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Abstract: Here, we seek to identify metabolite predictors of dysglycemia in youth. In the discovery
analysis among 391 youth in the Exploring Perinatal Outcomes among CHildren (EPOCH) cohort,
we used reduced rank regression (RRR) to identify sex-specific metabolite predictors of impaired
fasting glucose (IFG) and elevated fasting glucose (EFG: Q4 vs. Q1 fasting glucose) 6 years later
and compared the predictive capacity of four models: Model 1: ethnicity, parental diabetes, in
utero exposure to diabetes, and body mass index (BMI); Model 2: Model 1 covariates + baseline
waist circumference, insulin, lipids, and Tanner stage; Model 3: Model 2 + baseline fasting glucose;
Model 4: Model 3 + baseline metabolite concentrations. RRR identified 19 metabolite predictors of
fasting glucose in boys and 14 metabolite predictors in girls. Most compounds were on lipid, amino
acid, and carbohydrate metabolism pathways. In boys, no improvement in aurea under the receiver
operating characteristics curve AUC occurred until the inclusion of metabolites in Model 4, which
increased the AUC for prediction of IFG (7.1%) from 0.81 to 0.97 (p = 0.002). In girls, %IFG was too
low for regression analysis (3.1%), but we found similar results for EFG. We replicated the results
among 265 youth in the Project Viva cohort, focusing on EFG due to low %IFG, suggesting that
the metabolite profiles identified herein have the potential to improve the prediction of glycemia
in youth.

Keywords: metabolomics; dysglycemia; impaired fasting glucose; youth type 2 diabetes; predictive
model

1. Introduction

Youth-onset type 2 diabetes (T2D) is on the rise worldwide, accounting for one in
three cases of incident diabetes [1]. Common clinical assessment of T2D risk in youth relies
on body mass index (BMI), waist circumference, race/ethnicity, family history of diabetes,
and for high-risk youth, fasting glucose levels. However, these assessments may have
limited preventive utility due to low sensitivity (e.g., BMI [2]) and because studies in adults
have shown that appreciable β-cell dysfunction has already occurred by the time glycemia
becomes impaired [3].

Metabolomics is a powerful tool for identifying functional biomarkers of chronic dis-
ease risk that not only aid in prediction but also shed light on pathophysiology [4]. In 2011,
Wang et al. [5] identified a circulating branched chain amino acid (BCAA) “metabolomic sig-
nature”, indicative of perturbed lipid and amino acid metabolism [6], that was detectable
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12 years prior to the development of insulin resistance and incident T2D among BMI-
matched adults. Consequently, Wurtz et al. [7] showed that elevations in BCAA preceded
worsening insulin resistance in young adults, confirming that specific metabolite profiles
that reflect early pathogenic processes manifest before conventional T2D biomarkers and,
therefore, may serve as early flags for disease risk.

In youth, most papers on metabolite profiles of metabolic disease risk are cross-
sectional [8–12], making it difficult to infer whether the metabolite profiles precede or occur
concurrently with conventional T2D biomarkers. Some prospective investigations provide
support for the temporal sequence of events, including: an analysis of 17 adolescents
that reported that elevated BCAA preceded the development of insulin resistance over
18 months [13]; a study in Project Viva that showed associations of two metabolite patterns
(BCAA and androgen hormones) with subsequent change in fasting glucose, triglycerides,
and adipokines from age 7 to 13 years [14]; and an analysis in the Early Life Exposure
in Mexico to ENvironental Toxicants (ELEMENT) [15] Project showing that BCAA at age
10 years predicted metabolic syndrome components five years later [16]. However, to our
knowledge, no study to date has formally evaluated the utility of metabolites to improve
the prediction of glycemia outcomes in youth.

Here, we seek to identify sex-specific metabolomic biomarkers of dysglycemia over
six years of follow-up among general-risk youth in Colorado (the EPOCH study); we
also evaluate the extent to which the metabolomic biomarkers improve the prediction
of dysglycemia beyond known risk factors (i.e., race/ethnicity, family history of T2D, in
utero exposure to gestational diabetes, body mass index) and conventional biomarkers
of T2D risk used in research settings (i.e., waist circumference, fasting insulin, lipid pro-
file, pubertal status), and baseline glycemia (fasting glucose). Secondarily, we seek to
assess the consistency of associations in an independent cohort of youth in Massachusetts
(Project Viva).

2. Result
2.1. Background Characteristics and Descriptive Statistics for Both Cohorts

EPOCH participants (discovery) were aged 10.1± 1.4 years at baseline and 16.3± 1.2 years
at follow-up. Approximately half (49.6%) of the sample was female and 35.5% identified as
Hispanic. At baseline, the average body mass index (BMI) z-score was 0.16 ± 1.15 for girls
and 0.29 ± 1.26 for boys. Baseline fasting glucose levels were 4.5 ± 0.6 mmoL/L for girls
and 4.6 ± 0.9 mmoL/L for boys. At follow-up, fasting glucose was 5.0 ± 1.7 mmoL/L for
girls and 5.1 ± 1.8 for boys. Prevalence of IFG was 3.1% in girls and 7.1% in boys; IGT was
3.3% in girls and 2.2% in boys; and combined dysglycemia was 4.6% in girls and 9.1% in
boys. Fifteen percent of girls and 15.7% of boys had a family history of T2D.

