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Clinical Evaluation of a Multiparametric Deep Learning Model for
Glioblastoma Segmentation Using Heterogeneous Magnetic

Resonance Imaging Data From Clinical Routine

Michael Perkuhn, MSc, MD,*† Pantelis Stavrinou, MD,‡ Frank Thiele, MSc,*† Georgy Shakirin, PhD,*†

Manoj Mohan, MSc,§ Dionysios Garmpis,* Christoph Kabbasch, MD,* and Jan Borggrefe, MD*
Objectives: The aims of this study were, first, to evaluate a deep learning–based,
automatic glioblastoma (GB) tumor segmentation algorithm on clinical routine
data from multiple centers and compare the results to a ground truth, manual ex-
pert segmentation, and second, to evaluate the quality of the segmentation results
across heterogeneous acquisition protocols of routinely acquired clinical mag-
netic resonance imaging (MRI) examinations from multiple centers.
Materials andMethods: The data consisted of preoperative MRI scans (T1, T2,
FLAIR, and contrast-enhanced [CE] T1) of 64 patients with an initial diagnosis
of primary GB, which were acquired in 15 institutions with varying protocols.
All images underwent preprocessing (coregistration, skull stripping, resampling
to isotropic resolution, normalization) and were fed into an independently trained
deep learningmodel based on DeepMedic, a multilayer, multiscale convolutional
neural network for detection and segmentation of tumor compartments. Auto-
matic segmentation results for the whole tumor, necrosis, and CE tumor were
compared with manual segmentations.
Results: Whole tumor and CE tumor compartments were correctly detected in
100% of the cases; necrosis was correctly detected in 91% of the cases. A high
segmentation accuracy comparable to interrater variability was achieved for the
whole tumor (mean dice similarity coefficient [DSC], 0.86 ± 0.09) and CE tumor
(DSC, 0.78 ± 0.15). The DSC for tumor necrosis was 0.62 ± 0.30. We have ob-
served robust segmentation quality over heterogeneous image acquisition protocols,
for example, there were no correlations between resolution and segmentation ac-
curacy of the single tumor compartments. Furthermore, no relevant correlation
was found between quality of automatic segmentation and volume of interest
properties (surface-to-volume ratio and volume).
Conclusions: The proposed approach for automatic segmentation of GB proved
to be robust on routine clinical data and showed on all tumor compartments a high
automatic detection rate and a high accuracy, comparable to interrater variability.
Further work on improvements of the segmentation accuracy for the necrosis
compartments should be guided by the evaluation of the clinical relevance.

Therefore, we propose this approach as a suitable building block for
automatic tumor segmentation to support radiologists or neurosurgeons in the
preoperative reading of GB MRI images and characterization of primary GB.
Received for publication February 14, 2018; and accepted for publication, after revi-
sion, April 11, 2018.

From the *Department of Radiology, University Hospital Cologne, Cologne; †Clinical
Applications Research, Philips Research, Aachen; ‡Department of Neurosurgery,
University Hospital Cologne, Cologne, Germany; and §Data Science, Philips
Healthcare, Bangalore, India.

Conflicts of interest and sources of funding: Michael Perkuhn, Frank Thiele, and
Georgy Shakirin are employees of Philips Research, and Manoj Mohan is an em-
ployee of Philips Healthcare. For the remaining authors, none were declared.

Correspondence to: Michael Perkuhn, MSc, MD, Department of Radiology, Univer-
sity Hospital Cologne, Kerpener Str 62, 50937 Köln, Germany. E-mail: michael.
perkuhn@uk-koeln.de.

Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. This is
an open-access article distributed under the terms of the Creative Commons
Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND),
where it is permissible to download and share the work provided it is properly
cited. The work cannot be changed in any way or used commercially without
permission from the journal.

