
Frontiers in Immunology | www.frontiersin.

Edited by:
Cyril Seillet,

Walter and Eliza Hall Institute
of Medical Research,

Australia

Reviewed by:
John Hiscott,

Istituto Pasteur Italia Cenci
Bolognetti Foundation, Italy

David Robert Withers,
University of Birmingham,

United Kingdom

*Correspondence:
Ponpan Matangkasombut
ponpan.mat@mahidol.edu

Specialty section:
This article was submitted to

NK and Innate Lymphoid Cell Biology,
a section of the journal

Frontiers in Immunology

Received: 28 August 2020
Accepted: 29 April 2021
Published: 17 May 2021

Citation:
Poonpanichakul T, Chan-In W,

Opasawatchai A, Loison F,
Matangkasombut O,

Charoensawan V,
Matangkasombut P and DENFREE
Thailand (2021) Innate Lymphoid

Cells Activation and Transcriptomic
Changes in Response to
Human Dengue Infection.

Front. Immunol. 12:599805.
doi: 10.3389/fimmu.2021.599805

ORIGINAL RESEARCH
published: 17 May 2021

doi: 10.3389/fimmu.2021.599805
Innate Lymphoid Cells Activation and
Transcriptomic Changes in Response
to Human Dengue Infection
Tiraput Poonpanichakul1,2,3, Wilawan Chan-In1,4, Anunya Opasawatchai1,5,
Fabien Loison1,2, Oranart Matangkasombut6,7, Varodom Charoensawan2,8,9,
Ponpan Matangkasombut1,2* and DENFREE Thailand

1 Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand, 2 Systems Biology of Diseases
Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand, 3 Chakri Naruebodindra Medical Institute, Faculty
of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand, 4 Department of Clinical Pathology, Faculty of
Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand, 5 Faculty of Dentistry, Mahidol University,
Bangkok, Thailand, 6 Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of
Dentistry, Chulalongkorn University, Bangkok, Thailand, 7 Laboratory of Biotechnology, Chulabhorn Research Institute,
Bangkok, Thailand, 8 Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand, 9 Integrative
Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand

Background: Dengue virus (DENV) infection has a global impact on public health. The
clinical outcomes (of DENV) can vary from a flu-like illness called dengue fever (DF), to a
more severe form, known as dengue hemorrhagic fever (DHF). The underlying innate
immune mechanisms leading to protective or detrimental outcomes have not been fully
elucidated. Helper innate lymphoid cells (hILCs), an innate lymphocyte recently
discovered, functionally resemble T-helper cells and are important in inflammation and
homeostasis. However, the role of hILCs in DENV infection had been unexplored.

Methods: We performed flow cytometry to investigate the frequency and phenotype of
hILCs in peripheral blood mononuclear cells from DENV-infected patients of different
disease severities (DF and DHF), and at different phases (febrile and convalescence) of
infection. Intracellular cytokine staining of hILCs from DF and DHF were also evaluated by
flow cytometry after ex vivo stimulation. Further, the hILCs were sorted and subjected to
transcriptome analysis using RNA sequencing. Differential gene expression analysis was
performed to compare the febrile and convalescent phase samples in DF and DHF.
Selected differentially expressed genes were then validated by quantitative PCR.

Results: Phenotypic analysis showed marked activation of all three hILC subsets during
the febrile phase as shown by higher CD69 expression when compared to paired
convalescent samples, although the frequency of hILCs remained unchanged. Upon ex
vivo stimulation, hILCs from febrile phase DHF produced significantly higher IFN-g and IL-4
when compared to those of DF. Transcriptomic analysis showed unique hILCs gene
expression in DF and DHF, suggesting that divergent functions of hILCs may be
org May 2021 | Volume 12 | Article 5998051
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associated with different disease severities. Differential gene expression analysis indicated
that hILCs function both in cytokine secretion and cytotoxicity during the febrile phase of
DENV infection.

Conclusions: Helper ILCs are activated in the febrile phase of DENV infection and display
unique transcriptomic changes as well as cytokine production that correlate with severity.
Targeting hILCs during early innate response to DENV might help shape subsequent
immune responses and potentially lessen the disease severity in the future.
Keywords: Dengue, viral infection, innate lymphoid cells, ILCs, immune response to dengue, innate immunity, RNA-
seq, transcriptome
INTRODUCTION

Dengue virus (DENV) infection is a serious public health threat,
especially in tropical and subtropical areas. This important
mosquito-borne virus infects approximately 390 million people
annually (1). Clinical manifestations range from asymptomatic,
mild dengue fever (DF) to severe life-threatening dengue
hemorrhagic fever (DHF) and dengue shock syndrome (DSS)
(2). Currently, there is no specific treatment. The only licensed
vaccine, Dengvaxia, showed limited efficacy and inadvertently
increased hospitalization rate in children and dengue-naive
vaccinees (3–5). The high prevalence, absence of specific
treatment and lack of effective vaccine result in prominent
global burden, clinically, and economically. This is in part due
to the inadequate understanding of immune responses to
DENV infection.