Project Viva participants were 12.9 ± 0.6 years at baseline and 17.6 ± 0.6 years at
follow-up (Table S1). Approximately half (47.6%; n = 126) the sample was female; and 5.3%
(n = 14) identified as Hispanic. At baseline, the BMI z-score was 0.52 ± 1.25 for girls and
0.81 ± 1.25 for boys. Baseline fasting glucose levels were 4.9 ± 0.6 mmoL/L for girls and
5.0± 0.5 mmoL/L for boys. At follow-up, fasting glucose levels were 4.6± 0.3 mmoL/L for
girls and 4.8 ± 0.4 mmol/L for boys; 0.8% (n = 1) of girls and 3.6% (n = 5) of boys classified
as IFG. No boys had a family history of T2D, but 1.6% (n = 2) of girls did; 4% (n = 5) of girls
and 2.9% (n = 4) of boys were exposed to gestational diabetes mellitus (GDM).

2.2. Results from EPOCH

Table 1 shows the mean ± SD of fasting glucose at follow-up across categories of
sociodemographic characteristics and conventional risk factors at baseline. Boys had higher
fasting glucose than girls. We observed the positive associations of baseline BMI z-score,
waist circumference, fasting glucose, and fasting insulin with fasting glucose at follow-
up. High density lipoprotein (HDL) cholesterol was inversely related to fasting glucose
at follow-up.
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Table 1. Bivariate associations of background characteristics at baseline (age ~10 y) with fasting
glucose at follow-up (age ~16 y) among 391 EPOCH youth.

N a Mean ± SD Fasting Glucose
(mmoL/L) at Follow-Up p-Value b

Sociodemographic characteristics
Sex 0.09

Female 194 5.01 ± 1.70
Male 197 5.07 ± 0.83

Age at baseline (years) 0.24
6 to <9 y 67 5.22 ± 2.21
9 to <10 y 79 4.88 ± 0.52
10 to <11 y 79 4.93 ± 0.37
11 to <14 y 165 5.10 ± 1.41

Race/ethnicity 0.08
Hispanic 139 5.19 ± 1.98
Non-Hispanic 251 4.95 ± 0.76

Family history of type 2 diabetes <0.0001
Yes 60 5.70 ± 3.22
No 331 4.92 ± 0.41

Characteristics at baseline (age ~10 y)
Body mass index (BMI) z-score c 0.0002

Underweight (<−2.0) 16 5.02 ± 0.91
Normal weight (≥−2.0 to ≤1.0) 259 4.91 ± 0.36
Overweight (>1.0 to ≤2.0) 87 5.07 ± 1.14
Obese (>2.0) 27 6.18 ± 4.25

Waist circumference (cm) 0.004
Q1 (median: 54.1) 95 4.89 ± 0.48
Q2 (median: 59.1) 99 4.95 ± 0.35
Q3 (median: 65.2) 99 4.87 ± 0.39
Q4 (median: 78.9) 97 5.44 ± 2.54

Fasting glucose (mmol/L) 0.0004
Q1 (median: 3.8) 87 4.80 ± 0.37
Q2 (median: 4.3) 92 4.87 ± 0.47
Q3 (median: 4.7) 107 5.28 ± 2.24
Q4 (median: 5.2) 104 5.14 ± 1.03

Fasting insulin (uU/mL) 0.08
Q1 (median: 4.0) 95 4.93 ± 0.49
Q2 (median: 7.0) 98 4.92 ± 0.36
Q3 (median: 11.0) 87 5.04 ± 1.16
Q4 (median: 18.0) 115 5.23 ± 2.18

Total cholesterol (mg/dL) 0.92
Q1 (median: 129.0) 95 5.06 ± 1.16
Q2 (median: 148.5) 96 4.92 ± 0.35
Q3 (median: 164.0) 100 5.21 ± 2.32
Q4 (median: 191.5) 100 4.96 ± 0.37

Triglycerides (mg/dL) 0.65
Q1 (median: 50.0) 94 4.95 ± 0.45
Q2 (median: 65.0) 96 5.04 ± 1.51
Q3 (median: 85.0) 102 4.97 ± 0.39
Q4 (median: 134.0) 99 5.17 ± 2.12

High density lipoprotein (HDL; mg/dL) 0.07
Q1 (median: 37.0) 93 5.26 ± 2.20
Q2 (median: 45.5) 94 5.06 ± 1.52
Q3 (median: 52.0) 100 4.95 ± 0.35
Q4 (median: 62.0) 102 4.90 ± 0.35

Tanner stage for pubic hair development 0.48
Stage 1 173 4.95 ± 0.36
Stage 2 135 5.11 ± 1.83
Stage 3 58 5.19 ± 1.92
Stage 4 23 4.95 ± 0.43

a Totals may not add up to 391 due to missing values. b From a P-for-linear-trend for ordinal variables; from a
Type 3 test for a difference for categorical variables. Fasting glucose is natural-log transformed for use in the
regression model that generated the p-values. c According to the World Health Organization (WHO) growth
reference for children 5–19 years of age.

