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Abstract

Estimating animal abundance in industrial scale batches of ground meat is important for mapping meat products through
the manufacturing process and for effectively tracing the finished product during a food safety recall. The processing of
ground beef involves a potentially large number of animals from diverse sources in a single product batch, which produces
a high heterogeneity in capture probability. In order to estimate animal abundance through DNA profiling of ground beef
constituents, two parameter-based statistical models were developed for incidence data. Simulations were applied to
evaluate the maximum likelihood estimate (MLE) of a joint likelihood function from multiple surveys, showing superiority in
the presence of high capture heterogeneity with small sample sizes, or comparable estimation in the presence of low
capture heterogeneity with a large sample size when compared to other existing models. Our model employs the full
information on the pattern of the capture-recapture frequencies from multiple samples. We applied the proposed models to
estimate animal abundance in six manufacturing beef batches, genotyped using 30 single nucleotide polymorphism (SNP)
markers, from a large scale beef grinding facility. Results show that between 411,1367 animals were present in six
manufacturing beef batches. These estimates are informative as a reference for improving recall processes and tracing
finished meat products back to source.
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Introduction

Estimating animal abundance in manufactured batches of fresh

ground meat is an important phase in traceability and certification

in meat supply chains [1].This is of a particular value in the event

of a microbial contamination incident given that fresh ground beef

accounts for more than 40% of all beef consumed in Canada [2]

and 42% in the United States [3]. To identify whole muscle meat

products, such as steaks and joints, throughout the supply chain,

DNA profiling is currently applied through the use of reference

animal or carcass databases, analogous to the DNA databases

widely used in human forensics. In a large scale industrial

manufacturer, a single ground beef batch may consist of many

hundreds of animals from diverse sources, which may include

more than one country of origin. Characterizing the distribution of

these individuals in large grind batches informs the possibility of

developing a recall management tool based on DNA profiling.

Estimating animal abundance has been widely applied in ecology

and wild life conservation [4], [5], [6], [7]. However, the mixture

in ground beef batches complicates the application of this

technique, including isolation of individual DNA profiles and the

selection of an appropriate statistical model. The objective of this

study is to focus on the statistical model for a preliminary estimate

of animal abundances in grind meat batches, given the

heterogeneity arising from different manufacturing systems and

the absence of a reference DNA profile database.

We employ the conventional mark-recapture methodology to

estimate animal abundance, with multiple surveys in individual

manufacturing batches for estimating capture and recapture

frequencies. Samples are taken from the finished ground beef

batch and individual animal contributors identified by subdividing

the sample into constituent discrete muscle fibres for DNA

extraction and single nucleotide polymorphisms (SNP) genotyping

[1]. Matching DNA profiles among samples, analogous to the case

of sampling with replacement, are used to estimate recapture

frequency. Two specific features are crucial for statistical

modelling in ground meat batches. One is the presence of a

highly heterogeneous capture probability among individuals in a

single batch. This can arise where an unequal amount of useable

carcass from distinct animals is blended into individual batches for

ground beef. This forms the biological basis for generating unequal

capture probability among distinct animals. The other is that the

number of animals in a single beef batch could be very large in

industrial scale manufacturing. This can result in a large number

of animals not being captured or captured at a low frequency, in

addition only a few animals may be captured at a relatively high
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frequency. These two features limit the suitability of most existing

models for estimating population size in ground meat batches.

Methodologically, many statistical models have been developed

using the mark-recapture framework for population size estimation,

including the non-parameter and parameter estimators, the models

for equal and unequal capture probability, and the models for

discrete- and continuous-time surveys (for comprehensive reviews,

see [5], [6], [7]). The well-known non-parameter estimators include

, the jackknife estimator [8], [9],

the bootstrap estimator [9], the moment estimator [10], [11], and

the sample-coverage (SC) estimator [12]. Most non-parameter

estimators underestimate population size when a small proportion

of animals are captured. The jackknife estimator can produce

appropriate estimates when many individuals are captured multiple

times [13]. Chao’s estimator (Chao-1) performs well for a lower level

of heterogeneity in capture probability or when a majority of

individuals are captured [10]. Xu et al. [11] recently proposed an

alternative non-parameter estimator that slightly modifies Chao-1

estimator using a different moment approach. The commonality is

that these estimators (except the high-order jackknife and SC

estimator) mainly employ partial information on the observed

capture and recapture frequencies in multiple surveys.

With a reference to the parameter-based estimators, a few

methods have been developed to derive maximum likelihood

estimate (MLE) of population size since Fisher’s logarithm series

model [7], [14], [15], [16]. These methods are mainly based on the

abundance data (frequency count) although connections are

available for a few abundance and incidence models [17]. Crucial

to the parameter-based methodology is to select an appropriate

function to describe the pattern of capture-recapture frequencies.

Chao and Bunge [18] used a Gamma-mixed Poisson or negative

binomial distribution to derive MLE. Shen and He [19] used a

modified beta function to derive MLE for species richness. The

commonality is that these methods employ the full information on

the pattern of capture-recapture frequencies. These methods have

limited performance when the heterogeneity in capture probability is

large or when most individuals are not captured in multiple surveys.

This motivated us to develop alternative estimators that are suitable

for the population with a high heterogeneity in capture probability.

We developed two parametric models for incidence data to

estimate population size: Model I is based on a function similar to

a modified continuous version of Fisher’s logarithm series model,

which can deal with the population with a high heterogeneity in

capture probability; Model II is a modified beta function, with an

alternative zero-truncated function to the modified function of

Shen and He [19]. Model II can deal with the population with a

relatively low heterogeneity in capture probability. In the following

sections, the proposed models are described, including the detailed

procedure of deriving MLE. The proposed estimators are then

compared with other existing non-parameter estimators through

simulations with different survey schemes and the use of previously

published empirical datasets. Finally, we apply the proposed

models to estimating the number of animals in six manufacturing

beef batches, each of approximately 1 metric tonne in weight,

genotyped with 30 SNP markers, selected for identification [20].

Inferences on population sizes in each batch of fresh ground beef

are drawn from comprehensive analyses with multiple estimators.

Methods

The Model and Estimator
We begin by briefly summarizing Burnham and Overton’s

model and then proceed to propose an alternative method to

estimate population size. Consider a closed population with

constant N unique individuals that are indexed by 1, …, and N.

There are t surveys through non-invasive genetic samples

(analogous to the sampling with replacement). Let pi (i = 1, 2,

…, N) be the capture probability of the ith individual at each

survey (constant capture probability assumption). Here, we assume

that the capture probability for each individual is nonzero at each

survey (pi=0) and that unequal capture probabilities exist among

different individuals, i.e. pi=pj(i,j~1,::,N). The capture proba-

bilities, pi
0s, are a random sample from a probability density

distribution w(p). Note that w(p)dp is equivalent to the notation

dF (p) of Burnham and Overton [8]. Like previous studies [10],

the multiple samples can be arranged in a N|t matrix (Xij)
(i~1,:::,N; j~1,:::,t) where Xij is the observed frequency of the ith

individual in the jth survey. Let n be the total number of observed

distinct individuals caught in the t samples, which can be expressed

as n~
PN
i~1

I
Pt
j~1

Xij§1

 !
where I(A), the indicator function, is

equal to 1 when event A occurs and 0 otherwise. Let fk be the

number of individuals captured exactly k times (k = 0, 1,…, t) in the

t samples, which can be expressed as fk~
PN
i~1

I
Pt
j~1

Xij~k

 !
([10], p 784). Thus, we get the captured individuals in total,

n~
Pt

k~1

fk, and the population size N is N~nzf0 where f0 is the

number of individuals that are not captured in the t samples.