ISSN: 0020-9996/18/5311–0647
DOI: 10.1097/RLI.0000000000000484

Investigative Radiology • Volume 53, Number 11, November 2018
Key Words: glioblastoma, GB, MRI, tumor segmentation, machine learning,
deep learning

(Invest Radiol 2018;53: 647–654)

G lioblastoma (GB) is the most frequent primary brain cancer.1 The
diffuse and highly invasive growth as well as the intratumor hetero-

geneity makes it the most lethal cancer of the central nervous system.2

Despite the aggressive combination therapy with surgery followed by ra-
diation plus concomitant and adjuvant chemotherapy, the median
survival time is still only 15 to 17 months.3 Magnetic resonance im-
aging (MRI) is commonly used to evaluate location, size, spread,
edema, and the biological status of the tumor noninvasively.4 Mag-
netic resonance imaging is part of the standard clinical workup for
GB management for planning and follow-up of surgery, chemother-
apy, and radiation.

Detection of the tumor and determination of location and exten-
sion of the different tumor compartments are important for surgery
planning. It has been shown in large studies that the extent of the resec-
tion of tumor volume of 98% or more is associated with longer survival
time.5 Furthermore, Hammoud et al6 showed that MRI features such as
sign of little or no necrosis and lower tumor enhancement are associated
with longer survival time. Determination of the tumor extent is also
highly relevant to radiomics,7 an emerging imaging-based method for
extracting quantitative features from standard-of-care imaging to estab-
lish predictive models.8 Furthermore, a better identification of the dif-
ferent biological areas of the tumor improves the precision of tissue
targeting in biopsy.

In radiological reading, tumor and compartment segmentation is
not done routinely but would offer important additional clinical value in
the aforementioned approaches. Manual expert segmentation is still
considered as the gold standard, but it is time-consuming and highly
variable based on the level of expertise.9 Consequently, there remains
an unmet need for fully automatic, user-independent detection and seg-
mentation tools, with the potential to become an integral part of the clin-
ical reading workflow.

Over the last decade, significant progress has been made in
computer-assisted and machine learning–based segmentation algo-
rithms for the identification and segmentation of brain lesions. Several
main categories of approaches can be identified. There are semiauto-
matic and fully automatic approaches of various complexity, from simple
thresholding or region growing algorithms to comprehensive model-
based, supervised, and unsupervised machine learning algorithms.10,11

To compare the different approaches to brain tumor segmentation algo-
rithms objectively, the Multimodal Brain Tumor Image Segmentation
Benchmark (BRATS) challenge has been organized since 2012.12 In
the latest BRATS benchmark for pretreatment segmentation of brain tu-
mors, the algorithms evaluated demonstrated results comparable with
interrater variability.13

Recently, deep learning–based methods have shown promising
and clinically relevant results.14–16 The deep learning techniques showing
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a high model capacity and the ability to learn highly discriminative
features often outperform hand designed feature sets. In particular,
2-dimensional and 3-dimensional (3D) convolutional neural networks
(CNNs) show promising results on clinical imaging data.17,18 How-
ever, studies about evaluations of these algorithms using routine clin-
ical data are still lacking. We chose DeepMedic, a 3D CNN-based
algorithm for evaluation.18 This algorithm is fully automatic and
achieved high scores on the BRATS data. Its application is based on
the most routinely performed MRI examinations: T1-weighted (T1w),
CE T1-weighted (CE T1w), T2-weighted (T2w), and FLAIR.

The aims of this study were as follows:

1. To evaluate a state-of-the-art, fully automatic brain tumor segmen-
tation compared with manual annotations by expert readers.

2. To evaluate variations of the segmentation results with highly het-
erogeneous clinicalMRI examinations performed inmultiple insti-
tutions, using different acquisition protocols and scanners from
different vendors.
MATERIALS AND METHODS

Study Population
In this retrospective study, we included consecutive patients with

newly diagnosed, supratentorial GBs, eligible for surgical resection, re-
ferred to and treated in our institution between 2010 and 2014. Patients
with infratentorial and secondary GBs were excluded.

A total of 64 patients with biopsy-proven GB and completed
preoperative MR examinations (T1w, T2w, FLAIR, and CE T1w)
were reviewed.