Using sex-specific reduced rank regression (RRR) models, we identified 19 metabolites
in boys and 14 metabolites in girls measured at baseline as predictors of ln-fasting glucose
at follow-up. The metabolites were on lipid, amino acid, nucleotide, and carbohydrate
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metabolism pathways. Table 2 displays metabolite identity and average RRR regression
coefficients. Table S2 is a list of metabolites that were in the top 10% of RRR regressions
coefficients during at least one of the five iterations.

Table 2. Identity, superpathway, and subpathway of metabolites assayed from fasting blood at
baseline (age ~10 y), selected as predictors of fasting glucose at follow-up (age ~16 y) using reduced
rank regression (RRR) in the EPOCH cohort.

Metabolite Name Superpathway Subpathway Average RRR
Regression Coefficient

Boys

Leucine Amino Acid Leucine, Isoleucine and Valine Metabolism 6.07
Glutamate Amino Acid Glutamate Metabolism 4.03
Arginine Amino Acid Urea cycle; Arginine and Proline Metabolism 2.96

Tryptophan Amino Acid Tryptophan Metabolism 2.32
Margarate (17:0) Lipid Long Chain Fatty Acid 2.03

Lactate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate Metabolism 1.95
N-Acetylvaline Amino Acid Leucine, Isoleucine and Valine Metabolism 1.79

Malate Energy TCA Cycle 1.59
Caprate (10:0) Lipid Fatty acid, Monohydroxy 1.51

Urea Amino Acid Urea cycle; Arginine and Proline Metabolism 1.44
Orotate Nucleotide Pyrimidine Metabolism, Orotate containing 1.39

Thyroxine Amino Acid Tyrosine Metabolism 1.24
N-Formylmethionine Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 1.22

Sarcosine Amino Acid Glycine, Serine and Threonine Metabolism 1.05
Quinolinate Cofactors and Vitamins Nicotinate and Nicotinamide Metabolism 0.91

Tyrosine Amino Acid Tyrosine Metabolism 0.80
2′-Deoxyuridine Nucleotide Pyrimidine Metabolism, Uracil containing 0.70

Beta-alanine Nucleotide Pyrimidine Metabolism, Uracil containing 0.70
Serine Lipid Medium Chain Fatty Acid 0.45

Girls

Glutamine Amino Acid Glutamate Metabolism 8.80
Citrate Energy TCA Cycle 6.18

N-acetylvaline Amino Acid Leucine, Isoleucine and Valine Metabolism 5.36
Myristate (14:0) Lipid Long Chain Fatty Acid 5.23
Margarate (17:0) Lipid Long Chain Fatty Acid 4.56
Phenylalanine Amino Acid Phenylalanine Metabolism 4.19

Kynurenate Amino Acid Tryptophan Metabolism 3.61
Chenodeoxycholate Lipid Primary Bile Acid Metabolism 3.38

Ornithine Amino Acid Urea cycle; Arginine and Proline Metabolism 3.33
Cystine Amino Acid Methionine, Cysteine, SAM and Taurine Metabolism 2.82
Serine Lipid Medium Chain Fatty Acid 2.58

Adenine Nucleotide Purine Metabolism, Adenine containing 1.88
Orotate Nucleotide Pyrimidine Metabolism, Orotate containing 1.54

Succinate Energy TCA Cycle 0.99

Abbreviations: RRR—reduced rank regression.

Tables S3 (boys) and S4 (girls) show associations of each metabolite at baseline with ln-
fasting glucose at follow-up. We noted weak-to-moderate β-estimates that were consistent
across models in both sexes. The weak associations reflect the fact that RRR identifies a set
of predictors that together (rather than individually) optimize variability in the outcome.

Table 3 shows the performance of the four models in predicting impaired fasting
glucose (IFG), elevated fasting glucose (EFG, defined as Q4 vs. Q1 of fasting glucose
at follow-up), and combined dysglycemia (defined as IFG, impaired glucose tolerance,
or T2D—see Methods section for details). In boys, neither the addition of conventional
biomarkers in Model 2 to the risk factors in Model 1 nor the subsequent addition of baseline
fasting glucose in Model 3 improved the area under the receiver operating characteristics
curve (AUC). However, including metabolites in Model 4 increased AUC for IFG and
dysglycemia. For IFG, the AUC went from 0.81 in Model 3 to 0.97 in Model 4 (p = 0.002). We
found a similar pattern for combined dysglycemia. For EFG, inclusion of baseline fasting
glucose in Model 3 yielded a marginally higher AUC than Model 2 (difference in AUC: 0.07
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[95% CI: 0.00, 0.15]; p = 0.06), with an additional marginal increase from Model 3 to Model 4
after including metabolites (difference in AUC: 0.05 [95% CI: −0.01, 0.11; p = 0.08]).

Table 3. Comparison of area under the receiver operating characteristic curve (AUC) for conventional
risk factors vs. metabolites at baseline (age ~10 y) predicting impaired fasting glucose (IFG), elevated
fasting glucose, and dysglycemia at follow-up (age ~16 y) in EPOCH.