According to Burnham and Overton [8], the joint likelihood

function for the whole t samples can be expressed as

L(f0,:::,ftDw)~
N

f0:::ft

� �
p0(w)ð ÞN{n P

t

i~1
pi(w)ð Þfi , ð1Þ

where pi(w)~
Ð1
0

t

i

� �
pi(1{p)t{iw(p)dp. pi(w) is the probability

for the t samples with i unique individuals in the multinomial

distribution. The integration in pi(w) removes the impacts of a

random sample of pi
0s. Based on the above general framework,

Burnham and Overton [8] developed a kth-order jackknife

estimator for population size N. Using the same framework, Chao

[10] developed an alternative non-parameter estimator (moment

estimator) of N. Here, we proceed with the same framework to

develop an unconditional MLE of N by hypothesizing two

different types of capture probability density distributions w(p).

Since a non-zero capture probability for each individual (pi=0,

i = 1,…, N) is assumed at each survey, the zero point as the lower

bound must be eliminated in calculating probability pi(w). In the

absence of prior information about individual capture probabilities, it is

difficult to determine the exact capture probability pi and probability

density function w(p) [21]. Biologically, different sources of uncontrol-

lable and unobservable variations can generate heterogeneity in

capture probability among individuals or the relative occurrences of

different individuals at each survey. This variation may arise from

behavioural difference among individuals or different foraging areas or

different exposures to traps [21]. How to determine such impacts on

the capture probability density distributions w(p) remains to be

explored. In this study, we consider two capture probability density

distributions that are suitable for a large population.

In Model I, we assume that the probability density function

(pdf), w(p) for a capture probability p has the following expression:

w(p)~Ch
(1{p)h{1

p
, ð2Þ
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where C{1~
Ð1

p0

hp{1(1{p)h{1dp, the total number of captures

given the minimum non-zero capture probability p0, and p0 is the

lower bound of capture probability. The biological meaning of

parameter h (.1) is termed as the average capture change per

individual per unit time. This setting is based on the biological

phenomenon that the observed abundance distribution,

fk(k~1,:::,t), frequently exhibits an ‘‘opposite J-shape’’ pattern

(Figure 1A). Many individuals are captured once and a few

individuals are captured more than once. w(p) can be used to

describe the phenomena in mark-recapture experiments where the

number of captured individuals decreases with the capture

probability p (without a long tail of frequency distribution).

Several considerations are needed in setting w(p) in Eq. (2). First,

the proper pdf w(p) is derived by normalizing the function

W(p)~hp{1(1{p)h{1 by considering p as the capture probability

for incidence data rather than the relative frequency for abundance

data (e.g., allele frequency in a population or the relative species

abundance in a community; [22]). Here, we borrow the function

W(p) from the neutral theory (the infinite number of allele model) in

molecular population genetics [23], [24]. W(p)dp is the expected

number of unique individuals whose capture probabilities (p) fall

within the range (p, p+dp) and
Ð1
0

pW(p)dp~1. In population genetics,

the function W(p) is the well known function for describing the

abundance distribution of neutral alleles in a closed population,

where h is the average number of alleles generated by mutation per

generation. Again, the conceptual difference is that p is not the gene

frequency (abundance data) but the capture probability (incidence

data) in this study. The capture distribution for an array of capture

probabilities is analogous in distribution pattern to but different in

biological meaning from the abundance distribution of an array of

gene frequencies [24], [25] (pp. 205–206). Second, for the

abundance model, W(p) (not pdf) is the same as the well-known

Fisher’s logarithmic series (discrete) distribution [14] except that

W(p) is the version for a continuous distribution ([26], p 250). Leigh

([27], Appendix 8.2) transformed Fisher’s logarithm series intoW(p).
Fisher’s a parameter in the logarithm series function is analogous to

h here, which is also analogous to Hubbell’s h in describing the

pattern of species richness and relative abundances in a neutral

metacommunity (the fundamental biodiversity parameter; [22],

[28]). Chao and Bunge [18] also employed this kind of function

(gamma-mixed Poisson) to derive the probability for the t samples

with i unique individuals for the abundance data, analogous in

concept to but different in expression to pi(w) here. In this study,

w(p) in Eq. (2) for the incidence data can be seen as the model

similar to the zero-truncated continuous version of Fisher’s

logarithmic series model. Third, the lower bound p0 for an

individual capture probability must be nonzero in biology except for

the case of extinction, although a zero bound is allowed from the

statistics point of view. One feature of the function w(p) is that its

integration value becomes substantially large as p0 becomes smaller,

given a constant population size ([25], p 210). How to determine the

lower bound remains to be explored in biology. In practice, it is

difficult to even catch the individual with the capture probability of

1%. One way is to directly estimate p0 by considering p0 as one

additional parameter. However, extensive simulations indicate that

this consideration leads to the difficulty of obtaining convergent

estimates (results not shown here). In the following parts, we set

p0 = 1/N, and this lower bound becomes sufficiently small (=0) as

the population size increases. Thus, Model I with 1/N as the lower

bound is suitable for a large population. It is noteworthy that, for the

abundance data, a setting similar to the above but with different

biological meanings exists in population genetics ([25], p 210; [29],

p 398) or in community ecology [22], [30], where C{1 represents

the total number of existent alleles in a population or existent

individuals in a metacommunity, respectively.

Since a non-zero capture probability is considered for each of N

individuals in the population, the lower bound in pi(w) is

Figure 1. The distribution of capture probability density. A:
Capture probabil ity density function (pdf) for Model I ,
w(p)~Chp{1(1{p)h{1 , given a population size N = 500: line for
h = 1.5, dashed line for h = 2.5, and dot dashed line for h = 3.5. The
skew of the capture probability distribution increases as the parameter
h increases. B: Capture probability density function (pdf) for Model II,

w(p)~C
C(azb)

C(a)C(b)
pa{1(1{p)b{1 , given a population N = 500: line for

a = 1, b = 3.0; dotted line for a = 2, b = 5 (skewed bell-shape); thick
dashed line (bell-shape) for a = 2, b = 2; dashed line (U-shape) for a = 0.5,
b = 0.5; and dot dashed line for a = 5, b = 1.0. An array of capture
probability distributions can be generated by changing parameters a
and b.
doi:10.1371/journal.pone.0034191.g001
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correspondingly changed, i.e.

pi(w)~

ð1
p0

t

i

� �
pi(1{p)t{iw(p)dp: ð3Þ

Here, p0 in pi(w) is set as 1/N, and the model is suitable for a large

population. The sum of pi(w) remains 1, i.e.
Pt
i~0

pi(w)~1.

The general likelihood function can be decomposed into two

sub-likelihood functions [15], [16], [18], [19], i.e. L~L1L2 where

L1~
N

nN{n

� �
1{p0(w)ð Þn p0(w)ð ÞN{n

and L2~
n

f1:::ft

� �
P
t

i~1

pi(w)

1{p0(w)

� �fi

. The difference from previous models is that each

sub-likelihood function (L1 or L2) is the function of two parameters
(N and h). Calculation of conditional MLE remains to be explored.

To derive the MLE of N and h, we simply use the global likelihood

function instead of decomposing it into two different components.

Like Stollenwerk and Jansen ([31], pp 185–191), we approximate

the population size N as a continuous variable in derivation.

