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Abstract

Standard cytotoxic chemotherapy for Hodgkin Lymphoma (HL) has changed little in 30 years; the treatment for patients
with relapsed or refractory disease remains challenging and novel agents are under development. JAK/STAT constitutive
activation plays an important role in the pathogenesis of HL. Lestaurtinib is an orally bioavailable multikinase inhibitor that
has recently been shown to inhibit JAK2 in myeloproliferative disorders. The potential role of Lestaurtinib in HL therapy is
unknown. We have analyzed the effect of Lestaurtinib treatment in five HL cell lines from refractory patients, L-428, L-1236,
L-540, HDML-2 and HD-MY-Z. At 48 h, a dose-dependent cell growth inhibition (23%–66% at 300 nM) and apoptotic
increment (10%–64% at 300 nM) were observed. Moreover, Lestaurtinib inhibited JAK2, STAT5 and STAT3 phosphorylation
and reduced the mRNA expression of its downstream antiapoptotic target Bcl-xL. In addition, we have analyzed the effect of
Lestaurtinib treatment in lymph nodes from four classic HL patients. We observed a decrease in cell viability at 24 hours of
treatment in three patients (mean decrease of 27% at 300 nM). Our findings provide, for the first time, a molecular rationale
for testing JAK2 inhibitors, specifically Lestaurtinib, in HL patients.
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Introduction

Hodgkin lymphoma (HL) is characterized by the presence of a

small proportion of tumor cells, the Hodgkin/Reed Sternberg

(HRS) cells, surrounded by a specific non-tumor microenviron-

ment. HRS cells usually account for only 1% of cells in the tumor

tissue, and few cell lines have been established from HL patients.

To date, the most frequent genetic alterations in HRS cells involve

members of two main signaling pathways: nuclear factor-kappaB

(NF-kB) and Janus kinase-Signal transducer and activator of

transcription (JAK/STAT) [1].

The JAK2/STAT5 pathway is a common signaling pathway

used by many cytokines that regulate target gene expression

related to cell survival, proliferation, angiogenesis, and immune

evasion [2]. Bcl-xL is an antiapoptotic gene whose expression is

induced by STAT5 DNA binding, and activation of the JAK2/

STAT5 pathway can modulate apoptosis and survival through

Bcl-xL expression [3]. The JAK2/STAT5 pathway plays an active

role in HL, where genomic gains of JAK2 are frequently observed

[4], and where the suppressor of cytokine signaling 1 (SOCS1), a

negative regulator of JAK/STAT signaling, appears mutated and

inactivated [5]. While activating mutations in JAK2 have been

found in myeloproliferative disorders (MPD) [6], the expression of

JAK2 in primary mediastinal large B-cell lymphomas and HL is

not the result of mutations [7], although constitutive activation of

STATs has been observed [8]. Recently, our group has observed a

postranscriptional regulation of JAK2 mediated by a microRNA

(miRNA), miR-135a, whose expression was downregulated in HL

patients [9].

Although HL is considered one of the most curable human

cancers (cure rates of 80–90%) [10], the treatment of patients with

relapsed and refractory disease, especially those who relapse after

autologous stem cell transplantation, remains challenging. The

gold-standard therapy in HL is anthracycline-based, with

doxorubicin, bleomycin, vinblastine and dacarbacine (ABVD)

[11]. HL patients whose disease relapses after stem cell

transplantation are rarely cured with current treatment modalities.

Moreover, no new drugs have been approved for HL by the US

Food and Drug Administration (FDA) in more than 30 years [12].

Thus, new drugs and novel treatment strategies based on our

understanding of HL biology and signaling pathways are needed

to improve outcome for these patients. Several therapeutic targets,
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including JAK2, have been identified and continue to be studied

[4,13]. Novel JAK2 inhibitors have been developed and tested

[14], some of which are now being studied in phase I clinical trials

in HL [15].

Lestaurtinib (formerly known as CEP-701) is a multi-targeted

tyrosine kinase inhibitor which has been shown to potently inhibit

FLT3 at nanomolar concentrations in preclinical studies, leading

to its rapid development as a potential targeted agent in acute

myeloid leukemia [16]. Moreover, recent studies have further

shown that Lestaurtinib inhibitory activity is not limited to FLT3

and can suppress JAK2/STAT5 signaling through specific JAK2

inhibition [17]. In order to elucidate the potential role of

Lestaurtinib in HL, we have analyzed the in vitro effectiveness of

Lestaurtinib in five HL cell lines from refractory patients and its

role in the JAK2/STAT5 signaling pathway. In addition, we have

analyzed for the first time the effect of Lestaurtinib in lymph nodes

from classic HL patients by flow cytometry.

