10% of all genes) in the C. hominis
TU502_2012 genome were manually annotated using Web Apollo
(Lee et al. 2013). The manually curated genes are thought to en-
code antigens (Ifeonu et al., in preparartion). The C. hominis genes
TU502-2012 were mapped to the C. hominis UKH1 assembly us-
ing GMAP (v2015-12-31), and filtered to include only matches
that extend at least over 95% of the sequences and have >95%
alignment identity at the amino acid level. The final assembly
attributes are listed in Table 1. This Whole Genome Shotgun
project has been deposited in DDBJ/EMBL/GenBank under the
accession numbers listed in Table 1 and the sequences are acces-
sible at CryptoDB (http://CryptoDB.org). These are the first ver-
sions of genome sequence assemblies and annotations for each
isolate.

The genome of C. hominis isolate TU502 has been sequenced
previously (Xu et al. 2004). We resequenced the genome of this
isolate, after multiple passages, in an attempt to improve the
reference genome assembly and gene set for this species. The
resulting C. hominis TU502_2012 genome assembly consists of
only 119 contigs, a 10-fold reduction relative to the 2004 assem-
bly. The genome assembly is now more complete, and roughly
the same size as that of C. parvum, which is also 9.1 Mbp in
length (Abrahamsen et al. 2004). The genes in the new anno-
tation are on average 500 bp longer than their counterparts in
the original 2004 annotation, resulting in an increase of 17%
in the fraction of the genome that encodes for proteins. In or-
der to determine if this gene structural annotation is more ac-
curate than the one published in 2004, we compared the length
of all C. parvum IOWA II proteins with their orthologs in either
C. hominis TU502 or C. hominis TU502.2012. The distribution of
length differences based on the comparison to the 2012 reanno-
tation indeed has lower variance, with an additional 500 genes
similar in length between the two species (Fig. 1). Also, there are
538 C. parvum genes without orthologs in the C. hominis TU502
2004 annotation compared to only 288 such cases in the 2012 an-
notation. Interestingly, while the original C. hominis annotation
had a preponderance of genes shorter than their C. parvum or-
thologs, the current gene set is skewed in the opposite direction
(Fig. 1). Whether this difference is real, or a result of remain-
ing gene structure errors in one or both species, remains to be
determined. The C. hominis TU502_2012 annotation contains 206
predicted protein-coding genes with no orthologs in C. parvum
IOWA II. Of the 3745 predicted protein-coding genes in C. homi-
nis TU502_2012, only 63% are also found in all other annotated
Cryptosporidium genomes available to date: C. parvum IOWA 1II,
C. meleagridis UKMEL1, C. baileyi TAMU-09Q1 and C. muris RN66
(Fig. 1). Finally, 110 predicted protein-coding genes are presentin
the three newly sequenced genomes, but homologs are absent
in the current C. parvum predicted proteome. These significant
differences in gene content among species are, in all likelihood,
due mostly to the limitations of the semi-automated annotation
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Table 1. Summary statistics of whole-genome sequence and transcriptome data, assemblies and annotation.

Cryptosporidium hominis Cryptosporidium  Cryptosporidium
meleagridis baileyi
Isolate: DNA TU502¢ TU502.2012 UKH1 UKMEL1 TAMU-09Q1
gDNA Illumina library fragment size (bp) N/A 460 461 517 654
No. MiSeq reads N/A 6,871,858 7,596,410 22,862,044 6,240,960
No. base pairs N/A 1,724,836,358  1,906,698,910  6,881,475,244 1,566,480,960
Assembly size (bp) 8,743,570 9,107,739 9,156,091 8,973,200 8,493,640
No. of contigs 1422 119 156 57 145
Contig Nisp 14,504 238,509 179,408 322,908 203,018
Largest contig (bp) 90,444 1,270,815 542,781 732,862 702,637
G + C content (%) 30.9 30.1 30.1 31.0 24.3
No. protein-coding genes 3,885 3,745 3,765 3,758 3,692
Average gene length (bp) 1,360 1,892 1,830 1,844 1,778
Percent coding 60.4% 77.8% 75.2% 77.2% 77.3%
Accession no. AAEL00000000  JIBM00000000  JIBNOOOOOOOO JIBKOO0O00000 JIBLOOO0O000O
SNPs relative to TU502% synonymous : non-syn 1303 : 2,567 718 : 1336 N/A N/A
SNPs relative to TU502.2012 synonymous : non-syn N/A 143:339 N/A N/A
Isolate: RNA TU502.2012 UKH1 UKMEL1 TAMU-10GZ1
No. HiSeq read pairs 16,568,115 92,878,236 N/A 55,829,305
No. expressed genesb 1,868 2,454 N/A 2,235
Accession no. SRX481527 SRX481475 N/A SRX481530
22004 assembly (Xu et al. 2004).
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Figure 1. Inter- and intraspecies genome-wide comparisons of genome composition. (A) Comparison of protein length between C parvum and the 2004 and 2012
versions of the C. hominis TU502. (B) Distribution of orthologous gene clusters in five Cryptosporidium species. (C) Distribution of SNPs and short indels among three C.
hominis isolates, TU502, TU502-2012 and UKH1. DNA sequence reads from the C. hominis TU502.2012 and UKH1 were mapped against the reference genome assembly
of C. hominis TU502, as well as against each other, using BWA (Li and Durbin 2009). SNPs and small indels were identified using GATK (McKenna et al. 2010). Identified
variants were further filtered for reliability, according to the following parameter values: (DP < 12) || (QUAL < 50) || (SB > -0.10) || (MQO > = 2 && (MQO/(1.0 = DP)) > 0.1).
SNPs were categorized as coding and non-coding, given the assembly and the annotation, using VCFtools.