Let r1(i,t,h,N)~
Ð1

1=N

pi{1(1{p)tzh{i{1dp, r2(i,t,h,N)~

Lr1(i,t,h,N)=Lh, and r3(i,t,h,N)~Lr2(i,t,h,N)=Lh. pi(w) can be

expressed as
t

i

� �
r1(i,t,h,N)=r1(0,0,h,N). Let y(x)~

L lnC(x)=Lx, the digamma function ( = 2c{1=xz
P?

k~1

x=

(k(xzk))), and y’(x)~Ly(x)=Lx, the trigamma function

(~
P?

k~0

1=(kzx)2)) [32]. Note that the first term in y(x) is Euler’s

constant c = 0.5772156649. The first- and second-order partial

differentials of the log likelihood function ln L with respect to N

and h are derived in Appendix S1. Population size N and the

parameter h can be solved using Newton and Raphson’s iterative

method (with a fast convergent speed):

Nkz1

hkz1

 !
~

Nk

hk

 !
{

L2 ln L=LN2 L2 ln L=LNLh

L2 ln L=LNLh L2 ln L=Lh2

 !{1 L ln L=LN

L ln L=Lh

 !
:

ð4Þ

The initial values for N and h in iteration can be set as n

and 0, respectively. Iterative calculations are continued till

convergence for each estimate is achieved. Note that no

failure convergence existed in all simulations described in

the next section. The variances for estimates N and h can be

calculated from the diagonal elements of the inverse variance-

covariance matrix (inverse of Fisher’s information matrix) at

convergence: V (N̂N)~{
L2 ln L

LN2

����
N~N̂N,h~ĥh

 !{1

and

V (ĥh)~{
L2 ln L

Lh2

����
h~ĥh,N~N̂N

 !{1

.

In Model II, w(p), is set as a zero-truncated beta distribution

function:

w(p)~C
C(azb)

C(a)C(b)
pa{1(1{p)b{1, ð5Þ

where C{1~
Ð1

p0

(C(azb)=C(a)C(b))pa{1(1{p)b{1dp (a,bw0).

The biological meanings of parameters a and b are termed as the

average capture changes per individual per unit time for

individuals with capture probabilities p and 12p, respectively.

This type of capture probability density function, similar to

Pearson’s Type I model ([26], p 248), can be used to represent a

variety of patterns of fi(i~1,:::,t) distributions under different

parameter settings, including the opposite J-shape pattern

(Figure 1B). The difference from Model I is that the pattern for

the capture-recapture frequencies generated by Model II is not as

highly skewed as that generated by Model I, i.e. a relative lower

heterogeneity in capture probability. When a~0, Model II

reduces to Model I. When p0~0, Model II reduces to the model

of a beta-binomial distribution mixture [21]. Shen and He [19]

recently also employed the beta function to describe species

richness distribution, but used a different zero- truncated

transformation by changing w(p). One constraint in Shen and

He’s model is that the setting of a~0 can lead their constant

K(a,b) to an infinite value, violating the condition in setting their

p(p) (equivalent to w(p) here). Again, p0 in pi(w) and w(p) is set as

1/N. Thus, Model II is suitable for a large population.

Like in Model I, Eq. (3) remains unaltered after changing the

lower bound in pi(w) by 1/N. To derive MLE, let

R1(i,t,a,b,N)~
Ð1

1=N

pazi{1(1{p)tzb{i{1dp, R2a(i,t,a,b,N)~

LR1(i,t,a,b,N)=La, R2b(i,t,a,b,N)~LR1(i,t,a,b,N)=Lb, R3a

(i,t,a,b,N)~LR2a(i,t,a,b,N)=La, R3b(i,t,a,b,N)~LR2b(i,t,a,b,N)

=Lb, and R2ab(i,t,h,N)~LR2a(i,t,a,b,N)=Lb. pi(w) can be ex-

pressed as
t

i

� �
R1(i,t,a,b,N)=R1(0,0,a,b,N). The first- and

second-order partial differentials of the log likelihood function

ln L with respect to N, a, and b are derived in Appendix S2.

Similarly, these three parameters can be estimated using Newton

and Raphson’s iterative method:

Nkz1

akz1

bkz1

0
BB@

1
CCA~

Nk

ak

bk

0
BB@

1
CCA{

L2 ln L=LN2 L2 ln L=LNLa L2 ln L=LNLb

L2 ln L=LNLa L2 ln L=La2 L2 ln L=LaLb

L2 ln L=LNLb L2 ln L=LaLb L2 ln L=Lb2

0
BB@

1
CCA

{1 L ln L=LN

L ln L=La

L ln L=Lb

0
BB@

1
CCA:
ð6Þ

The initial values during the iterative calculation can be set as n, 0,

and 0 for N, a, and b, respectively. Iterative calculations are

continued till convergence for each parameter. Note that non

convergence can occur under some parameter settings, such as the

case of a = 1 and b = 3.0 in simulations described in the next

section. The variances for estimates N, a, and b can be calculated

from the diagonal elements of the inverse variance-covariance

matrix at convergence.

Monte Carlo Simulations and Comparisons
Simulation Data Generation. To examine the properties of

the proposed models, we analyzed several sampling schemes based

on the distribution pattern of pi(w)(i~1,:::,t), generated by

different parameter settings in capture probability density

function w(p). The aims are (i) to look at the impacts of different

sampling schemes (the number of surveys) under a known

Animal Abundance in Ground Beef Batches
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population size N and parameters, and (ii) to look if some non-

parameter estimators perform well with the capture probability

distribution assumed in Models I and II since estimates of

population size are sensitive to the assumption of w(p) [21]. Similar

to Shen and He [19], three non-parameter estimators were

selected: the first-order jackknife estimator [33], Njack~

nz(t{1)f1=t, the bootstrap estimator [9], Nboot~nzPt
i~1

fi 1{i=tð Þt, and Chao-1 estimator [10], NChao~nzf 2
1 =2f2.

The jackknife and Chao-1 estimators only employ partial

information of capture-recapture frequencies; while the

bootstrap estimator employs the full capture-recapture

frequencies in the t surveys in a way different from the proposed

models. These three non-parameter estimators have been

extensively assessed in previous studies from the literature.

Given the population size N, the setting for a sample size is

constrained by the fixed sum ( = N) of the observed unique

individuals in total and the unobserved individuals. An arbitrary

setting of sample size n could result in the total population size

exceeding N according to the distribution pi(w). Thus, the

simulated samples for the proposed two- and three-parameter

models are generated in the following steps. Given a population

size N, t surveys, and parameter h for Model I, or parameters a
and b for Model II, calculate each probability pi(w) (i = 0,1,…, t).

Then, use these probabilities (multinomial distribution) to generate

the numbers of individuals with different capture-recapture

frequencies fi’s (i = 0, 1, …, t;
Pt
i~0

fi~N ). Note that the samples

of capture-recapture frequencies, generated by this way are

equivalent to those generated by Otis et al.’s [13] method that is

based on assigning each individual a certain capture probability

based on w(p). The routine of Press et al. ([34], pp 210–211) was

used to generate random numbers with uniform distribution

within (0, 1) for sampling purpose. The observed frequencies, fi’s

(i = 1,…,t), were then used to estimate parameters according to

Eq.(4) for Model I and Eq. (6) for Model II. We consider that the

convergence is reached when the absolute difference between two

consecutive iterative values is less than 1025 for each parameter

although an even smaller number can be set at the expense of

long-time iterations. Three non-parameter estimators were also

calculated from the observed fi’s (i = 1,…, t). One hundred

independent data sets were created, and each was used to estimate

all parameters. Means and standard deviations (Sd) of estimated

parameters were calculated from these replicated datasets. The

standard deviations for N, h, a, and b were also calculated from

averaged Fisher information index, in addition to empirical

standard deviations.