Outcomes at Follow-Up (Age ~16 y)

IFG (Yes vs. No) Elevated Fasting Glucose
(Q4 vs. Q1 of Fasting Glucose) e Dysglycemia (Yes vs. No)

AUC β (95% CI) a p AUC β (95% CI) p AUC β (95% CI) p

Boys (n = 197) n = 14 vs. 183 n = 53 vs. 50 n = 18 vs. 179

Model 1: Conventional risk
factors at ~10 y b 0.65 – – 0.68 – – 0.63 – –

Model 2: Model 1 + biomarkers
at ~10 y c 0.74 0.09 (−0.03, 0.21) 0.15 0.73 0.05 (−0.03, 0.12) 0.20 0.68 0.06 (−0.05, 0.17) 0.28

Model 3: Model 2 + fasting
glucose at ~10 y 0.81 0.07 (−0.04, 0.19) 0.18 0.80 0.07 (0.00, 0.15) 0.06 0.74 0.06 (−0.07, 0.19) 0.39

Model 4: Model 3 + metabolites
at ~10 y d 0.97 0.16 (0.06, 0.27) 0.002 0.86 0.05 (−0.01, 0.11) 0.08 0.89 0.15 (0.03, 0.28) 0.02

Girls (n = 194) n = 6 vs. 188 n = 54 vs. 56 n = 9 vs. 185

Model 1: Conventional risk
factors at ~10 y b – – – 0.70 – – 0.80 – –

Model 2: Model 1 + biomarkers
at ~10 y c – – – 0.72 0.02 (−0.05, 0.08) 0.57 0.93 0.12 (0.00, 0.25) 0.06

Model 3: Model 2 + fasting
glucose at ~10 y – – – 0.72 0.00 (−0.01, 0.00) 0.48 0.93 0.01 (−0.02, 0.04) 0.53

Model 4: Model 3 + metabolites
at ~10 y d – – – 0.88 0.16 (0.07, 0.26) 0.0007 – –

a Estimates are a difference in AUC for Model 2 vs. Model 1, Model 3 vs. Model 2, and Model 4 vs. Model 3.
b Includes quartiles of age at baseline; difference in age between baseline and follow-up; ethnicity (Hispanic vs. non-
Hispanic), BMI z-score, in utero exposure to gestational diabetes, and family history of type 2 diabetes.
c Model 1 + waist circumference, fasting insulin, total cholesterol, triglycerides, HDL, and Tanner stage for pubic
hair development at baseline. d Model 3 + sex-specific metabolites measured at baseline (shown in Table 3 for boys
and Table 4 for girls). e Boys: median glucose for Q1: 4.6 mmol/L and Q4: 5.4 mmol/L; Girls: Q1: 4.8 mmol/L
and Q4: 5.0 mmol/L.

Table 4. Comparison of area under the receiver operating characteristic curve (AUC) for conventional
risk factors vs. metabolites at baseline (age ~13 y) predicting elevated fasting glucose (Q4 vs. Q1) at
follow-up (age ~18 y) among youth in Project Viva.

Q4 vs. Q1 of Fasting Glucose at ~18 y a

AUC β (95% CI) b p

Boys n = 43 vs. 44

Model 1: Conventional risk factors at ~13 y c 0.62 – –
Model 2: Model 1 + biomarkers at ~13 y d 0.64 0.02 (−0.06, 0.10) 0.64

Model 3: Model 2 + fasting glucose at ~13 y 0.66 0.02 (−0.05, 0.09) 0.51
Model 4: Model 3 + metabolites at ~13 y e 0.84 0.17 (0.06, 0.29) 0.003

Girls n = 29 vs. 38

Model 1: Conventional risk factors at ~13 y c 0.73 – –
Model 2: Model 1 + biomarkers at ~13 y d 0.75 0.02 (−0.06, 0.09) 0.59

Model 3: Model 2 + fasting glucose at ~13 y 0.78 0.02 (−0.03, 0.08) 0.37
Model 4: Model 3 + metabolites at ~13 y e 0.89 0.12 (0.02, 0.22) 0.02

a Boys: median glucose for Q1 = 4.9 mmol/L and Q4 = 5.1 mmol/L; Girls: median glucose for Q1: 4.8 mmol/L
and Q4: 5.0 mmol/L. b Estimates are a difference in AUC for Model 2 vs. Model 1, Model 3 vs. Model 2, and
Model 4 vs. Model 3. c Includes quartiles of age at baseline, difference in age between baseline and follow-up,
BMI z-score, and in utero exposure to gestational diabetes. d Model 1 + waist circumference, fasting insulin, total
cholesterol, triglycerides, HDL, and Tanner stage for pubic hair development at baseline. e Model 2 + sex-specific
metabolites measured at baseline (shown in Table S3 for boys except for 2′-deoxyuridine and in Table S4 for girls).

In girls, we did not have enough cases of IFG (n = 6) or dysglycemia (n = 9) to compare
across all models, but we observed similar results to that for boys for EFG (Table 3).