Complex interactions between DENV and host immune
responses lead to the various outcomes of the infection. While
protective immune response is required for viral clearance and
resolution of the infection, detrimental response results in
increased viral propagation, cytokine storm, plasma leakage,
and severe disease outcome (6–9). DENV is a single stranded
positive-sense RNA virus in the Flaviviridae family. In humans,
there are 4 DENV serotypes. Secondary heterotypic infection is
associated with an increased chance of developing severe disease
(10, 11), likely due to pathogenic memory T and B cell response
from previous infection known as T cell antigenic sin (9, 12, 13)
and antibody-dependent enhancement (14, 15). Innate and
innate-like responses to DENV infection are not only crucial
as the first line of defense but also influence subsequent adaptive
T and B cell responses (16). Beside the role of innate-like T cells,
NKT (17–19) and MAITs (20, 21), several lines of evidence
suggested the important roles of various innate responses in
DENV infection and viral evasion strategies, in particular type I
IFN (22–24), monocytes, macrophages and dendritic cells (25),
mast cells (18, 26), as well as NK cells (27). However, the roles of
innate lymphoid cells (ILCs), a very important and most recently
discovered innate immune cells, in DENV infection has never
been investigated.

ILCs are innate counterparts of T cells that can respond
rapidly, orchestrate early innate responses, and shape subsequent
adaptive responses (28–35). Unlike T cells, they do not express
T-cell receptors, thus do not respond in an antigen-specific
org 2
manner. ILCs comprise NK cells, helper ILCs (hILCs), and
lymphoid tissue inducers (LTi). Helper ILCs are classified into
ILC1, ILC2, and ILC3, based on expression of major
transcription factors and their signature cytokines, which
resemble those of Th1, Th2 and Th17/Th22 cell subsets. In
general, ILC1 produces IFN-g; ILC2 produces IL-4, IL-5 and IL-
13; and ILC3 produces IL-17A and/or IL-22 (32, 33, 36, 37).
Recent evidence also showed the plasticity of ILCs that enable
them to promptly respond to environmental changes (38). hILCs
have been shown to play both protective and detrimental roles in
various diseases, including allergy (39–41), autoimmunity (42–
44), cancers (45–48), inflammation and infectious diseases
caused by various pathogens including viruses (49–55).

While the critical roles of hILCs have been demonstrated in
several viral infections, most studies were done in murine
models. These include diverse roles in host protection,
immunopathology, and tissue homeostasis in influenza A virus
(IAV) (56–60), respiratory syncytial virus (RSV) (61–63),
rhinovirus (64, 65), herpes simplex virus (HSV) (66), rota virus
(67), and mouse cytomegalovirus (MCMV) (68–70). Because
mouse and human hILCs differ significantly (71), study in the
human system is critical. Using human hILCs co-cultured with
viruses in vitro, hILCs were shown to respond to rhinovirus (72),
IAV (56, 58), and human cytomegalovirus (HCMV) (73).
However, the study of hILCs in natural viral infection in
humans has been limited to those of HIV infection (74).

Here, we investigated the potential roles of hILCs in natural
human DENV infection using clinical samples from a well-
characterized DENV-infected patient cohort. Flow cytometric
analysis showed marked hILCs activation during the febrile
phase which diminished at convalescence in both DF and
DHF, while hILC number and subset composition remained
unchanged. Upon ex vivo stimulation, hILCs from febrile phase
DHF produced more cytokine than those of DF. Furthermore,
global gene expression analysis revealed upregulation of different
sets of genes in the febrile phase of DF and DHF patients. These
results suggested that hILCs play a role in response to febrile
phase of DENV infection and that diverged hILCs functional
responses were associated with different clinical outcomes of the
infection. A better understanding of hILCs within the complex
host-viral interaction in the pathogenesis of DENV infection
may contribute to future development of effective preventative
and therapeutics approaches.
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MATERIALS AND METHODS

Ethical Statement
This study used human samples collected from Dengue Research
Framework for Resisting Epidemics in Europe (DENFREE) (75).
The DENFREE (Thailand) (76) study was approved by the
Institutional Review Board of Faculty of Medicine Vajira
Hospital (No.015/12) and the Faculty of Tropical Medicine
Mahidol University (TMEC 13-041). All subjects or their legal
guardians signed written informed consent prior to study
participation. The use of archived DENFREE samples in this
study was approved by the ethical committee of the Faculty of
Medicine, Ramathibodi hospital (COA.MURA2019/603).
Frontiers in Immunology | www.frontiersin.org 3
Clinical Samples
Blood samples were collected from DENV-infected patients who
presented with febrile illness with confirmed presence of DENV
RNA in plasma by RT-PCR, as previously described (77, 78). The
DENV-infected patients were classified according to WHO 1997
classification criteria into dengue fever (DF) and dengue
hemorrhagic fever (DHF).