Materials and Methods

Cell culture and treatment
Five HL cell lines, L-428, L-1236, L-540, HDLM-2 and HD-

MY-Z (DSMZ - the German Resource Centre for Biological

Material) were assayed for proliferation and apoptosis after

treatment with Lestaurtinib (CEP-701 hydrate, Sigma-Aldrich,

St. Louis, MO) or DMSO (Sigma-Aldrich). L-428, L-1236 and

HDMYZ cell lines, were cultured in RPMI 1640 containing 10%

fetal calf serum (Invitrogen, Paisley, UK); the L-540 and HDLM2

cell lines were cultured in RPMI 1640 containing 20% fetal calf

serum (Invitrogen). For proliferation and apoptosis analyses, cells

(16105 cells/well) were plated in a 96-well plate in culture medium

in the presence of 30, 50, 70, 100, 150, 200 or 300 nM

Lestaurtinib or no drug/DMSO vehicle control. In addition, in

order to compare the effect of Lestaurtinib with doxorubicin, a

component of standard HL therapy, we performed a proliferation

analysis in cells treated with 300 nM of doxorubicin. For protein

analysis, cells (1.56106 cells/well) were plated in a 12-well plate

and treated with 30, 100 or 300 nM Lestaurtinib or 300 nM

DMSO. All cells were treated with a unique dose at the start of the

experiment, after which the medium was not modified or replaced.

Proliferation and apoptosis assays
Cell growth was determined by the CellTiter 96 AQueous One

Solution Cell Proliferation Assay (MTS) (Promega, Madison, WI).

At 48 h after treatment with Lestaurtinib or DMSO, MTS reagent

was added and cells were incubated for 30–60 mins at 37uC. Cell

proliferation was measured by OD 490 nm using a VersaMax

microplate reader (Molecular Devices, Silicon Valley, CA).

Caspase 3/7 activity was directly measured at 48 h after

treatment using a CaspaseGlo 3/7 kit (Promega) as per the

manufacturer’s protocol. At 48 h after treatment with Lestaurtinib

or DMSO, CaspaseGlo reagent was added and cells were

incubated for 1 hour at room temperature in the dark. Relative

light intensity was measured in each well using an Orion II

Microplate luminometer (Berthold Detection Systems, Black

Forest, Germany).

Western Blot analysis
Total protein was isolated using Qiagen Qproteome Mamma-

lian Protein Prep Kit (Qiagen, Hilden, Germany) according to

the manufacturer’s protocol. Equal amounts of proteins (50 mg)

were separated by SDS-polyacrylamide electrophoresis in 10%

Tris-HCl polyacrylamide gels and transferred to pure nitrocel-

lulose membranes (Trans-Blot Transfer Medium, Bio-Rad,

Hercules, CA). Membranes were incubated with antibodies

against JAK2 (Upstate, Millipore, Billerica, MA), phospho-

JAK2 (Tyr1007/1008), phospho-STAT5 (Tyr694) and phos-

pho-STAT3 (Tyr705) (Cell Signaling, Danvers, MA), STAT5

and STAT3 (Santa Cruz Biotechonology, Santa Cruz, CA) and

á-tubulin (Sigma) as control. Antibody binding was revealed by

incubation with anti-mouse (Sigma) or anti-rabbit (Santa Cruz

Biotechnology) IgG peroxidase conjugate secondary antibodies.

Chemiluminescence was detected using SuperSignal West Pico

Chemiluminescent Substrate (Pierce Biotechnology, Rockford,

IL) and read in Chemidoc System (Bio-Rad). The protein density

of the bands was quantified using Quantity One software v 4.2.6,

and relative quantification was calculated with reference to the á-

tubulin signal.

Bcl-xL mRNA analysis
RNA was extracted from the cell lines using Trizol total RNA

isolation reagent (Invitrogen, Carlsbad, CA) as per the manufac-

turer’s protocol. Total cDNA was synthesized from total RNA

using the High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems, Foster City, CA) as per the manufacturer’s

protocol. Polymerase chain reaction (PCR) was performed using

TaqMan Gene Expression assays (Applied Biosystems) for BCL-xL

(Hs99999146_m1) and GUSB (Hs99999908_m1), used as endog-

enous control.

Patient lymph node analysis
A cell suspension was made from cryopreserved (freezing

medium based on RPMI 30%, FBS 60% and DMSO 10%), newly

diagnosed lymph node samples from four classic HL patients

diagnosed at the Hematology Department of the University

Hospital del Mar, Barcelona, Spain (Table 1). The study was

approved by the local Ethics Committee and informed consent

was provided according to the Declaration of Helsinki.

The viability of the lymph node cells was at least 87% at the

initiation of cell culture, as assessed by Tripan Blue (Invitrogen).