Patients' characteristics are summarized in Table 1. The study
was approved by the Local Research Ethics Commission with waved
informed consent.
TABLE 1. Patients' and Imaging Characteristics

Patients Characteristics

Median age (range), y
Sex (percentage)
Median survival (range), mo

No. involved institutions
MRI characteristics
Scanner model

Field strength
Mean (range) pixel dimensions, mm3

Contrast-enhanced T1w
T1w
T2w
FLAIR

Mean pixel dimension was calculated as an average pixel size for each direction of
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Magnetic Resonance Imaging
Magnetic resonance images were acquired on 8 different scanner

types at a total of 15 institutions. Thirty-four of 64 MR examinations
have been conducted at our institution. The remaining 30 MR examina-
tions have been conducted at the referring 14 institutions. The majority
of images were acquired at 1.5 T field strength. Details of the acquisitions
are shown in Table 1. T1w, T2w, FLAIR, and CE T1w series were ac-
quired according to standard clinical acquisition protocols for the different
scanners. Slice thickness ranged from 1 to 8 mm in all patients, in-plane
resolution ranged from 0.3 to 1 mm (Table 1).

Manual Segmentation
For evaluation of the deep learning model, ground truth tumor

compartments were delineated manually. This was performed using a
semiautomatic approach with subsequent manual editing (IntelliSpace
Discovery; Philips Healthcare, Best, the Netherlands), both performed
by a radiologist and a senior neuroradiologist in a consensus reading.
In addition, the segmented volumes of interest (VOIs) were compared
with the volumes segmented independently by neurosurgeons using the
iPlan software (Brainlab GmbH, Feldkirchen, Germany). In case of dis-
crepancies, the segmentation was reviewed until consensus was reached.

The procedure followed the BRATS challenge.13 Volumes of in-
terest were created for (a) the whole tumor, (b) contrast-enhancing tu-
mor, and (c) tumor necrosis. The whole tumor VOI was segmented on
the T2w and FLAIR sequences, including the contrast-enhancing and
tumor necrosis compartment. Contrast-enhancing tumor and necrosis
were delineated on the CE T1w series.

Workflow for Automatic Segmentation Pipeline
The overall workflow for automatic tumor segmentation was

built as shown in Figure 1. Four series (T1w, T2w, FLAIR, and CE
T1w) were first preprocessed, then automatic tumor segmentation
was performed using the trained deep learning model, followed by
postprocessing of the output VOIs. The whole workflow was per-
formed completely automatically.
64 (28–86)
39 Male (61%), 25 Female (39%)

15.6 (1.5–48.9)
15

Philips Achieva, 7 (10.9%)
Philips Gyroscan, 2 (3.1%)
Philips Intera, 42 (65.6%)
Philips Panorama, 1 (1.6%)
Siemens Aera, 2 (3.1%)
Siemens Avanto, 4 (6.3%)
Siemens Espree, 2 (3.1%)

Siemens Magnetom, 1(1.6%)
Siemens SymphonyTim, 3 (4.7%)

1 T (2), 1.5 T (57), 3 T (5)

0.70 (0.36–1.00) � 0.70 (0.36–1.00) � 6.1 (1.0–8.0)
0.71 (0.36–1.00) � 0.71 (0.36–1.00) � 6.2 (1.0–8.0)
0.48 (0.30–1.00) � 0.48 (0.30–1.00) � 6.1 (2.0–8.0)
0.80 (0.45–0.98) � 0.80 (0.45–0.98) � 6.3 (3.0–8.0)

the image coordinate system (x, y, z) for all subjects.

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 1. Overall workflow of the automatic brain tumor segmentation pipeline.
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Image Processing
Magnetic resonance images were preprocessed with established

tools (SPM8: Statistical Parametric Mapping software package version
8; Wellcome Trust Centre for Neuroimaging, London, United Kingdom;
FIGURE 2. Imagepreprocessing pipeline: (1) Bias field correctionwas applied to al
(3) Brain mask was computed on T1 CE image and propagated to the registered
standard deviation of 1) and resampled to resolution of 1 � 1 � 1 mm3.