Samples from two timepoints were evaluated in this study
(Supplementary Table 1). Febrile phase samples were collected
one day before fever subsided to represent the febrile phase of
DENV infection. Convalescent phase samples were collected two
months after hospital discharge (Figure 1A). Peripheral blood
A
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FIGURE 1 | Frequencies of hILCs during the course of DENV infection. (A) Study design (B) Flow cytometry analysis gating strategy for hILCs and their subsets
from PBMC. (C, D) Percentage of total hILCs and hILC subsets in febrile phase of dengue fever (DF), dengue hemorrhagic fever (DHF) patients and healthy donors
(HC). ILC subsets frequencies were determined by percentage of CD45+ lymphocyte (C) or total hILCs (D). (E, F) Percentage of total hILCs and ILC subsets of
matched samples at febrile and convalescent phases of DF patients. ILC subset frequencies were determined by percentage of CD45+ lymphocyte (E) or total hILCs
(F). (G, H) Percentage of total hILCs and ILC subsets of matched samples at febrile and convalescent phases of DHF patients. ILC subsets frequencies were
determined by percentage of CD45+ lymphocyte (G) or total hILCs (H). The results were presented as Median ± IQR. Data were analyzed using Mann-Whitney test
(C, D) or Wilcoxon matched-pairs signed rank test (E–H) (**p < 0.01).
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mononuclear cells (PBMCs) were isolated using density gradient
centrifugation (Lymphoprep, STEMCELL Technologies, 07851).
Aliquots of PBMCs were then cryopreserved in freezing media
(90% FBS, 10% DMSO) in liquid nitrogen until used. PBMCs
from 10 DF and 10 DHF patients at both febrile and matched
convalescent phases (when available) were used for surface flow
cytometric experiments (Figures 1, 2). A subset of these samples
(3 DF and 5 DHF patients) was used for hILC cell sorting
experiment in which 3 DF and 3 DHF samples proceeded to
RNA sequencing (RNA-seq) experiment (Figures 4, 5). The
cDNA from sorted hILCs (3 DF and 5 DHF patients) were
used for qPCR experiment. A different set of PBMCs at febrile
Frontiers in Immunology | www.frontiersin.org 4
phase (10 DF and 14 DHF patients) were used for intracellular
cytokine staining experiment (Figure 3).

Helper ILCs Phenotypic Analysis by Flow
Cytometry
Cryopreserved PBMCs were thawed at 37°C with warm RPMI-
1640 (Gibco, 11875119) supplemented with 10% FBS (Gibco,
10099141). After washing twice with RPMI, cell viability was
assessed using trypan blue exclusion assay. Cell viability of all
samples in this study exceeded 90%. PBMCs were stained with
LIVE/DEAD fixable violet (Invitrogen, L34963) according to the
manufacturer’s protocol. Subsequently, Fc blocking with Human
A

B C

D E

FIGURE 2 | Activation of hILCs during the febrile phase of DENV infection. (A) Representative contour plot of CD69 expression (light grey, blue, red, and orange) as
compared with isotype control (dark grey) on total hILC and each hILC subsets in febrile phase and convalescent phases. (B) Percentage of CD69+ (upper panel)
and DMFI (CD69 MFI - isotype control MFI) (lower panel) for total hILCs and each hILC subset in febrile phase of dengue fever (DF) patients and dengue hemorrhagic
fever (DHF) patients compared to healthy donors (HC). (C) Percentage of CD69+ and (D) DMFI for total and hILC subsets of febrile phase compared to matched
convalescent of DF (upper panel) and DHF (lower panel). Each line connected data of the same patient between two timepoints. Wilcoxon matched-pairs signed rank
test was used for statistical comparison, p < 0.05 was considered as a statistically significant difference. (E) Percentage of CD69+ (upper panel) and DMFI (lower
panel) for total and hILC subsets in convalescent phase of DF and DHF patients compared to healthy donors (HC). The results were presented as Median ± IQR.
Data were analyzed using Mann-Whitney test (B, E) or Wilcoxon matched-pairs signed rank test (C, D) (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).
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TruStain FcX™ (Biolegend, 422302) and cell surface staining
were performed. The fluorophore-conjugated antibodies for cell
surface staining comprise of lineage cocktail (CD3, CD14, CD16,
CD19, CD20, CD56) (FITC), CD117 (PE), CRTH2 (Alexa Fluor
647), CD127 (APC/Cy7), CD45 (V500), and CD69 (Alexa Fluor
700) (for list of antibodies see Supplementary Table 2).
Fluorescence minus one (FMO) and isotype controls (mIgG1-
Alexa Fluor 700, BD Biosciences) were used to evaluate CD69
expression. Surface staining was performed on ice for 30 minutes
in FACS Buffer (2% FBS and 0.25 mM EDTA in PBS). Stained
samples were then acquired with the CytoFLEX flow cytometer
(Beckman Coulter) using CytExpert version 2.3. FlowJo version
10 (FlowJo, LLC) and GraphPad Prism version 7 were used for
data analysis. hILCs were identified within the lymphocyte
region on the basis of their forward and side scatter profiles
(FSClow and SSClow) in conjunction with CD45highSSClow after
excluding doublets and dead cells. Total hILCs were gated as
CD45+Lin−CD127+ cells. The hILC subsets were then identified
within total hILCs as follows: CD117-hILCs as ILC1,
CD161+CRTH2+hILCs as ILC2, and CD117+hILCs as ILC3
(Figure 1B).

Intracellular Cytokine Staining of hILCs
Cryopreserved PBMCs were thawed and processed as described
above. Fc blocking with Human TruStain FcX™ (Biolegend,
422302) was performed according to the manufacturer’s
Frontiers in Immunology | www.frontiersin.org 5
protocol. Cell surface staining with lineage cocktail (FITC) and
CD127 (APC/Fire750) was performed at RT for 15 minutes.
PBMCs were then stimulated with PMA (50 ng/ml) and
Ionomycin (1 ug/ml) for 4 hours with protein transport
inhibitor, BD GolgiPlug (BD, 555029). PBMCs were stained
with Zombie Violet Fixable Viability Kit (Biolegend, 423114)
before undergoing intracellular cytokine staining with BD
Cytofix/Cytoperm™ (BD, 554714) according to manufacturer’s
protocol. IFN-g (PE), IL-4 (BV510), IL-13 (PerCP/Cy5.5), IL-
17A (Alexa Fluor 700), and IL-10 (Alexa Fluor 647) were used
for intracellular cytokine staining for 30 minutes on ice (see
Supplementary Table 2 for a list of antibodies used). Stained
samples were then acquired and analyzed with CytExpert version
2.3 and GraphPad Prism version 7, in comparison to
fluorescence minus one (FMO) control.