Several sampling schemes were simulated in Model I, with the

number of surveys increasing from 2 to 10 under three different

patterns of capture probability distributions (h = 1.5, 2.5, and 3.5;

Figure 1A). The distribution becomes more skewed as parameter h
increases from 1.5 to 3.5. In Model II, five different patterns of

capture probability distributions were simulated (Figure 1B): a = 1,

b = 3 (opposite J-shape); a = 2, b = 5 (skewed bell-shape); a = 2,

b = 2 (bell-shape); a = 0.5, b = 0.5 (U-shape); and a = 5, b = 1 (J-

shape) for the known parameter settings. These distribution

patterns may occur for the capture-recapture frequencies in

different animal species in trapping experiments or for plant

species in spatiotemporal quadrat surveys in ecology. Four

sampling schemes were simulated in each of the five patterns,

with the number of surveys increasing from 4 to 10. Programs in C

are available upon request from Hu.

Simulation Comparisons
In Model I, the average estimates of population size N̂N and

parameter ĥh in each of the three capture frequency distributions are

generally in good agreement with their actual values (Table 1). The

actual population size N and parameter h are within the ranges of

one standard deviation of estimates in each case. The standard

deviations for N̂N and ĥh calculated from the inverse of the Fisher

information matrix (not shown in Table 1) are consistent with the

empirical values for a large sample size (n). Generally, the standard

deviations for each parameter estimate decrease as the number of

surveys increases. Based on the distribution of probability pi(w), the

average number of sample size per survey (n=t) decreases as the

number of surveys increases from t = 2 to 10. The observable sample

size in total (n) generated from the probability distribution (pi(w),
i = 1,…, t) decreases as the capture probability distribution w(p)
becomes more skewed (h changing from 1.5 to 3.5; Figure 1A). The

results indicate that the combination of more surveys with a small

sample size per survey can produce better estimates than the

combination of a small number of surveys with a large sample size

per survey (Table 1). The three non-parameter estimators

substantially underestimate population size N although the average

estimates of population size increase with an increased number of

surveys (detailed data not shown here). When the capture

probability distribution w(p) becomes more skewed, the non-

parameter estimators produce severe underestimates of N. Standard

deviations exhibit different patterns for different non-parameter

estimators, but each is related to the extent of skewness of the

capture probability distribution. Thus, these non-parameter

estimators are not suitable for the population with the capture

probability distribution w(p) assumed in Model I where a high

heterogeneity of capture probability exists [35].

With Model II, the average estimates of N, a, and b become

closer to the actual values as the sampling scheme changes from

t = 4 to 10 in each of the five capture probability distributions

(Table 2). The actual population size and parameters (a, and b) are

within the ranges of one standard deviation of estimates in each

case. Again, the standard deviations of each parameter (N̂N, âa, and

b̂b) calculated from the inverse of the Fisher information matrix (not

shown in Table 2) are very close to the empirical values. The

standard deviations for each parameter estimate decrease as the

number of surveys increases from t = 4 to 10. The average

observed sample sizes (n) are closely related to the capture

probability distribution w(p) and exhibit considerable variation

among the five distributions. A trade-off relationship does not exist

between the number of surveys and the average number of

individuals captured per survey. In each case, the standard

deviations for observed sample sizes decrease as the number of

surveys increases from t = 4 to 10. Given a sampling scheme, the

observable sample size in total (n) is the smallest in the case a = 1

and b = 3, but the largest in the case of a = 5 and b = 1

(Figure 1B).The observable sample size in total (n) reaches the

maximum in the case a = 5 and b = 1 since almost all individuals

can be captured in this distribution (Figure 1B).

Unlike the results in Model I, Model II has a comparable

performance to the non-parameter estimators in four of the five

types of distributions, the exception being a = 1 and b = 3, where

underestimates are obtained (Table 2). The scheme with more

surveys can produce better estimates in each case. The results

indicate that the three non-parameter estimators generally

perform well for the capture probability distribution w(p) assumed

in Model II.
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Comparisons Using Published Empirical Data Sets
Here, we use two published datasets to demonstrate the

application of the proposed models. The first example is the

well-known Fisher’s butterfly data that was collected in Malaya

[14]. The paper provided the observed distribution of frequencies

of butterflies for species abundance ranging from 1 to 24 ([14],

p 43). This dataset has been examined for estimating species

richness by several researchers with different models, including the

Poisson-lognormal model ([36]; N̂N = 815643), the Poisson-inverse

Gaussian model ([37]; N̂N = 719), the Poisson-generalized inverse

Gaussian model ([38]; N̂N = 1000), and the mixed Gamma-Poisson

model [18]. Chao and Bunge [18] extensively analyzed this dataset

by using the cut-off point from t = 10 to 24 and compared six

different estimators. They concluded that a stable value of N̂N = 850

species was expected under the cut-off point below 24 (tƒ24). Like

Chao and Bunge [18], we estimated population size using the

same array of cut-off points. As summarized in Table 3 the

estimate obtained from Model II, N̂N = 825 (the average over all

cut-off points) is close to Bulmer’s ([36]; N̂N = 815) and Chao and

Bunge’s ([18]; N̂N = 850) results.

The second example is the experimental cottontail abundance

determined from two sets of live trapping data with known

population sizes. The first dataset was collected in the Olentangy

Wildlife experimental Station, Delaware County, Ohio, in

1961[39]. The second dataset was collected in 1963 at Robert

Allerton Park, Monticello, Illinois. In the first dataset (Ohio), the

observed capture-recapture frequencies from f1 to f7 were 43, 16,

8, 6, 0, 2, and 1. This dataset was also examined by several

researchers using different models, including Schnabel’s estimate

[40], Schumacher and Eschmeyer’s method [41], MLE and the

regression method based on the geometric model [39], and Chao-

1 estimator [10]. The results obtained from both the regression

method based on the geometric model and Chao’s non-parameter

estimator (N̂N = 133.8624.0 for Chao-1 estimator; [35]) are

consistent with the actual population size. Analysis with Model

II produces a negative a estimate, demonstrating a poor fit to the

capture-recapture frequency pattern assumed in Model II.

Analysis with Model I produces MLE N̂N = 211.3631.7 and

ĥh = 2.4960.52. N̂N is overestimated (actual value N = 135) because

of a low heterogeneity (the coefficient of variation (CV) for the low

captured individuals = 0.619; [42]). This indicates that the actual

capture probability distribution in this population (a low

heterogeneity and a small population size) is biased from w(p)
assumed in Model I (a large population and a high heterogeneity,

say CV.0.8; [35]). In the second dataset (Illinois), the observed

capture-recapture frequencies from f1 to f6 were 36, 15, 13, 3, 1,

and 1. Chao-1 estimator gives N̂N = 112.2619.4 with a low to

moderate heterogeneity (CV = 0.382). Model II produces

N̂N = 136.9647.6, âa = 0.5560.78, and b̂b = 3.5762.13, which is

fairly close to the actual population size (N = 130; [39]).

Applications to Ground Beef Batches
We now apply the proposed models to estimate the number of

unique animals in ground beef batches (one batch is considered as

one population). We had 57 time sequenced ground beef samples

(each sample ,250 g) taken from six 1 tonne batches from a single

manufacturing line during a single production shift. There are 10

samples, analogous to the field surveys (sampling with replace-

ment) in animal ecology [4], from Batches I to IV (manufacturing

ID: 5.2, 5.3, 5.7, and 5.9), 9 samples from Batch V (ID: 5.11), and

8 samples from Batch VI (ID: 5.13). In each sample, we dissected

94 individual muscle fiber sub-samples, yielding 752,940 sub-

samples, extracted DNA, and genotyped over 30 SNP markers

(,160,000 genotypes in total). Missing genotypes were marked but

excluded in analysis.