Excluding seven participants with IFG at baseline did not change the results (data not
shown; available upon request), so we included all participants in the final models.
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2.3. Results from Project Viva

Table 4 shows the results of the predictive models in Project Viva. Due to the low preva-
lence of IFG at follow-up (n = 1 girl, n = 5 boys), we focused on EFG as the outcome. In boys,
there was no significant difference in the predictive performance of Model 2 vs. Model 1 or
Model 3 vs. Model 2, but, as was the case in EPOCH, including the metabolites in Model 4
significantly increased AUC from 0.66 (Model 3) to 0.84 (Model 4; p = 0.003). We observed
the same pattern in girls (AUCModel 4 vs. Model 3 = 0.89 vs. 0.78; difference in AUC = 0.12
[95% CI: 0.02, 0.22]; p = 0.02).

3. Discussion
3.1. Summary

In the EPOCH youth cohort, we identified sex-specific metabolomic biomarkers that
improved the capacity of models to predict impaired fasting glucose and dysglycemia
across the 6 years of follow-up, above and beyond known risk factors and biomarkers of
T2D risk, including baseline glycemia. When we implemented the predictive models in
an independent population of similarly aged youth (Project Viva), we found consistent
results with respect to elevated fasting glucose. In boys, the metabolites were part of
lipid, amino acid, carbohydrate, nucleotide, and cofactors and vitamin metabolism path-
ways. In girls, the metabolite predictors were in lipid, amino acid, energy, and nucleotide
metabolism pathways.

3.2. Biological Relevance of Metabolites

There is growing interest in the use of ‘omics data to identify functional biomarkers
of disease risk. Of particular relevance are circulating metabolites that reflect the impact
of exposures and experiences that occur “above the skin” to promote disease progression,
as well as an individual’s innate physiology “below the skin”, including physiological
responses to external stimuli that may be indicative of pathogenic processes [4]. While it is
not possible to discern whether metabolites of interest are causally involved in the devel-
opment of T2D or are simply markers of parallel etiological processes in an observational
study, we discuss the biological relevance of metabolites in relation to the pathophysiology
of T2D below.

Although most metabolites identified in either sex were on lipid and amino acid
metabolism pathways, the specific set of compounds was largely non-overlapping for
boys vs. girls. This phenomenon likely reflects sex differences in metabolism. In Project
Viva, we have previously reported sex-specific changes in the adipoinsular axis and blood
pressure across early adolescence. In comparison to girls, boys exhibited a larger decrement
in adiponectin and leptin, two adipose tissue-derived regulators of satiety, weight, and
insulin sensitivity; a larger, albeit marginally significant, increase in fasting glucose; and
a greater increase in blood pressure from age 7 to 13 years [17]. There is also extensive
literature documenting sex differences in metabolism that start as early as in utero via
sex-specific metabolic programming [18] and remain apparent throughout the life span,
including but not limited to differences in energy metabolism, fat deposition patterns,
development of insulin resistance, and metabolic response to adipokines [19]. These
nuances of male vs. female metabolism may be drivers or consequences of the sex specificity
of the metabolite patterns identified in the present analysis.

However, we noted that three compounds were identified in both sexes: margarate
(17:0), orotate, and serine. While we could not find any published papers about margarate
(17:0) in relation to metabolic risk, a mechanistic study found that orotate caused endothelial
dysfunction in human umbilical vein endothelial cells and induced a 125% increase in
insulin resistance in rats [20], and increasing evidence indicates a positive correlation of
serine, a non-essential amino acid that plays a central role in a broad range of cellular
processes, with insulin secretion and sensitivity [21].

In boys, several metabolites identified in the discovery analysis have been linked to
excess adiposity and/or metabolic risk. Noteworthy compounds include the amino acids
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tyrosine, tryptophan, and leucine, which are part of the BCAA metabolite pattern [8,9,14]
that has been implicated in worsening insulin resistance in youth [13] and young adults [7]
as well as incident T2D in adults [5,7]. Another important metabolite of interest is glutamate,
which surfaced as the strongest metabolite predictor of T2D among a targeted panel of
35 amino acids and acylcarnitines in the Malmö Preventive Project [22].

In girls, the amino acids kynurenate, phenylalanine, and N-acetylvaline have either
been identified as part of the BCAA pattern or are derivatives of compounds in this pat-
tern [8,9,14]. Several metabolites were on energy cycling pathways (e.g., malate, succinate,
and citrate on the TCA cycle), nucleotide turnover processes (e.g., adenine and beta-alanine
involved in nucleotide metabolism), and one-carbon metabolism (e.g., cysteine and N-
formylmethionine). Together, these compounds are indicative of rapid cell growth and
proliferation that could be linked to the development of chronic disease risk through
oxidative stress [23].

3.3. Predictive Capacity of Conventional Risk Factors, Biomarkers, and Metabolites

In both EPOCH and Project Viva, the inclusion of conventional biomarkers of T2D risk
(baseline waist circumference, fasting insulin and glucose, lipids, Tanner stage, and fasting
glucose) to a “base” model comprising several established T2D risk factors (Hispanic
ethnicity, family history of T2D, in utero exposure to GDM, baseline BMI) did not improve
model performance, nor did the inclusion of baseline glycemia. However, the addition of
the metabolomic biomarkers significantly improved the prediction of glycemia outcomes.