approach used, rather than to true instances of gene gain/loss.
An intense, manual curation effort of the genome annotation of
each species is ongoing, and will be essential to validate these
results.

Genetic differences among C. hominis isolates were identified
by read mapping, followed by calling and filtering of single nu-
cleotide polymorphisms (SNPs) and small insertions/deletions
(indels). A total of 10 526 sequence variants were identified in
C. hominis TU502_2012 relative to the reference C. hominis TU502
assembly; in contrast, only 4394 sequence variants were found
between C. hominis UKH1 and the reference C. hominis. Interest-
ingly, the vast majority of the differences relative to the refer-
ence TU502 genome are shared between the two new isolates
(Fig. 1). A plausible explanation, which remains to be verified,

is that these SNPs common to both new isolates are in fact se-
quencing errors in the original C. hominis TU502 assembly, which
was based on low-coverage Sanger sequencing. This, however,
does not explain the fact C. hominis TU502.2012 has more differ-
ences relative to TU502 than does UKH1. It is possible that during
the approximate 20 passages in gnotobiotic pigs which C. homi-
nis TU502-2012 isolate has experienced between 2004 and 2012,
the make-up of the parasite population has shifted. In the ab-
sence of methods for cloning and expanding single Cryptosporid-
ium sporozoites, the isolates sequenced to date are likely to be
heterogeneous populations (Grinberg and Widmer 2016). In fact,
high-throughput sequencing of a polymorphic locus demon-
strated the presence of multiple alleles in laboratory and natural
Cryptosporidium isolates (Widmer et al. 2015).
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Figure 2. Gene expression in Cryptosporidium oocysts is correlated within and between species. (A) Correlation in oocyst gene expression is highly correlated between
two isolates of C. hominis (r> ~ 96%). (B) Correlation in oocyst gene expression is correlated between C. hominis and C. baylei (r?> ~ 51%), particularly among the most

highly expressed genes.

We generated RNAseq data for two of the species, C. homi-
nis and C. baileyi. These data are strand specific, a tremendous
advantage when attempting to generate accurate gene-specific
expression values in highly gene-dense genomes, where neigh-
boring transcriptional units often overlap (Tretina, Pelle and
Silva 2016). The quantity of RNAseq data generated for C. ho-
minis UKH1 was six times than that for the TU502.2012 isolate
(Table 1). Despite this difference, the relative expression values
for each gene are remarkably similar for the two isolates (12 ~
0.96; Fig. 2), which supports the strength of the relative expres-
sion results. The RNAseq data generated from oocysts indicate
that ~50% and ~60% of protein-coding genes are expressed in C.
hominis TU502.2012 and C. baileyi, respectively, during this stage
of the life cycle (Table 1). Gene expression is also positively cor-
related between species (1> ~ 0.51; Fig. 2), with lactate/malate
dehydrogenase (LDH), a GDP-fucose transporter, agrin and the
ubiquitous heat shock protein 90 (HSP90) being among the most
highly expressed genes in both species. LDH and HSP90 have
been shown to be among the top nine most highly expressed
genes in C. parvum oocysts (Zhang et al. 2012). Genes preferen-
tially expressed in one or the other species may provide a good
starting point to investigate biological differences between taxa.
Among the genes that differ most in expression level between
the two species are pyridine nucleotide-disulphide oxidoreduc-
tase, which has a higher level of expression in C. hominis, and
AhpC/TSA family protein, WD repeat-containing protein 82 and
DNA mismatch repair protein msh-2, all of which have higher
expression levels in C. baileyi.

The work on Cryptosporidium genomes and their respective
annotations with particular emphasis on the manual curation
of the structure and function of all protein-coding genes is con-
tinuing. Together with the identification of genes unique to each
species and genes with species-specific expression profiles, this
work will facilitate the identification of genes responsible for
host specificity and other phenotypes relevant to the under-
standing of cryptosporidiosis.
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