Helper ILC Sorting
PBMCs from 3 DF and 5 DHF patients at febrile and
convalescent phases were sorted for hILCs using a FACS Aria
III instrument (BD Biosciences) for hILCs RNA-seq and qPCR
experiments. PBMCs were stained with Lineage cocktail
antibodies (CD3, CD14, CD16, CD19, CD20, CD56) (FITC)
and CD127 (APC/Cy7). After staining, cells were washed and
resuspended in a cold FACS buffer (2% FBS and 0.25 mM EDTA
in PBS). Immediately before sorting, cells were filtered through a
35-mm strainer. Helper ILCs were gated as Lin-CD127+ cells
A

B

C

FIGURE 3 | Intracellular cytokine staining of hILCs from febrile DF and DHF after PMA/ionomycin ex vivo stimulation (A) Flow cytometry analysis gating strategy of
total hILCs from PBMC. (B) Representative contour plots of IFN-g, IL-4, IL-13, IL-17A, and IL-10 expression (red) overlaid on FMO control (grey). (C) Percentage of
IFN-g, IL-4, IL-13, IL-17A, and IL-10 expression of hILCs in febrile phase of DF and DHF patients. The results were presented as median ± IQR. Data were analyzed
using Mann-Whitney test (*p < 0.05, **p < 0.01; ns, not significant).
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within the lymphocyte gate (FSClowSSClow) after exclusion of
doublets and sorted directly into in 96-well plates with 4 ml of
lysis buffer composed of 0.4% Triton-X 100 (Calbiochem,
648466), recombinant RNase inhibitor (Clonetech, 2313B), and
10 mM dNTP mix (Bioline, 39053). Sorting mode was set to
single cell resolution in order to gain the highest purity. Fifty
hILCs were sorted into each well. Approximately 3-5 wells were
obtained per sample. Plates were immediately spun down after
sorting, then sealed and snapped frozen with dry ice before
moving to -80°C freezer for storage until further processing
within 2-3 days.

Microscaled RNA-Seq
The generation of full-length transcriptomes from a low number
of cells per sample was performed based on the SMART-seq2
protocol (79), with modifications. Briefly, mRNA was captured
using poly-dT oligonucleotides and reverse-transcribed into full-
length cDNA using the described template-switching
oligonucleotide and SMARTScribe (Clonetech, 639537). cDNA
was amplified by PCR (PCRmax Alpha Cycler 2) for 14 cycles
using the KAPA HiFi HotStart Readymix (Roche, KK2601,
07958927001) and then purified using AMPure XP (Beckman
Coulter, A63881) magnetic beads at 0.8:1 (vol/vol) ratio. For each
well, cDNA quality was assessed with Agilent Tapestation
(expected peak ~ 1.5-2 kb). cDNA profiles containing short
fragments (< 500 bp), possibly due to RNA degradation, were
excluded. cDNA from three wells of the same sample were
pooled and normalized to 300 pg/ul for subsequent library
construction using the Nextera XT library preparation kit
(Illumina, FC-131-1096) and the index kits (Illumina, FC-131-
2001). Each library’s size was assessed by Agilent Tapestation.
The libraries were sequenced using the Illumina HiSeq platform
(Macrogen, South Korea) with paired-end 150-bp read length
and coverage of approximately 30 million reads per sample.

Quantitative PCR Analysis of Sorted hILCs
RNA from sorted hILCs were reverse transcribed and
preprocessed into cDNA as described above. cDNA was
normalized to 5 ng/ul for each PCR reaction. Quantitative PCR
reactions were prepared with Q5 High-Fidelity 2X Master Mix
(NEB, M0492L) and SYBR green I (Roche, 11988131001). Oligos
used for qPCR are listed in Supplementary Table 3. All qPCR
reactions were performed using the Rotor-Gene Q real-time
cycler (Qiagen). The specificity of the reaction was verified by
melting curve analysis. Delta Ct value for each gene is compared
to ACTB.

Bioinformatics Analyses
Nextera adapter sequences were removed using Trimmomatic
version 0.36 (80). Trimmed reads were mapped and aligned
using HISAT2 (81), with GRCh38 as the reference genome.
Normalized relative transcript abundances as Transcripts Per
Kilobase Million (TPM) were obtained using StringTie (82). Raw
read counts were obtained with the HTseq-count version
0.6.1p1 (83).