Several methods were applied to estimating the unique number

of animals in individual batches and samples. One is the use of

Table 1. Mean estimates and their standard deviations of
Model I under different parameter settings.

Cases �n+Sd N̂+Sd ĥ+Sd

h = 1.5,
N = 500

t = 2 93.7467.68 510.716121.31 1.5860.46

4 140.24610.61 512.49669.63 1.5660.25

6 169.72610.45 498.98645.39 1.4960.20

8 191.70610.76 504.93644.81 1.5460.18

10 209.08611.58 502.61639.52 1.5360.17

h = 2.5,
N = 500

t = 2 69.1867.37 572.456218.27 2.9561.28

4 107.5967.76 504.87677.30 2.6460.51

6 138.91610.16 511.75667.41 2.5960.42

8 160.26610.72 504.08654.24 2.5660.38

10 177.88610.52 504.80644.97 2.6060.35

h = 3.5,
N = 500

t = 2 54.5266.79 584.846352.66 4.3763.28

4 90.9668.43 520.36698.50 3.8060.85

6 117.6269.28 496.36677.58 3.5760.68

8 139.48610.16 502.29657.80 3.6460.57

10 160.15610.20 510.78653.21 3.6060.50

h = 1.5,
N = 1000

t = 2 168.82611.65 1027.956182.73 1.5660.31

4 245.90611.89 993.45691.11 1.5360.18

6 301.76615.12 1017.68678.31 1.5660.15

8 341.80613.74 1009.77668.05 1.5360.13

10 373.13616.84 1003.89663.04 1.5260.14

h = 2.5,
N = 1000

t = 2 119.8569.95 1047.936270.27 2.6960.74

4 193.62612.32 1033.996133.52 2.6160.43

6 240.66612.99 995.566106.77 2.5460.34

8 280.63616.08 1004.20684.92 2.5760.29

10 314.34614.89 1012.70674.53 2.5860.23

h = 3.5,
N = 1000

t = 2 95.58610.03 1039.756336.73 3.7261.29

4 162.24611.58 1057.766176.93 3.7160.69

6 207.03612.98 1006.416105.71 3.5860.49

8 247.82613.41 1022.14691.10 3.5960.41

10 277.06614.47 1007.08688.68 3.5660.39

Simulation results were obtained from 100 independent runs*.
*: �nn: the average sample size for the t surveys; N̂N : the average estimate of
population size; ĥh: the average estimate of parameter h; Sd : the standard
deviation.
doi:10.1371/journal.pone.0034191.t001
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GENECAP [43] where pairwise matching probabilities, in terms of

the probability of identity (PI) were calculated assuming both

Hardy-Weinberg equilibrium (HWE) for genotypic frequencies

and linkage equilibrium. HWE was tested using GENEPOP software

[44], showing that 6 out of 180 tests (,3% in total) were not in

HWE (see results below). Linkage disequilibria (LD) for all

pairwise SNPs in each batch were tested using GENEPOP software

as well, showing that all used SNPs were essentially in linkage

equilibrium (see results below). The average multilocus PI in each

batch is much smaller than 1025 by using 25–30 SNP markers,

which ensures the appropriate use of these markers for identifying

individuals for estimating population size (mark-recapture

method) [45], [46],[47], [48]. The modified Lincoln–

Petersen method with the assumption of equal capture probability

(homogeneous) was used to estimate population size N [4]. Each

batch was separated in half for estimating recapture frequencies

between two pooled samples. Population size N and its variance

are calculated by N~
(Mz1)(Cz1)

Rz1
and

V (N)~
(Mz1)(Cz1)(M{R)(C{R)

(Rz1)2(Rz2)
, where M is the total

number of animals captured and marked in one pooled sample, C

is the total number of animals captured in the second pooled

sample, and R is the number of animals recaptured in the second

pooled sample.

In order to apply the proposed models to estimating N, we

need to calculate the observed capture-recapture frequencies, fi’s

(i = 1,…,t). The following steps were conducted. First, we

identified the number of unique animals based on the statistical

test (Pearson’s correlation with student’s t-test) of multilocus

genotype matches with 30 SNP genotypes, removing the HWE

assumption for calculating PI. Note that all pairs of SNPs were

essentially independent from each other in each batch (see LD

tests below). In order to identify unique individuals in a given

sample, the individual SNP genotypes were transformed into

numerical values. For example genotypes AA, AT, and TT were

assigned 2, 1, and 0, respectively. Missing genotypes were

designated another number and removed from the calculation.

Pearson’s correlation for each pair of individuals was tested using

the significant level by Bonferroni correction (the type I error for

the entire test was controlled at 1%). Two individuals are

considered to be identical when they matched exactly, and

replicates were removed from the analysis. Second, using the

above described method, we identified the number of unique

animals in each batch, i.e. n ( =
Pt
i~1

fi) in the proposed model, by

pooling all t samples that consisted of unique individuals. Third,

using the same method as in the first step, we compared each of

the t samples with the batch population (n individuals) and

Table 2. Comparison of the proposed three-parameter model with three existing non-parameter estimators (the true population
size N = 500, and 100 independent simulations).

Cases �n+Sd N̂+Sd â+Sd b̂+Sd N̂Chao+Sd N̂jack+Sd N̂boot+Sd

a = 1, b = 3

t = 4 283.7669.53 448.21673.77 1.8860.96 4.5061.77 395.72623.81 388.15614.60 333.44611.57

6 336.97610.09 486.92648.70 1.2260.38 3.3560.72 419.90620.30 439.56615.53 387.34613.85

8 364.4569.66 503.40641.32 1.0560.29 3.1660.57 437.71619.41 461.94614.41 413.01611.18

10 387.67610.04 496.06633.13 1.1160.26 3.2260.50 446.74617.96 474.24615.38 431.93610.20

a = 2, b = 5

t = 4 332.68611.00 465.43639.80 4.3863.93 9.1067.00 451.53622.52 453.58616.18 390.77613.12

6 387.2169.54 500.93639.61 2.3760.90 5.7761.75 472.74623.28 502.04616.02 444.57611.76

8 416.9868.44 496.26623.42 2.2760.62 5.6161.25 475.62615.92 513.26613.57 467.52610.25

10 435.5867.32 496.74614.64 2.1260.41 5.3060.85 479.67612.68 516.17610.99 479.5368.24

a = 0.5, b = 0.5

t = 4 371.65611.02 492.16645.44 0.5960.24 0.5360.10 416.47616.47 431.40613.82 401.74612.03

6 396.8768.45 492.12627.83 0.5560.12 0.5260.06 436.41614.42 449.47611.44 423.4569.46

8 413.7267.58 504.01628.36 0.5160.13 0.5160.06 451.14615.18 462.69610.92 438.4168.45

10 422.9467.04 499.84619.17 0.5160.11 0.5160.05 452.48612.85 465.8169.60 445.0567.66

a = 2, b = 2

t = 4 427.0567.69 495.21622.99 2.3060.83 2.2060.63 477.43614.04 511.45611.96 471.1069.05

6 457.8565.74 496.60611.54 2.2160.43 2.1760.35 486.68610.57 516.4969.47 490.8766.52