These findings dovetail with those from adult studies showing that metabolite pro-
files predictive of T2D are detectable up to a decade prior to the development of T2D
precursors such as elevated fasting insulin and insulin resistance [5,7], and growing liter-
ature on children and adolescents showing prospective associations of metabolites with
metabolic disease precursors and biomarkers [13,14,16]. Together, current literature sug-
gests that metabolite profiles reflect perturbations to metabolism that occur earlier on the
disease progression spectrum and, accordingly, may serve as early flags and/or targets for
preventive intervention.

We noted that the metabolites identified herein improved predictive capacity not
only for fasting glucose-based outcomes (impaired fasting glucose and elevated fasting
glucose) but also for combined dysglycemia—which includes both impaired fasting glucose
(IFG) and impaired glucose tolerance (IGT)—among boys in EPOCH. This was somewhat
surprising given that different mechanisms may underlie IFG vs. IGT, the latter of which is
included in the definition of dysglycemia. IFG is thought to be the result of hepatic insulin
resistance, whereas IGT results primarily from reduced peripheral insulin sensitivity [24].
Future studies with more cases of IGT are required to confirm the findings and explore
mechanistic differences.

3.4. Strengths & Limitations

This study has several strengths. First, we were able to identify metabolomic biomarkers
predictive of future impaired fasting glucose and dysglycemia in one cohort (EPOCH) and
replicate the results in an independent cohort (Project Viva). Second, both cohorts comprise
healthy youth, which is important from the standpoint of preventing the establishment of
difficult-to-reverse T2D precursors. Third, we had a relatively large sample size for both
cohorts in comparison to other metabolomics analyses in youth (most N < 300 [8,25–28].
Finally, both cohorts are ethnically diverse and located in different geographic regions,
which enhances generalizability.

A limitation of this study is the relatively low prevalence of clinically relevant out-
comes in EPOCH and Project Viva, which was expected given the relatively healthy status
of participants in both cohorts. Additionally, Project Viva did not implement an OGTT, so
we were not able to compare model performance for dysglycemia. Regardless, we believe
that our findings with respect to elevated fasting glucose are relevant at the population
level, given that such differences are indicative of early pathophysiological changes in
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glucose-insulin homeostasis that have implications for future disease risk. Finally, baseline
glucose in Project Viva had higher variability than anticipated, so we have interpreted the
results from models with baseline fasting glucose cautiously.

4. Methods
4.1. Exploring Perinatal Outcomes among Children (EPOCH)

The primary population in this analysis is the Exploring Perinatal Outcomes among
Children (EPOCH) study, a prospective cohort of youth in Colorado [29]. At baseline
(2006–2009), we enrolled 604 children and adolescents (median age: 10.0 y, range: 6.0–13.4 y)
whose mothers were members of the Kaiser Permanente of Colorado Health plan. Of them,
417 mother–child pairs returned for a follow-up visit six years later (median age: 16.3 y;
range: 12.6–19.6 y). After excluding children of type 1 diabetic women (N = 7), 5 participants
without sufficient blood volume at baseline for metabolomics profiling, and 14 with missing
data on fasting glucose at follow-up, the analytical sample comprised 391 youth. The
Colorado Multiple Institutional Review Board (Protocol #05-0623) approved this study.

All mothers provided written informed consent, and children provided assent or full
informed consent if 18 years or older.

4.1.1. T2D Risk Factors at Baseline in EPOCH

At the baseline, participants reported race/ethnicity as non-Hispanic White, non-
Hispanic Black, Hispanic, or non-Hispanic other. We collapsed these categories into His-
panic vs. non-Hispanic based on the disproportionately high prevalence of T2D in Hispanic
populations and the more frequent occurrence of genetic polymorphisms associated with
T2D among persons of Hispanic ethnicity [30].

We calculated BMI using the participants’ weight (kg; measured on a digital scale)
and height (cm; measured on a calibrated stadiometer) and standardized values using the
World Health Organization (WHO) growth reference [31]. At this time, we also inquired
about parental history of T2D.

Information on in utero exposure to gestational diabetes mellitus (GDM) was obtained
from the KPCO perinatal records [32].

4.1.2. Conventional Biomarkers of T2D Risk at Baseline in EPOCH

A phlebotomist collected 8-h fasting blood. The blood samples were flash-frozen and
stored at−80 ◦C until time of analysis. We used these biospecimens to assay fasting glucose
using an enzymatic procedure and insulin via a radioimmunoassay (Millipore, Darmstadt,
Germany). Total cholesterol, HDL, and triglycerides were measured using an Olympus
AU400 advanced chemistry analyzer system.

Research assistants measured waist circumference (cm) via a non-stretchable measur-
ing tape [33]. Participants reported their pubertal development based on diagrams of the
Tanner stages [34,35]. For the analysis, we focused on pubic hair development, given the
relevance of premature pubarche to glucose-insulin homeostasis, especially in females [36].

4.1.3. Untargeted Metabolomics Profiling at Baseline in EPOCH

Metabolon® carried out untargeted metabolomics profiling in fasting plasma collected
at baseline using a multi-platform mass spectroscopy (MS)-based technique. The procedure
identified 1193 unique features, of which we retained 767 after QA/QC procedures. Details
on laboratory procedures and bioinformatics pipelines are published [37].