After removal of absent features (zero counts in all samples),
the raw counts were then imported to DESeq2 version 1.24.0 (84)
Frontiers in Immunology | www.frontiersin.org 6
to identify differentially expressed (DE) genes. DE analysis was
performed by comparing the febrile phase and convalescent
phase samples of the same individuals (“paired samples” in the
design formula of DESeq2), so the biases between the donors
were internally normalized. Wald-test p values were adjusted for
multiple testing using the Benjamini-Hochberg method, and
genes with adjusted p values less than 0.01 and with log2 fold
changes greater than 2 or less than -2, were considered
significantly differentially expressed between the two phases.
Because of the low sample numbers, which may cause high
variability within each sample group, shrinkage estimator
‘apeglm’ was applied to re-estimate the log2 fold change.
Apeglm estimates the effect size more accurately, especially
when read counts are low and highly variable (85). Genes with
adjusted p values less than 0.01 and with re-estimated log2 fold
changes greater than 2 or less than -2, were considered
statistically significant. Functional gene set analysis was
assessed using the Gene Ontology (GO) biological process
analysis with gprofiler (86). ComplexHeatmap (87) was used to
generate heatmap plots for visualization.
RESULTS

Frequency of hILCs Did Not Change
During Febrile Phase of DENV Infection
To investigate the role of hILCs during DENV infection, we first
examined the frequency of hILCs and hILC subsets in PBMC
from DF and DHF patients during febrile phase of DENV
infection, as compared to those at the convalescence and also
to healthy controls (HC), using flow cytometry (Figures 1A, B).
There was no significant difference in terms of total hILC
frequency among febrile DF (median 0.12, IQR 0.07 - 0.16),
DHF (median 0.14, IQR 0.12 - 0.23), and HC (median 0.22, IQR
0.13 - 0.29) (Figure 1C). No obvious change in hILC subset
distribution was observed, with the exception of a lower
percentage of ILC3 in the febrile DF patients (% of CD45+
median 0.03, IQR 0.02 - 0.06; % of hILCs median 22.80, IQR
18.33 - 45.23), when compared to HC (% of CD45+ median 0.10,
IQR 0.08 - 0.12; % of hILCs median 53.10, IQR 40.30 - 60.10)
(p < 0.01) (Figures 1C, D). Furthermore, the frequency of total
hILCs and hILC subsets were not significantly different when
compared between the febrile phase of DENV infection and the
convalescence of the same patient, regardless of disease severity
(Figures 1E–H). Thus, hILC frequency did not change during
DENV infection.

Helper ILCs Were Activated During Febrile
Phase of DENV Infection
To investigate whether hILCs were activated during DENV
infection, the expression of CD69 (in comparison to FMO
control) on hILCs was investigated (Figure 2A). The
percentage of CD69+ hILCs, when compared to that of the
healthy donors (median 3.56, IQR 2.38 - 5.04), were significantly
higher in both febrile DF (median 21.95, IQR 10.72 - 32.13, p <
0.001) and febrile DHF (median 21.55, IQR 12.58 - 33.05, p <
May 2021 | Volume 12 | Article 599805
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0.001) (Figure 2B, upper panel). The changes in CD69 mean
fluorescence intensity (DMFI) showed a similar result (Figure
2B, lower panel). However, the expression level of CD69 was not
different between hILCs of DF and DHF patients at the same
time points. Expression of CD69 on ILC1 (DF median 25.50,
IQR 13.73 - 31.03; DHF median 27.25, IQR 18.85 - 31.93; HC
median 0.95, IQR 0.00 - 2.17), ILC2 (DF median 14.70, IQR
7.36 - 31.40; DHF median 16.65, IQR 6.67 - 35.13; HC median
1.44, IQR 0.80 - 2.40), and ILC3 (DF median 36.35, IQR 19.40 -
55.65; DHF median 30.90, IQR 21.75 - 38.45; HC median 1.30,
IQR 0.86 - 3.58) were significantly higher during febrile DF and
DHF when compared to HC.

In addition, analysis of hILC activation kinetics by comparing
expression levels of CD69 between the febrile and convalescent
samples from the same patient showed a decrease in hILC
activation when disease subsided (Figures 2C, D, left most
column). Further analysis on all hILC subsets show similar
results of decreased activation in the convalescence (Figures
2C, D). Interestingly, low level of hILC activation seemed to
persist in the convalescent phase as their CD69 expression was
still higher than those of healthy donors (Figure 2E). These
results suggest that hILCs were highly activated during the febrile
phase of DENV infection, and the activation diminished to a low
level during the convalescent phase of infection.
Helper ILCs From febrile DHF Produce
More cytokines Than Those of DF
To assess the functions of hILCs, we performed intracellular
cytokine staining of hILCs from febrile DF and DHF patients,
after ex-vivo stimulation. The expression of IFN-g, IL-4 and IL-
13, and IL-17A (representative functional cytokines of ILC1,
ILC2, and ILC3, respectively) were evaluated on total hILCs
(Figures 3A, B). In addition, IL-10 was also evaluated. The
percentage of hILCs expressing IFN-g was higher in DHF
(median 23.85, IQR 15.05 - 28.43) than DF (median 14.42,
IQR 12.94 - 19.92) (p = 0.042) (Figure 3C). Likewise, the
percentage of hILCs producing IL-4 was also higher in DHF
(median 7.86, IQR 6.98 - 11.94) compared to DF (median 5.23,
IQR 4.08 - 6.19) (p = 0.003). A very small percentage of hILCs
produce IL-17A (median 2.11 in DHF and median 1.21 in DF)
(p = 0.036) (Figure 3C). No statistical differences in IL-13 and
IL-10 production were observed among hILCs from DHF and
DF (Figure 3C). This result suggests that hILCs from febrile
DHF are functionally active and capable of producing their
cytokines, more than in DF.