8 472.5164.83 498.8968.84 2.0960.33 2.0860.29 491.8968.12 515.2768.21 497.6765.77

10 480.1364.51 497.5365.79 2.1360.24 2.1160.23 493.5066.14 510.9766.13 499.0864.73

a = 5, b = 1

t = 4 496.1261.95 499.2662.43 6.0162.08 1.1760.38 499.4262.55 510.3264.04 506.3962.37

6 499.0760.99 499.7561.20 4.8160.79 0.9760.15 500.2161.34 503.9561.99 503.2961.32

8 499.4060.70 498.3360.70 3.9260.46 0.8860.11 499.8260.93 500.8061.39 501.0760.80

10 499.9160.29 499.4660.30 5.2160.70 1.0360.13 500.1960.76 500.5460.81 500.7260.46

doi:10.1371/journal.pone.0034191.t002
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calculated the capture-recapture frequency of each of the n

individuals in the batch, i.e. the estimates of fi (i = 1,…, t). In fact,

our observations indicated that all exactly matched individuals

(within or among samples) in our data sets of this study were

identical in each of all genotypes (Pearson’s correlation

coefficients = 1.0). Once the observed frequencies ( fi’s) are

available, the proposed models are then applied for estimating

N. Two programs were written in SAS codes for this purpose and

are available upon request from Hu.

As references, additional non-parameter estimators for unequal

capture probability models were also applied, including Chao-1

estimator [10], the abundance-based coverage estimator (ACE)

[12] and the first- and second-order jackknife estimators [8].

MLE based on the mixed Gamma-Poisson model was employed

where fi (i = 1, 2, …, t) was assumed to follow Poisson distribution

while p in w(p) was assumed to follow a gamma distribution [18].

To measure the degree of heterogeneity among capture

probabilities, the coefficient of variation (CV) for the low

captured individuals was calculated (for formula, see [42]).

Population size N with all these non-parameter estimators and

Chao and Bunge’s estimator can be estimated using SPADE

software [35].

Results

Population genetic analysis indicates that gene diversity

( = 1{
P2
i~1

q2
i , qi is the frequency of the ith allele at a SNP site)

was about 0.46 per SNP for all six batches (Table 4). Among the

total of 180 tests of the selected 30 SNPs in all batches, only six

tests were in Hardy-Weinberg disequilibrium (Table 4; P-

value,0.0003), indicating that most batches were essentially in

HWE. Batch-based LD tests indicate that only two pairs of SNPs

in Batch 6 (SNPs 14 and 19, SNPs 21 and 24; P-value,2.2|1025)

were in LD. Thus, SNP-17 in Batch 3, SNP-19 in all six batches,

and SNP-21 were removed for further analyses. All SNPs

eventually used in this study were independent from each other

and in HWE.

Table 5 summarises the observed capture-recapture frequen-

cies, fi’s(i = 1,…,t), in all six batches, showing that all batches

except Batch 1 displayed a highly skewed distribution of capture-

recapture frequencies. CV estimates were 0.586, 0.893, 1.255,

0.836, 1.003, and 0.732 for Batches 1, 2, 3, 4, 5, and 6,

respectively, indicating a high heterogeneity in capture probability

in Batches 2, 3, 4, and 5 (CV.0.8), but not in Batches 1 and 6

(CV,0.8; [35]). As expected, Lincoln–Petersen’s estimator

severely underestimated population size due to the presence of

heterogeneous capture probability in each batch that violated the

assumption of homogeneous capture probability in this method.

As suggested by Chao and Shen [35], the Chao-1 estimator (for a

low to moderate heterogeneity in capture probability) produced

the lower bound estimates of population size, but its estimates were

greater than those obtained with Lincoln-Petersen’s estimator.

The first- and second-order jackknife estimators provided

comparable estimates to Chao-1 estimator. Chao and Shen [35]

recommended the use of ACE-1 for the population with a high

heterogeneity (CV.0.8) since this estimator uses the information

on a highly heterogeneous capture probability in estimation. The

ACE-1 estimator produced higher estimates of population size for

Batches 2, 3, 4, and 5, N̂N = 576.8,1011.3, but not for Batches 1

and 6. Batch 3 had the largest population size, followed by Batch

5, which was consistent with the rank of CV values.

The mixed Gamma-Poisson model [18] provided larger

estimates of population size for Batches 2 (N̂N = 821.86287.3),

4(N̂N = 771.46231.5), and 6 (N̂N = 667.76264.7). Iterations were

not convergent for Batches 3 and 5 due to the high heterogeneity

in capture probability (Table 5).

With application of the proposed models in this study, we first

applied Model II to obtain MLE of N, a, and b because Model I is

the specific case of Model II. If the estimate of a is negative, we

then apply Model I. Results indicate that a estimates were negative

in all batches except Batch 1. Thus, we used Model II to analyze

Batch 1 data and Model I to analyze the other batches. The

population size in Batch 1 was 411.4656.3, but the 95%CI

(confidence interval) overlapped with the 95%CI obtained from

the second jackknife estimator. The average population sizes were

greater than 1000 (1011,1367) in the remaining batches. Since a

very high heterogeneity in capture probability exists in Batches 2–

6, all the examined non-parameter methods produce severe

underestimates of population [35], as indicated from the

simulation results in the preceding section. The capture probabil-

ity distributions in these batches more likely follows the assumption

of w(p) in Model I, and the estimates of population size are close to

their actual sizes (see simulation results for N = 1000 and t.6 in

Table 1). Estimates in Batches 2, 4, and 6 with Model I were

mainly distributed within the 95%CI obtained from the mixed

Gamma-Poisson estimator. Estimates, ĥh’s, were positively related

to the CV values, reflecting the extent of heterogeneity in capture

probability.

Discussion

In this study, we proposed two related statistical models for

estimating the number of animals in a population. One uses a

model similar to the modified continuous version of Fisher’s

logarithmic series model to describe capture probability density

function w(p) (Model I); while the other uses the modified beta

function to describe w(p) (Model II). Model I is the specific case of

Model II. In each model, the lower bound for capture probability

is truncated by 1/N, and this lower bound approaches zero as the

Table 3. Estimates of species richness for Fisher’s butterfly
data [14] with Model II.

t n N̂+Sd â+Sd b̂+Sd

10 385 822.36107.0 0.033460.0845 0.931860.1166

11 397 802.8694.7 0.059860.0823 0.989560.1200

12 411 822.9692.0 0.044060.0764 0.947460.1114

13 417 777.3678.2 0.103060.0789 1.106060.1277

14 429 814.4680.9 0.061860.0724 1.010960.1156

15 435 790.8672.9 0.094660.0728 1.112260.1244

16 444 810.5673.2 0.073260.0689 1.066760.1181

17 453 825.0672.3 0.059260.0656 1.032460.1122

18 459 815.7668.0 0.073660.0650 1.082660.1160

19 469 844.9669.8 0.041560.0607 0.990860.1048

20 479 862.1669.5 0.026060.0576 0.936960.0969

21 490 880.1669.1 0.011160.0547 0.878660.0887

22 495 856.1663.1 0.041660.0553 0.959860.0951

23 498 835.6658.6 0.069260.0564 1.051660.1039

24 501 825.6656.0 0.084160.0568 1.114560.1104

The same array of surveys (t) as Chao and Bunge [18], with t changing from 10
to 24, was used to estimate N.
doi:10.1371/journal.pone.0034191.t003
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population size increases. This way of removing the non-captured

probability is more meaningful since the capture probability for

each individual must be nonzero in biology (each individual must

be obtainable in theory) although the lower bound may be allowed

to be zero in statistics. The idea is different in biological meaning

from Wright’s thinking in calculating the existent alleles in a

population ([29], p 398) or a similar way in calculating existent

individuals in community ecology [22], [30] for the abundance

data. Good ([26], pp 251–252) discussed the truncated distribution

related to Model I for the abundance data, but did not discuss how

to determine the lower bound. In general, Model I is suitable for

the population with a very high heterogeneity in capture

probability (say, CV.0.8) and a large population size; while

Model II is suitable for the population with a relatively lower

heterogeneity in capture probability (say, a moderate heterogene-

ity; [35]) and a relatively smaller population size. Both Models I

and II provide new additions to the incidence-based methods of

estimating population size.