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
Intellispace Discovery; Philips Healthcare, Best, the Netherlands) before
feeding into automatic segmentation. The preprocessing pipeline is shown
in Figure 2. All 4 series were bias field corrected. Then, in a second step,
the corrected T1w, T2w, and FLAIR images were coregistered to the
l 4 sequences; (2) T2, T1, and FLAIR imageswere coregistered to T1CE image;
T2, T1, and FLAIR images; (4) All 4 images were scaled (zero mean and
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reference space defined by the CE T1w series. Consequently, the ground
truth VOIs for contrast-enhancing tumor and necrosis were, by definition,
in the same reference space. In the third step, the manual segmentation
of the whole tumor VOI was aligned to the reference space using the
6-parameter transformation obtained from the FLAIR image. Then, a
brain mask was computed (SPM8 “New Segmentation”19) and applied
to obtain skull-stripped images. Finally, images were normalized to
zero-mean and standard deviation of 1 and resampled to isotropic resolu-
tion of 1 � 1 � 1 mm3.18 The image processing pipeline was executed
fully automatically without user interaction. Processing results were visu-
ally checked for quality control.

For automatic segmentation of tumor compartments, a multi-
parametric deep learning model was applied to the preprocessed data.

Deep Learning Model
The deep learning model is based on the recently published

DeepMedic architecture, which provided top scoring results on the
BRATS data set.18 The DeepMedic architecture was installed on a
graphics processing unit server at our institution.

The model was trained on an independent data set available
through the BRATS 2015 challenge. The training data consisted of
220 cases of GB with expert manual segmentations of the tumor
compartments.13 The 220 cases were split into 190 for training and
30 for validation during the training procedure. The data was pre-
processed as described previously.

The DeepMedic architecture consists of a deep 3D CNN
followed by a 3D fully connected network to remove false-positives.
The 3D CNN includes 2 pathways that apply different image resolu-
tions to capture characteristics of the tumor appearance at 2 different
spatial ranges. Inputs to the 2 pathways are centered at the same image
location, but for the second input, the image is down-sampled to a third
of its original size. The model consists of an 11-layer architecture with
kernels of size 33. The last layers of the 2 pathways have receptive fields
of size 173 voxels. For inference, image segments of 453 voxels are fed
into the model. Finally, a fully-connected conditional random field is
applied, which has a smoothing effect.18
FIGURE 3. TwoGB cases. Left, Subject withwhole tumor (49mL) and necrotic
irregular shape of the whole tumor (108 mL) and necrotic core (3 mL). CE tum
T1w with automatically segmented CE tumor (left, blue) and necrosis (right, m
tumor (left, gray), 3D rendering (right).
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The deep learning model resulted in automatic segmentation of
4 tumor compartments (edema, contrast-enhancing tumor, necrosis,
nonenhancing tumor). Thewhole tumor region was obtained as the union
of all other segmented regions, as defined in the BRATS benchmark.13
Statistical Analysis
To evaluate automatic segmentation, the resultingVOIswere com-

pared with the manual ground truth annotations. For the whole tumor,
contrast-enhancing tumor, and necrosis, the VOIs were compared with
respect to volume and voxel-wise accuracy. As usual, the accuracy was
computed as overlap of ground truth segmentation (VOIgt) and model
segmentation (VOImodel) using the dice similarity coefficient (DSC)

20:

DSC VOIgt;VOImodelð Þ ¼ 2 VOIgt∩VOImodelj j
VOIgtj j þ VOImodelj j

In addition, the sensitivity (true-positive rate) and positive predictive
value (PPV) of the automatic segmentation was assessed on the voxel
level using the following expressions13:

Sensitivity VOIgt;VOImodelð Þ ¼ VOIgt∩VOImodelj j
VOIgtj j

PPV VOIgt;VOImodelð Þ ¼ VOIgt∩VOImodelj j
VOImodelj j

We investigated possible dependencies of the algorithm accuracy on size
and shape of the tumor and on image resolution. For that, DSCswere cor-
related (Pearson correlation) with volume, surface-to-volume ratio, and
with lowest resolution for each subject. Surface-to-volume ratio was cal-
culated using the pyradiomics package21 on resampled (1� 1� 1 mm3)
ground truth VOIs.
core (7mL). CE tumor (11mL) has a rim-like shape. Right, Subject with an
or (26 mL) has round shape with the necrotic core inside. Top row, CE
agenta). Bottom row: FLAIR image with automatically segmented whole

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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RESULTS

Manual Segmentation
Fully automated image processing and tumor segmentation was

completed for all 64 patients. After visual quality control, 2 patients
were excluded due to GB location in the brain stem or incomplete cov-
erage of the tumor area by T2w series.