We performed a cell viability analysis of lymph node cells and

found that viability was 59.9% at baseline, 41.8% at 24 h, and

30.6% at 48 h (Figure S3). Based on these results, we evaluated by

flow cytometry 750,000 cells cultured for 24 hours with 300 nM of

Lestaurtinib or DMSO. HRS cells were gated by the expression of

CD40-PE-Cy5, CD95-Pacific Blue and CD30-PE, and the

absence of CD3-APC-Cy7. Antibodies and control isotypes were

Table 1. Clinical and biological characteristics of HL patients.

Characteristic P1 P2 P3 P4

Age 24 30 28 43

Sex Female Male Male Female

Histology Classic HL,
Nodular
sclerosis

Classic
HL*

Classic HL,
Lymphocyte-rich

Classic HL,
Nodular
sclerosis

EBV 2 2 2 2

CD30 + + + +

CD15 + + + +

CD20 2 2 2 2

Stage IIA IIIA IIIA IIA

*Unknown histologic subtype.
doi:10.1371/journal.pone.0018856.t001
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obtained from BD Bioscience (Franklin Lakes, NJ) and Biolegend

(San Diego, CA) [18,19]. Viability was analyzed by the presence of

the membrane phospholipid phosphatidylserine on the outer

leaflet of the plasma membrane, using FITC Annexin V (BD

Bioscience). In order to obtain an accurate count, we added the

same number of CountBrightTM absolute counting beads

(Invitrogen) to each sample. Samples were analyzed on a FACS

CANTO II (Becton Dickinson) and 200,000 events were collected.

Statistical analysis
Means were compared between 2 groups using a 2-sided

Student t-test, using GraphPad Prism 5 (GraphPad Software, Inc.,

La Jolla, CA). The proliferation and apoptosis data were shown as

mean 6 SEM of three independent replicates.

Results and Discussion

Although HL is a highly curable disease, advanced HL has

typically been associated with high failure rates [20] and relapsed

or refractory HL constitutes a common problem [21,22]; new

drugs are thus needed for these groups of patients. In the present

study, we analyzed the in vitro activity of Lestaurtinib, which has

recently been shown to be a multikinase inhibitor that targets both

wild-type and mutated JAK2 in MPD [16].

Proliferation and apoptosis in response to Lestaurtinib of

cultured HL cells was evaluated in all HL cell lines after 48 h of

treatment and compared to cells treated with DMSO vehicle

control (normalized to 100%). Reduction of proliferation of HL

cells reached the lowest level at 100 nM of Lestaurtinib and

remained constant thereafter (Figure 1A). At 300 nM of

Lestaurtinib, a 38% reduction in proliferation was observed in

L-428, 60% in L-1236, 66% in L-540, 23% in HDLM-2 and 23%

in HD-MY-Z cell lines. At 300 nM of doxorubicin, the reduction

in proliferation was 20.3% in L-428, 18.7% in L-1236, 54% in L-

540, 34.5% in HDLM-2, and 19% in HD-MY-Z cell lines. At

300 nM, apoptosis increased 62% in L-428, 57% in L-1236, 10%

in L-540, 64% in HDLM-2 and 30% in HD-MY-Z (Figure 1B). In

order to determine whether Lestaurtinib inhibition had a transient

or a long-lasting effect on cell growth, we then looked at the effect

at different incubation times (24, 48, 72 and 96 h). We observed

no significant differences between 48, 72 or 96 hours (Figure S1).

Proliferation and apoptosis were both Lestaurtinib dose-

dependent. Since DMSO is toxic at doses of 5 mM, it was

impossible to determine the dose at which 100% of the cells were

killed. However, 50% of the cells had died at 1 mM in L-428 and

at 300 nM in L-1236 and L-540, while, in HDLM-2 and HD-MY-

Z, about 45% and 42% of cells, respectively, had died at 4 mM

(Figure S2).

The JAK/STAT pathway is one of the most frequently altered

pathways in HL. In addition to genomic gains of JAK2 [4],

particularly due to 9p24 gains [23], SOCS1, a negative regulator

of JAK/STAT signaling, is often somatically mutated and

inactivated [5]. Moreover, constitutive activation of STAT3 has

been reported in HL cell lines [8]. In order to investigate the effect

of Lestaurtinib treatment on the JAK2 pathway, we assessed the

levels and the phosphorylation state of JAK2 and its downstream

target molecules following Lestaurtinib treatment. After 1 h,

phospho-JAK2 levels had decreased in all the HL cell lines by

46–94% at 300 nM, although no significant changes were

observed in JAK2 total protein expression (Figure 2). To assess

Figure 1. Proliferation (A) and apoptosis (B) analysis after 48 h of Lestaurtinib treatment in L-428, L-1236, L-540, HDLM-2 and HD-
MY-Z cell lines. The data are shown as mean 6 SEM of three independent replicates. *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0018856.g001