Global Gene Expression Profiles of hILCs
From DENV-Infected Patients
To explore the molecular functions of hILCs in febrile phase of
DENV infection, we next examined the global gene expression
profile using RNA-seq of FACS-sorted hILCs from samples of 3
DF patients, 3 DHF patients in febrile phase and matched
convalescent phase of the same patients.

As expected, hILC signature genes, including KLRB1 and
IL7R, were detected in hILCs from all samples (Figure 4A).
Frontiers in Immunology | www.frontiersin.org 7
Meanwhile, the signature genes of hILC subsets (GATA3, KIT,
AHR, PTGDR2, TBX21) were expressed at varying levels between
samples (Figure 4A), likely due to the differences in the hILC
subset composition among samples (Figures 1C, D). The gene
markers for T cell, B cell, NK cell, and monocyte were rarely
expressed in the hILCs. Together, these data further verified the
identity of hILCs. Importantly, CD69 gene expression was
upregulated in hILCs from febrile DF and febrile DHF, when
compared to convalescence (Figure 4B lower panel), similarly to
CD69 surface protein upregulation measured by flow cytometry
(Figure 4B upper panel). Gene expression data from RNA-seq
and protein expression data showed similar trends when
compared between the two severities (DF vs DHF) and
timepoints (febrile vs convalescence) (Figure 4B). Correlation
analyses of global gene expression using unsupervised
hierarchical clustering between samples showed that the febrile
phase samples were clustered together (Figure 4C). However, the
overall expression profiles cannot clearly distinguish the different
disease severities. Principal component analysis (PCA) similarly
showed hILCs from febrile phase samples clustered together and
away from convalescent samples on PC2 (Figure 4D).
Differential Gene Expression Analysis of
hILCs From DENV-Infected Patients
Across Severities and Timepoints
To further explore the functions of hILCs in febrile phase of DENV
infection, we next performed pairwise differential gene expression
analysis, comparing the differences between febrile and convalescent
samples of the same patients in the DF and DHF groups (Figure 5A
and Supplementary Figure 1A, C). Overall, a total of 261 and 228
genes were upregulated in the febrile phase of DF and DHF,
respectively. Surprisingly, only 16 genes were upregulated in both
DF and DHF, suggesting diverged functional responses of hILCs in
different severity outcomes. Genes that were upregulated in the
febrile phase of both DF and DHF, and those uniquely upregulated
in DF or DHF are listed in Supplementary Tables 4, 5. We next
performed functional gene set analysis using an over-representative
test on the differentially expressed genes in the febrile DF (Figure
5B) and DHF (Figure 5C). In DF, the modules that were
upregulated include pyruvate metabolic process, activation of JAK
activity, positive regulation of TNF superfamily cytokine, and
positive regulation of cytokine production (Figure 5D). In
contrast, pathways that were upregulated in DHF include small
molecule metabolic process, organophosphate and nucleotide/
nucleoside biosynthetic process as well as nuclear mRNA
surveillance of mRNA 3’-end process (Figure 5E).

To explore the diverse roles of hILCs during the febrile phase
in DF and DHF with higher stringency, we applied shrinkage
estimator ‘apeglm’ to analyse differential gene expression (85).
After re-estimation of log2 fold change, only EGR1 is upregulated
in both febrile DF and DHF. The top immune-related genes
uniquely upregulated in febrile DF (as compared to
convalescence) were IFIT1, IFI44L, HAVCR2 (Tim3) while
those uniquely upregulated in febrile DHF were GZMB,
SLAMF7 , RORC , TRIM21 , and IL15RA . (Figure 5F ,
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Supplementary Figure 1B, D and 2 and Supplementary Tables
6, 7).

To corroborate the transcriptome analysis, we performed
qPCR of HAVCR2, GZMB, SLAMF7 and TRIM21 from sorted
hILCs as representatives of genes that were upregulated in DF or
DHF. We observed a trend of higher HAVCR2 expression in DF
patients and higher TRIM21 expressions in DHF patients
(Figure 5G), as was observed in the transcriptome results.
However, the expression of GZMB and SLAMF7 were highly
variable and no trend was observed between severities. The
expression of IFNG as a representative cytokine gene of ILC1
was also show higher trend in DHF than DF (Figure 5G),
consistently with the intracellular cytokine staining result.
Taken together, our results suggest that in response to the
DENV infection, hILCs were activated during the febrile phase
in both DF and DHF, but demonstrated divergent transcriptomic
Frontiers in Immunology | www.frontiersin.org 8
responses, implying different functional roles in response to
DENV infection.
DISCUSSION

To the best of our knowledge, this study showed the first
evidence of hILC responses in human DENV infection, a
pressing public health problem worldwide. By assessing blood
samples from a well-characterized human DENV infection
cohort, we found that hILCs were activated in the febrile phase
of DENV infection and their cytokine production as well as
transcriptional profiles in the febrile phase were distinct between
DF and DHF patients.