4.1.4. Glycemia at Follow-Up in EPOCH

At follow-up, we implemented a 2 h 75 g oral glucose tolerance test (OGTT) after
a 10 h fast and drew blood at 0, 30, and 120 min post-OGTT for glucose and insulin
measurements. We used baseline and 2 h OGTT glucose to derive glycemia outcomes.
The primary outcome is impaired fasting glucose (IFG; plasma glucose 5.6–6.9 mmol/L).
Second, we assessed elevated fasting glucose (EFG), defined as Q4 vs. Q1 of fasting glucose,
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to address imbalance issues in the assessment of predictive capacity where model AUC
values are inflated because of artificially high specificity arising from the large proportion
of non-case participants (i.e., normoglycemic youth). We considered consistency in AUC
across both IFG and EFG, in addition to the magnitude of AUC values themselves, for
a more robust assessment of predictive capacity, as we have previously done for prior
predictive analyses with rare outcomes [37]. Finally, we considered a combined measure of
dysglycemia, defined as IFG or impaired glucose tolerance (IGT; glucose 7.8–11.0 mmol/L
2-h post-OGTT) or T2D (fasting glucose ≥ 7 mmol/L or glucose ≥ 11.1 mmol/L at 2-h
post-OGTT) [38].

4.2. Project Viva

Following the discovery analysis, we sought to assess consistency of findings in an
independent sample of youth in Project Viva [39], a pre-birth cohort recruited from a
multi-specialty group practice in eastern Massachusetts (Atrius Harvard Vanguard Medical
Associates). At the two research visits of interest for this analysis, the participants were
median age 12.8 years at the early teen visit (“baseline”; age range 11–16 y) and 17.4 years
at the mid-teen visit (“follow-up”; age range 15–20 y) as of March 2021 (research visits are
ongoing through Summer 2021).

Of the 2128 mother–child pairs enrolled at birth, 1038 attended the early teen visit. Of
the 636 who provided fasting blood at this visit, 560 had adequate fasting plasma volume
for untargeted metabolomics profiling [9]. Of them, the present analysis includes 265 youth
for whom we currently have fasting blood from the ongoing mid-teen visit and complete
data on the conventional risk factors and biomarkers of interest. The Institutional Review
Board of Harvard Pilgrim Health Care approved all study protocols. All mothers provided
written informed consent, and children provided verbal assent until age 18 years, after
which they provided informed consent for themselves.

4.2.1. T2D Risk Factors at Baseline in Project Viva

At the time of enrollment during early pregnancy, we inquired whether the mother
herself or the child’s biological father had ever been diagnosed with T2D. Prenatal medical
records provided information on perinatal characteristics, including the mother’s prenatal
glucose tolerance status [40]. We used this information to classify the children as having a
family history of T2D if either the mother or the child’s biological father had a diagnosis
of T2D.

At a research visit that took place when participants were 3–6 years of age, we ad-
ministered a questionnaire to the mothers, inquiring about their child’s race/ethnicity
(Black, Hispanic, White, Asian/Pacific Islander, American Indian or Alaskan Native, or
Other). For the analysis, we supplemented missing values for the child’s race/ethnicity
with the mother’s race/ethnicity. To match what was done in EPOCH, we dichotomized
race/ethnicity as Hispanic ethnicity (yes vs. no) if the participant indicated that they
were Hispanic.

At the early teen visit (baseline for this analysis), we measured the participants’ weight
(kg) via an electronic scale (Tanita Corporation of America, Inc., Arlington Heights, IL,
USA) and height (cm) measured using a calibrated stadiometer (Shorr Productions, Olney,
MD, USA). We used these values to calculate BMI (kg/m2) and age and sex standardized
percentiles using the age- and sex-specific World Health Organization (WHO) growth
reference for children 5–19 years [31].

4.2.2. Conventional Biomarkers of T2D Risk in Project Viva

At the early teen visit, trained phlebotomists collected an 8 h fasting blood sample
from the antecubital vein. All samples were refrigerated immediately, processed within
24 h, and stored at −80 ◦C until time of analysis. We used the fasting blood to measure
plasma glucose enzymatically and to assay insulin using an electrochemiluminescence
immunoassay (Roche Diagnostics, Indianapolis, IN, USA). We noted that glucose values in
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Project Viva participants at baseline (early teen visit) had higher variability than anticipated
for fasting values (median: 4.8 mmol/L, range: 3.9–7.6), which may be due to variation in
handling of the specimen and/or freeze-thaw cycles prior to glucose measurements. Given
that adjustment for baseline fasting glucose was conducted as a sensitivity (as opposed to
primary) analysis, we did not exclude any values but, instead, interpreted results cautiously.

Using the same fasting blood sample, we also measured serum total cholesterol,
triglycerides, and HDL, which were measured enzymatically with correction for endoge-
nous glycerol, and calculated low-density lipoprotein (LDL) as total cholesterol—HDL—
(triglycerides/5).