Figure 2. Western blot analysis of JAK2/STAT5 pathway protein levels in L-428, L-1236, L-540, HDLM-2 and HD-MY-Z cells after 1 h
of Lestaurtinib treatment at different doses: 30, 100 and 300 nM.
doi:10.1371/journal.pone.0018856.g002

Lestaurtinib Inhibits HL Proliferation

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18856



in greater detail the effects of Lestaurtinib-mediated JAK2

inhibition on the JAK2/STAT5 signaling pathway, protein levels

of STAT5, phospho-STAT5, STAT3 and phospho-STAT3 were

then analyzed (Figure 2). Lestaurtinib significantly inhibited

phosphorylation of STAT5 and STAT3, but with no significant

changes in STAT5 and STAT3 total protein. Following 1 hour of

300 nM of Lestaurtinib treatment, phospho-STAT5 and phospho-

STAT3 levels decreased by 88–100% and by 97–100%,

respectively (Figure 2).

Bcl-xL is a prosurvival protein induced by phosphorylated

STAT5 DNA binding. It appears upregulated in some hemato-

logic malignancies [24] and in primary HL samples [25] and is

involved in apoptotic resistance in HRS cells [25]. Decreased

phosphorylation of STAT5 resulted in decreased mRNA expres-

sion of its downstream antiapoptotic effector Bcl-xL. After 1 h of

300 nM of Lestaurtinib treatment, Bcl-xL mRNA expression

levels had decreased by 52% in L-428, 28% in L-1236, 37% in L-

540, 55% in HDLM-2 and 71% in HD-MY-Z (Figure 3). This

Figure 3. Bcl-xL mRNA analysis after 1 h of Lestaurtinib treatment in L-428, L-1236, L-540, HDLM-2 and HD-MY-Z cell lines.
doi:10.1371/journal.pone.0018856.g003
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downregulation of Bcl-xL could explain the proapoptotic effect of

Lestaurtinib [26].

Additionally, we have analyzed the effect of Lestaurtinib in

lymph nodes from four classic HL patients. Fromm et al.

demonstrated that HL cells from a lymph node can be detected

[19] and sorted by flow cytometry [18]. In the present study, we

have evaluated the effect of treatment with 300 nM of Lestaurtinib

in the subpopulation of lymph node cells CD30+, CD40+, CD95+
and CD3-, which contain HL cells [18,19] (Figure 4A).

After 24 h, cell viability had decreased in three of the four

cases by 22%, 35% and 24% versus control cells (DMSO)

(Figure 4B). In the patient 3 (non-responder), we increased the

treatment dose to 1 mM and then we observed a reduction in cell

viability by 12% (SEM 6 2,3%). This patient has a different

histological subtype (lymphocyte-rich) than cell lines (nodular

sclerosis and mixed cellularity), and this could explain the

different treatment response. In order to shed light on the

potential toxicity of Lestaurtinib, we have also analyzed cell

viability in lymph node CD3+ cells after treatment with 300 nM

of Lestaurtinib and observed no decrease of viability (mean versus

control = 100.5%; range: 90%–119%).

The present study is the first of its kind to analyze treatment of

HL in patient lymph nodes by flow cytometry. Although our

results cannot be conclusive due to our small sample size, they

provide the first hints that Lestaurtinib induces growth inhibition

and apoptosis activation in HL cells through dysregulation of the

JAK2/STAT5 signaling pathway. If our findings are confirmed in

a larger patient population, they could provide a molecular

rationale for considering treatment with Lestaurtinib for HL

patients with relapsed/refractory disease.

Figure 4. Analysis of cell viability after 24 h of Lestaurtinib treatment in four lymph nodes from classic HL patients. A: representative
example of population selected for analysis (anexin-negative, CD32, CD40+, CD30+ and CD95+). B: cell viability after treatment compared to DMSO
control. The data are shown as mean 6 SEM of two independent replicates. SEM was calculated on the proportion (treated/untreated cells).
doi:10.1371/journal.pone.0018856.g004
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Supporting Information

Figure S1 Proliferation analysis after 24 h, 48 h, 72 h and 96 h

of Lestaurtinib treatment in L-428, L-1236, L-540, HDLM-2 and

HD-MY-Z cell lines. The data are shown as mean 6 SEM of

three independent replicates.

(TIF)

Figure S2 Proliferation analysis after 48 h of Lestaurtinib

treatment at increasing doses up to 4 mM in L-428, L-1236, L-

540, HDLM-2 and HD-MY-Z cell lines. The data are shown as

mean 6 SEM of three independent replicates.

(TIF)

Figure S3 Cell viability analysis (negative Annexin V) of lymph

node cells cultured up to 48 h with growth media (RPMI1640 with

10% FBS).

(TIF)
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