Our results showed that the frequency of hILCs in the febrile
phase of DENV infection remained unchanged when compared
A B

C D

FIGURE 4 | Transcriptome analysis of hILCs from DENV-infected patients. (A) Heatmap showing expression level (in TPM) of known hILCs and their subsets’
signature genes as compared to those of T cells, B cells and NK cells in each sample arranged according to disease severity (DF, DHF) and timepoints (febrile,
convalescence). (B) Bar plots show mean MFI from previous flow cytometry experiment (upper panel) and gene expression levels in TPM (lower panel) for CD69,
CD161 (KLRB1), c-kit (CD117, KIT), and CRTH2 (CD294, PTGDR2). (C) Correlation of global transcriptome profiles of hILCs in all samples. Unbiased hierarchical
clustering shows high correlation amongst samples according to timepoints (febrile phase clustered together and away from convalescence). (D) PCA plot with
top contribution genes for PC1 and PC2 shows separation between febrile and convalescent phase on PC2 which were contributed by the expression of CD69,
EGR1, IFIT3, NFKBIA, and IFI44L. Sample number indicated on top of heatmap; DF1_F (DF sample number 1, febrile phase), DF1_C (DF, sample number 1,
convalescent phase).
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FIGURE 5 | Differential gene expression analysis of hILCs between febrile and convalescent phase of DENV infection (A) Plot comparing the fold change of DF
(febrile over convalescent phase) (Y axis) to the fold change of DHF (febrile over convalescent phase) (X axis) depicts transcripts differentially expressed between
disease severity and timepoint. Colored dots denote transcripts that are differentially expressed at least 2-fold higher as well as adjust p value less than 0.01. Blue or
green colored dots denote differentially expressed in DF or DHF respectively. Red colored dots denote transcripts that are differentially expressed by both DF and
DHF. (B, C) Bar plots show significant GO term enrichment from DE genes comparing febrile and convalescent phases in (B) DF and (C) DHF patients. (D, E) Violin
plots show fold change of expression levels of matched samples between febrile and convalescent phases. Each dot represents a gene in the designated GO term
by each patient. (D) show enriched GO term in DF patients and (E) shows GO term enriched in DHF patients. (F) Venn diagram shows number of differentially
expressed genes in DF (febrile over convalescent phase), DHF (febrile over convalescent phase) and both after shrinkage algorithm ‘apeglm’ was applied. Immune-
related genes are listed beside the diagram. (G) Expression levels of HAVCR2, TRIM21, GZMB, SLAMF7, and IFNG by quantitative PCR (delta Ct value (dCt) = Ct
value of ACTB - Ct value of interested gene). Bar showing median ± IQR.
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to matched convalescent samples, and to healthy control
samples. This differs from acute HIV infection, where the
number of circulating hILC were depleted irreversibly during
acute infection likely from apoptosis (74). In animal models,
hILC frequency was found to increase during some viral
infections [IAV (56), rotavirus (67), late phase of MCMV (69),
and rhinovirus (72)], but decrease in others [early phase of
MCMV (69) and SIV (88)]. Although hILC frequency and subset
composition remained unchanged in DENV infection, we found
that hILCs were activated during the febrile phase. (Figure 2)

The activation of hILCs, as demonstrated by CD69
upregulation, was clearly observed during the febrile phase of
DENV infection in both DF and DHF. ILC activation has also
been observed in several other viral infections. For instance, lung
ILC1 was previously shown to be activated in IAV infection
along with the upregulation of IFN-g (59). In addition, the
upregulation of CD69 was found in circulating hILCs in early
HIV infection (74). hILCs are generally known to be activated by
cytokines depending on hILC subsets (32, 33). In IAV infection,
lung ILC2 senses the alarmins from lung macrophages and
subsequently secretes IL-13. In rotavirus infection, ILC3
responds to IL-1a secreted from intestinal epithelial cells (67).
However, it is still unclear how hILCs are activated in the context
of systemic viral infections, including DENV.

Our results showed that hILCs from the febrile phase of DHF
produce more cytokines than those of DF. Cytokine storm is
known to contribute to dengue severity (6, 9). While the higher
serum level of IFN-g and IL-4 have been previously observed in
severe dengue patients (89), the cellular source of these cytokines
especially IFN-g are believed to be T cells (9, 90). We here
showed that hILCs can secrete these cytokines during the febrile
phase of infection, thus may contribute as the early source of
these cytokines and likely play roles in shaping downstream
adaptive T cell responses as previously shown in other
models (91).