Selection of appropriate model is important for analyzing

empirical data since each model has its own strength and

limitation. Estimates of population size for parametric models

are sensitive to model assumptions about the capture probability

density distribution [21]. Bunge and Barger [17] reviewed several

parametric models for the abundance data and discussed the

connection between abundance and incidence models. Our

proposed two models are based on incidence data samples. The

strength of Model I is its suitability to the population of a very high

heterogeneity in capture probability and its better performance

over the existing non-parameter estimators. One caution is that a

slightly positive bias for the mean estimate may occur although the

actual parameters are not significantly different from estimates (the

actual values are within the ranges of one standard deviation). The

weakness of Model I is that a substantially biased estimate can be

produced when the heterogeneity in capture probability is low or

moderate, as indicated from the example of experimental

cottontail abundance. Model II has comparable performances

Table 4. Gene diversity (H) and P-values (P) for statistically testing Hardy-Weinberg disequilibrium in six ground meat batches.

SNPs Batch 1 Batch2 Batch 3 Batch 4 Batch 5 Batch 6

H P H P H P H P H P H P

1 0.479 0.691 0.487 0.901 0.489 0.128 0.497 0.726 0.492 0.209 0.498 0.431

2 0.416 0.761 0.405 0.567 0.437 0.036 0.399 0.001 0.394 0.193 0.402 0.738

3 0.488 0.242 0.491 0.464 0.482 0.704 0.498 0.151 0.498 0.133 0.500 0.045

4 0.439 0.236 0.416 0.777 0.403 0.301 0.411 0.085 0.393 0.202 0.383 0.385

5 0.456 0.093 0.447 0.195 0.455 0.147 0.427 0.132 0.416 0.010 0.426 0.061

6 0.459 0.484 0.468 0.452 0.473 0.527 0.460 0.379 0.456 0.100 0.448 1.000

7 0.496 0.795 0.499 0.808 0.500 0.559 0.501 0.637 0.501 0.601 0.500 1.000

8 0.421 0.763 0.402 0.117 0.407 0.150 0.443 0.792 0.390 0.631 0.419 0.868

9 0.495 0.606 0.496 0.907 0.501 0.200 0.497 0.132 0.501 0.047 0.501 1.000

10 0.498 0.070 0.501 0.729 0.481 0.804 0.494 0.023 0.497 0.312 0.472 0.327

11 0.500 1.000 0.501 0.487 0.488 0.477 0.501 0.817 0.500 0.703 0.501 0.702

12 0.477 0.786 0.461 0.614 0.498 0.188 0.483 0.809 0.486 0.366 0.487 0.219

13 0.455 0.198 0.472 0.266 0.415 1.000 0.413 1.000 0.441 0.157 0.446 0.647

14 0.406 0.436 0.390 0.292 0.397 0.747 0.409 0.185 0.415 0.051 0.438 0.363

15 0.455 0.484 0.435 0.410 0.439 0.323 0.460 0.441 0.448 0.204 0.474 0.774

16 0.500 0.373 0.501 0.232 0.498 0.191 0.500 1.000 0.500 1.000 0.501 0.074

17 0.474 0.009 0.463 0.374 0.493 0.000 0.462 0.009 0.454 0.405 0.464 0.007

18 0.501 0.073 0.498 0.356 0.500 0.058 0.499 0.726 0.497 0.540 0.497 0.505

19 0.492 0.000 0.471 0.000 0.490 0.000 0.477 0.000 0.469 0.000 0.488 0.018

20 0.491 0.896 0.500 0.806 0.491 0.814 0.497 0.908 0.500 0.625 0.499 1.000

21 0.501 0.199 0.495 0.098 0.491 0.003 0.501 0.019 0.497 0.270 0.500 0.237

22 0.488 0.432 0.495 0.119 0.492 0.401 0.491 0.004 0.494 0.622 0.498 0.789

23 0.420 0.355 0.427 0.889 0.438 0.000 0.468 0.699 0.478 0.701 0.474 0.676

24 0.492 0.601 0.485 0.024 0.500 0.074 0.489 1.000 0.484 0.798 0.498 0.017

25 0.312 0.407 0.302 0.165 0.270 0.016 0.249 1.000 0.283 0.654 0.263 0.208

26 0.483 0.354 0.475 0.703 0.493 0.629 0.474 0.328 0.460 0.286 0.490 0.343

27 0.432 0.878 0.458 0.620 0.403 0.375 0.430 1.000 0.439 0.486 0.417 0.877

28 0.413 0.877 0.398 0.881 0.395 0.771 0.430 0.179 0.427 0.087 0.434 0.168

29 0.497 0.056 0.499 1.000 0.499 0.821 0.499 0.819 0.495 0.027 0.485 0.891

30 0.472 0.286 0.468 0.459 0.472 0.190 0.467 0.211 0.474 0.348 0.475 0.779

Average 0.464 0.460 0.460 0.461 0.459 0.463

doi:10.1371/journal.pone.0034191.t004
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with other existing non-parameter models in the presence of a

relatively lower heterogeneity in capture probability or in the case

of capturing a large proportion of population. The setting of 1/N

as the lower bound predicts a better performance of Model II for a

large population, as indicated from the example of Fisher’s

butterfly datasets.

It is important to understand that many distinct processes may be

involved in generating a highly heterogeneous capture probability in

a single manufacturing batch. Most meat in a ground beef batch

comes from off-cuts or trimmings. These raw materials are usually

blended during processing as it would be entirely impractical and

uneconomic to process, label or tag each component separately

[49]. Because different animals exhibit wide variation in meat and

fat content, the quantity and quality of trimmings varies

considerably among animals. Thus, different animals have quite

variable contributions to a single beef batch. This forms the

biological basis for generating heterogeneous capture probability

although sampling process or animal behaviours could likely modify

w(p). Many thousands of animals are processed per day in large

scale slaughterhouses, and this may subsequently result in a large

number of animals in a single grind batch. In addition, the number

of animals in a single batch is affected by several factors in the supply

chain, including the specific grind manufacturing process, the

number of diverse farms providing cattle to the processors, the scale

of production and the use of lean finely textured beef (LFTB). These

processes could explain the highly skewed pattern of capture-

recapture frequencies in the five batches. Many animals can be

captured with a low frequency (e.g., once) and a few animals can be

captured multiple times.

The observed capture-recapture frequencies, fi’s (i = 1,…, t), in

six manufacturing batches indicate a high heterogeneity in capture

probability in a single ground beef batch. A highly skewed opposite

J-shape in five batches (Batches 2–6) implies that a potentially

large number of individuals are present in them. An average of

411 to1367 animals was present in the six grind batches. These

estimates indicate high variation in the number of animals among

different batches from the same manufacturer on a single

production line during a single production shift. From the

manufacturing records, the batches examined here were com-

pounded from raw materials consisting of 3 grades of fresh and

frozen beef trim with unequal weights of components among

batches. In addition up to 10% of each batch was comprised of

LFTB and rework. Animal abundance in each raw material is

unknown a priori. The estimates derived here are informative as a

reference in decision-making in the case of food safety recalls.