Research assistants measured the participants’ waist circumference just above the iliac
crest to the nearest 1 mm using a Hoechstmass non-stretchable measuring tape (Hoechst-
mass Balzer GmbH, Sulzbach, Germany). The participants also reported their pubic hair
development via a questionnaire with pictorial images of Tanner stages.

4.2.3. Untargeted Metabolomics Profiling in Project Viva

We carried out untargeted metabolomic profiling in fasting plasma via Metabolon®’s
multi-platform mass spectroscopy-based technique. Details regarding sample preparation and
analysis for this population have been published [9,41–43]. The laboratory analysis yielded
1135 metabolites, 1005 of which were endogenous compounds. Prior to formal statistical
analysis, we imputed missing values for these metabolites as 1

2 the minimum detected value
and log10-transformed each compound. We assessed for batch effects via principal components
analysis plots but observed no notable clustering by race/ethnicity or sex.

4.3. Data Analysis
4.3.1. Step 1: Identify Metabolite Predictors of Fasting Glucose in EPOCH

To identify metabolites of interest, we used rank regression (RRR), as previously
described [37]. In random samples of half the N for males and females assessed separately,
we entered all 767 metabolites from the untargeted data set as predictors into a model, where
continuous natural log-(ln)-transformed fasting glucose at follow-up was the outcome.
As is customary, we focused on the first factor as it accounts for the most variance in
the outcome [44,45]. Factor 1 accounted for 100% of the variance in ln-fasting glucose,
suggesting that the model was overfitted. Thus, we repeated this procedure four more
times and focused on metabolites in the top 10% highest regression coefficients in the
first factor. We retained compounds meeting this threshold in at least four of the five
iterations [37].

4.3.2. Step 2: Associations of Metabolites at Baseline with Fasting Glucose at Follow-Up
in EPOCH

We examined associations of each metabolite at baseline with ln-fasting glucose at
follow-up using linear regression in the entire sample while accounting for quartiles of the
child’s age at baseline as a categorical variable to allow for potential non-linear associations
of age with glycemia, difference in age between baseline and follow-up to account for
differences tempo of maturation across follow-up, and Hispanic ethnicity.

4.3.3. Step 3: Predictive Capacity of T2D Risk Factors, Conventional Biomarkers, and
Metabolites in EPOCH

Finally, we compared the predictive performance of four sequential models using
logistic regression. In these models, the outcome was IFG, EFG (Q4 vs. Q1 of fasting
glucose), or dysglycemia (IFG, IGT, or T2D). Predictors in Model 1 included known risk
factors for T2D: Hispanic ethnicity, family history of T2D, in utero exposure to GDM, and
baseline BMI z-score. Model 2 included Model 1 variables plus the following biomarkers
of T2D risk measured at baseline: waist circumference, fasting insulin, total cholesterol,
HDL, and triglycerides. Model 3 was Model 2 plus baseline ln-fasting glucose. Model 4
was Model 3 plus sex-specific metabolites identified in Step 1. In all models, we accounted
for quartiles of baseline age and age difference between baseline and follow-up. The
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estimate of interest was the difference in AUC for each model vs. the prior model (AUC for
Model 2 vs. Model 1, Model 3 vs. Model 2, and Model 4 vs. Model 3) using the Mann–
Whitney U-statistic. In sensitivity analyses, we excluded seven participants who had IFG at
baseline and assessed for differences in the direction, magnitude, and precision of estimates
from the predictive models.

4.3.4. Step 4: Assessment of Models in Project Viva

Using data from Project Viva, we identified metabolites from Step 1 and implemented
the analysis in Step 3. The predictive models in Step 3 were similar to those used in EPOCH,
with a few exceptions. First, no boys and only two girls had a family history of T2D, so
this variable was not included in the predictive models. Second, because Project Viva’s
metabolomics data was assayed on a slightly older Metabolon platform than EPOCH, one
of the metabolites identified boys in the discovery analysis was not measured in Project
Viva (2′-Deoxyuridine); therefore, this metabolite was not included in the predictive models
either. Third, due to the low prevalence of IFG (0.8% of girls or n = 1, and 3.6% of boys or
n = 5) and the fact that no OGTT was implemented in this cohort, we focused on EFG as
the outcome of interest for the replication analysis.

We carried out all analyses using Statistical Analyses System software (version 9.4;
SAS Institute Inc., Cary, NC, USA).

5. Conclusions

Metabolomic biomarkers identified herein improved the predictive capacity of T2D
precursors beyond usual risk factors and conventional biomarkers. The rising prevalence
of early-onset T2D and the known correlations between this metabolic illness and other
major chronic conditions on the rise in young people (e.g., non-alcoholic fatty liver disease;
cardiovascular disease) should motivate future replication studies.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12050404/s1. Table S1: Background characteristics of
265 Project Viva youth; Table S2: Metabolites with factor loadings within the top 10% of the first
factor of reduced rank regression (RRR); Table S3: Associations of metabolites measured at baseline
(age ~10 y) with natural-log transformed baseline fasting glucose at follow-up (age ~16 y) among
197 boys in the EPOCH Study; Table S4: Associations of metabolites measured at baseline (age ~10 y)
with natural-log transformed baseline fasting glucose at follow-up (age ~16 y) among 194 girls in the
EPOCH Study.
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