Our transcriptomic analysis suggests that the functions of
hILCs likely differ between DF and DHF, as demonstrated by
their distinct transcriptomic profiles. We first verified the sorted
hILCs identity by observing high expression of hILCs combined
gene sets, PTPRC (CD45), IL7R (CD127), and KLRB1 (CD161),
in all samples. We note some low level expression of
conventional T/NK cell markers, CD3E, GZMB, and SLAMF7;
these genes were also found to be lowly expressed in human
hILCs in public transcriptomic datasets previously reported
(Supplementary Figure 3A) (92). We next assessed
transcriptomic profiles and observed clear distinction between
hILCs from the febrile and convalescent phases, which were
separated mainly by the expression of CD69 and interferon-
stimulated genes (IFIT3, IFI44L, EGR1), similarly to previous
reports on whole PBMC transcriptome analysis in DENV-
infected patients (93, 94). GO term analysis showed
enrichment in different modules in the febrile DF and DHF. In
DF, pyruvate metabolic process, activation of JAK activity,
positive regulation of TNF superfamily cytokine, and positive
regulation of cytokine production were upregulated, suggesting
the activation of cytokine pathways, consistent with a previous
Frontiers in Immunology | www.frontiersin.org 10
report on whole blood transcriptome (95). On the other hand,
upregulated genes in DHF were functionally enriched for
organophosphate and nucleotide/nucleoside biosynthetic
processes as well as nuclear mRNA surveillance of mRNA 3’-
end processes. These suggest that hILCs were metabolically
active and increased their transcription and translation. The
activation of the transcription pathway was also found in ILC3 in
HSV infection (66). Because the GO term analysis is relatively
broad and not specific to hILC biology, we next examined DEG
by focusing on immune-related genes that were upregulated in
the febrile phase when compared to matched convalescent
samples, especially those that are different between the febrile
DF and DHF samples. Surprisingly, only EGR1 was upregulated
in both severities. EGR1 is known to regulate IL-2 and TNFa
production (96–98). In flavivirus infection, EGR1 was found to
be commonly upregulated in TEM and TEMRA in both DENV and
Zika virus infection (99). Furthermore, upon in vitro activation
of T cells with DENV peptides, both activated CD4+ (100) and
CD8+ T cells (101) upregulated EGR1 expression. Thus, EGR1
likely regulates proinflammatory cytokine production in hILCs
during the febrile phase of DENV infection.

Our DEG analysis also suggests that hILC responses may be
more tightly regulated in DF while relatively less so in DHF. In
DF, febrile phase hILCs upregulated type I IFN response genes
together with the negative regulators IFI44L andHAVCR2 (Tim-
3), suggestive of a “regulated response”. Interferon response
gene, IFIT1, is known for its antiviral activity (102) while
IFI44L is a feedback regulator of antiviral response (103). In
human decidua, Tim-3 was found to be expressed in ILC3 and
regulated IL-22, IL-8, and TNFa cytokine production important
in maintaining feto-maternal tolerance (104). Tim-3, together
with PD-1 and Tigit are considered check-point or inhibitory
receptors on ILCs and NK (105). Quantification of Tim-3
expression by qPCR showed a similar trend of higher
expression in DF but the difference did not reach statistical
significance likely due to low number of samples. On the
contrary, in the febrile phase of DHF samples, we observed
upregulation of TRIM21, GZMB, IL15RA, and SLAMF7
indicating pro-inflammatory response and metabolic
activation. TRIM21 was shown to respond to HCV and
coxsackievirus B3 by interacting with MAVS (106). It sustains
IRF3, thus positively regulates type I IFN antiviral response, and
also activates proinflammatory cytokines TNFa, IL-6 (107, 108).
Granzyme B is well known for its role in cytotoxic activity
important in eradicating viral-infected cells (109). IL-15Ra, a
receptor subunit for IL-15, is important for ILC development
and activation especially in ILC1 (110). While SLAMF7 function
has not been characterized in hILCs, SLAMF7 was found to
express in ILC1 when we curated publicly available human
circulating hILC RNA-seq data (92) (Supplementary Figure
3A). Interestingly, when we mapped the upregulated genes
during the febrile phase of both DF and DHF, all were found
to be relatively enriched in healthy ILC1 subset (Supplementary
Figure 3B). This is consistent with the existing concept that ILC1
is the main ILC subset responding to viral infection. Taken
together, hILCs likely participate in response to DENV through
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both cytokine-mediated response and cytotoxicity. Our data also
suggest that a relatively loosely regulated activation of hILCs
might be associated with severe DHF, while activation with
regulated response may be associated with mild DF.

There are potential limitations of this study and future study
is needed. First, we could not sort the hILC subsets separately for
transcriptome analysis due to a limited number of hILCs in the
samples. Future study using single-cell RNA sequencing could
help elucidate the role of heterogeneous subsets of hILCs with
higher resolution. In addition, future studies with a larger
number of samples would be required to confirm our findings.
Secondly, we could not detect hILC signature cytokine (IFN-g,
IL-4, IL-13, IL-17A) gene expression in RNA-seq data. This
might be due to the low number of cells (150 cells per sample) as
we observed a better, but not clear, expression of cytokine genes
when we curated healthy hILC data from Li and colleagues (92)
(Supplementary Figure 3A) which sorted 1,000 cells for RNA-
seq experiment. In support of this hypothesis, another study with
low number of cells also could not detect most of these genes in
HIV infected hILCs data (74) (Supplementary Figure 4). Other
possibilities include low cDNA conversion rate on these genes as
well as insufficient sequencing depth. Nevertheless, intracellular
cytokine staining and qPCR data helped to confirm that these
cytokines were produced by hILCs during DENV infection.
Finally, the cross-talks between hILCs and other cells are
important aspects that are beyond the scope of the current
study and warrant further investigations.

In summary, we provide the first evidence of hILC activation in
human DENV infection and their distinct cytokine production
and transcriptional profiles in the febrile phase of DF and DHF.
While hILCs likely participate in antiviral defense against DENV
infection, an uncontrolled response may be pathogenic and affect
disease severity. Further investigations into the differential
responses of hILCs in DENV infection will help us to better
understand the protective response in DF and the pathogenic
response in severe DHF. These could form the foundation for
future applications, such as targeting pathogenic hILCs early in
innate immune response to prevent disease progression to severe
form, or harnessing hILCs to achieve optimally regulated immune
response in vaccination strategy (111).
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