It is of interest to compare the similarity and difference in mark-

recapture experiments between the conventional field of animal

ecology [4] and the laboratory or non-invasive DNA-profile

detection in a ground beef batch. Both animal abundance and

habitats/behaviours can affect the capture probability distribution

w(p) in field animal surveys. With the ground beef batch,

population composition can affect the heterogeneity in capture

probability if the samples for DNA profile testing are randomly

taken. Further, use of DNA profiles to identify individuals can

result in false positive capture if the number of markers is small

[46]. One striking difference is that multiple copies of the same

animal can occur in one survey in a grind batch, but infrequently

take place in the field animal survey. The marked animals are not

recorded twice in a single survey. In a single grind batch, the same

DNA profiles from different parts of one animal could be sampled,

similar to DNA samples from multiple shed hair samples of

animals [50]. Thus, to employ the standard mark-recapture

method, the duplicated DNA profiles must be removed in a single

survey. Lukas et al. [50] proposed an alternative likelihood

function that can use the duplicated DNA profiles in a single

survey, but the proposed algorithm is too complex for application.

Table 5. Estimates of the number of animals in different ground meat batches (point estimates 6 standard errors).

Model

Capture-
recapture
frequency Batch 1 Batch 2 Batch 3 Batch 4 Batch 5 Batch 6

f1 94 159 199 164 186 142

f2 59 59 49 61 49 53

f3 44 40 25 47 17 22

f4 26 20 11 12 9 10

f5 11 7 2 7 5 3

f6 4 6 6 6 0 3

f7 6 3 2 3 3 1

f8 1 2 1 3 0 0

f9 2 2 2 0 0

f10 0 0 0 0

Lincoln–Petersen method 291633 419657 491685 427660 453687 365623

Chao-1 321.9620.2 512.2646.3 701.1683.8 523.5646.9 622.0674.7 424.2643.5

1st order jackknife 340.8613.7 456.7617.8 495.6619.9 466.7618.1 454.6619.3 375.6616.8

2nd order jackknife 375.8623.7 556.5630.8 645.1634.5 569.5631.3 591.0633.3 464.3629.1

ACE-1 331.6621.6 576.8662.1 1011.36169.8 577.9660.2 823.56136.8 484.8662.8

Gamma-Poisson-MLE 335.9627.1 821.86287.3 not convergent 771.46231.5 not convergent 667.76264.7

Proposed model-MLE 411.4656.3
(a = 0.6760.29,
b = 3.6960.86)

1042.6680.1
(h = 2.7760.29)

1298.86113.7
(h = 4.3160.49)

1111.0686.4
(h = 2.6260.27)

1366.86135.4
(h = 4.2360.52)

1010.8699.3
(h = 3.3760.42)

doi:10.1371/journal.pone.0034191.t005
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So far, the mechanisms for generating the pattern of capture

probability distribution w(p) have not been fully examined except

for the application of Fisher’s logarithmic series [18]. Also, the

conventional mark-recapture framework has not been linked to the

relevant biological mechanisms for maintaining a closed population

and the relationship between the capture probability distribution

and population composition or animal activities. In most situations,

the assumption of a closed population holds in multiple field surveys

within short-time intervals (no change of population size through

births, deaths, immigration and emigration). Fisher’s logarithm

series model or the more explicitly continuous version indeed refers

to the case of neutral metacommunity or completely isolated

community with a fixed size [28], [30]. The capture probability

distribution in Model I reflects the pattern in a closed population.

Unlike Model I, Model II is probably more flexible for a closed

population or an open population (e.g., the carry-over between

batches in the same manufacturer) with a fixed population size N.

Previous theories in population genetics demonstrate that the beta

function can be used to describe the distribution of gene frequency

(abundance data) in a local open population with a fixed size ([29],

p 362), given the presence of a constant ratio of effective (Ne) versus

real (N) population sizes. Bunge and Barger [17] have discussed the

connection of the beta-distribution for incidence model to the log-

beta distribution for the abundance models. Such a connection

needs further exploration from the zero-truncated beta function for

incidence model to the function for the abundance model. It cannot

be excluded that exchanges of individuals may generate an array of

patterns of capture probability distributions in an open population

(Figure 1B). Different from the model of Jolly [51] and Seber and

Manly [52], Model II can deal with the case of heterogeneous

capture probability. Previous models for an open population

assumed constant homogeneous capture probability [5], [53], but

their comparisons with Model II need empirical evaluations.

To apply the proposed models for estimating animal abundance

in a single batch, the following steps are needed. First, we need to

select appropriate markers to identify individual profiles. For a single

marker, a large gene diversity or heterozygosity should be selected.

For multiple markers, linkage equilibria among them should be

required so as to avoid redundant information. The number of

markers can be decided by their joint PI (PIjoint~ P (PIsingle locus)),
or more conservatively by the joint PI of sibs as the reference. Waits

et al. [48] suggested that the number of markers generating a joint

PI,0.0001 can be used for mark-recapture analysis. The present

study sufficiently meets these two criteria. Second, we need to decide

an appropriate survey scheme. Our simulation results recommend

that the scheme of multiple surveys, each with a relatively small

sample size, is better than the scheme with limited surveys, each with

a relatively large sample size. Multiple surveys with small sample

sizes are better in reflecting the true pattern of capture-recapture

frequency. However, this is not the case for the non-parameter

estimators that rely on the frequencies of one- and two-time captures

(e.g., f1 and f2 in Chao’s estimator [10]). Third, the capture-recapture

frequencies, fi’s (i = 1,…, t), can be calculated by either GENECAP

(HWE and without LD; [43]) or the Pearson’s coefficients (without

LD) used in this study. Fourth, once all capture and recapture

frequencies ( fi ’s) are available, MLE can be obtained by applying the

proposed models. The advantage of the proposed model over some

non-parameter models lies in that the full information on capture-

recapture frequency is employed. Further, MLE becomes unbiased

as the total number of captured individuals (n) increases in multiple

surveys.

Finally, in the phase of meat processing, tracing the finished

ground meat products inevitably involves decision-making on

tracing within and between batches. Our results recognize the

complexity of tracking and tracing ground meat batches based on

the trimmings since more than 1000 animals could be included in

a single grind batch. Grinding operations are the last phase before

the market or end-users in the meat supply chain [49]. The

existing meat traceability systems are primarily documented in

regards to the primal cuts [54] and have inadequate tracing of the

mixed trimmings. Also, analysis with GENEPOP indicates that

population (batch) differentiation was very small among these six

batches, with the 95%CI for multilocus Fst being within [0.1%,

0.2%] (detailed results not shown here). Further extensive analysis

is needed to investigate batch differentiation using measures

differing in sensitivity to population differentiation. With the use of

Models I and II, a large number of animals comprise each batch of

ground meat. Based on this premise, a sampling scheme can be

implemented which provides sufficient DNA information to

effectively differentiate ground meat batches. Development of

additional statistical models to establish a reliable framework for

the genetic characterization of individual ground beef batches is

undertaken. Establishing methods by which individual ground

beef batches can be identified can significantly reduce the scope of

a product recall in the event of a contamination incident. For

instance, contamination with E. coli 0157:H7 accounts for 24% of

FSIS recalls in the United States in 2009 [55].This would have a

significant impact on the economics and efficiency of the recall

process.
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