Manual segmentation of the whole tumor and contrast-enhancing
tumor compartments was completed for all patients. Necrosis compart-
ments were observed in 58 of the 62 patients.

Automatic Detection, Localization, and Segmentation
of the Tumor

The deep learning model automatically detected, localized,
and segmented the whole tumor and contrast-enhancing tumor in
all 62 patients.

Necrosis was automatically detected, localized, and segmented
in 53 of the 58 cases with ground truth necrosis. For the 5 cases without
automatic detection (false-negatives), the mean necrosis volume on
manual segmentation was 3.3 ± 1.9 mL. Further analysis of the necrosis
VOI was restricted to the 53 cases where necrosis was correctly de-
tected. Absence of the necrosis was correctly detected in 3 of 4 cases
(in 1 case, the algorithm segmented a necrotic core of 1.5 mL).

Example cases with automatic segmentations are shown
in Figure 3.

Volumes and results are reported in Table 2. Significant correla-
tions with Pearson r > 0.8 (P < 0.0001) were found between the volumes
of automatic and manual segmentations (Table 2, Fig. 4). Absolute vol-
umes of automatic and manual segmentations were comparable, that is,
no bias was observed in automatic segmentation.

High voxel-wise overlap was obtained for the whole and
contrast-enhancing tumor volumes (DSC of 0.86 and 0.78, respec-
tively). For 53 patients with detected necrosis, an overlap with a DSC
of 0.62 was observed. The high PPV of 0.89 indicates a low number
of false-positive voxels. Altogether, it demonstrates that automatic seg-
mentation tends to underestimate necrosis. This is consistent with the
smaller volumes of the automatic necrosis segmentations.

Correlation With Image and VOI Properties
Image and tumor properties may influence quality of automatic

segmentation. To evaluate the effect, we correlated DSC for different
VOIs with image resolution, VOI surface-to-volume ratio, and VOI vol-
ume (Table 3). The correlation scatter plots are shown in Figure 5. For
all VOIs, no strong correlation was found between DSC and image res-
olution, VOI surface-to-volume ratio, and VOI volume.

The processing time of the deep learning model including
postprocessing was less than 5 minutes per subject using an NVIDIA
Tesla P100 graphics processing unit.
TABLE 2. Segmentation Results

Whole Tumor

Subjects 62
Volume manual, mL* 122.6 ± 69.2
Volume automatic, mL* 116.1 ± 66.9
Coefficient of correlation (r) 0.96
Dice similarity coefficient* 0.86 ± 0.09
Sensitivity* 0.84 ± 0.13
Positive predictive value* 0.90 ± 0.06

*Mean ± standard deviation.

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
DISCUSSION
This study evaluated fully automatic detection and segmentation

of brain tumors based on a deep learning algorithm and compared the
results to manual annotations by expert readers. We furthermore inves-
tigated if segmentation results vary across clinical MRI examinations
from multiple institutions using different acquisition protocols and
scanners from different vendors.

The whole tumor and CE tumor VOIs have been correctly de-
tected and localized in all cases. The necrosis VOI was correctly de-
tected and localized in 91% of the cases.

For the automatic segmentation, the algorithm we have chosen
achieved top scoring results with the BRATS test data set as reported
by Kamnitsas et al18 (see Table 4, row 2; DSC range, 0.63–0.85). The
automatic segmentation results we achieved with this algorithm in our
study on clinical routine data appeared to be slightly better (Table 4,
row 1; DSC range, 0.78–0.86). One limitation of the deep learning
algorithm is the requirement that all 4 MR input series (CE T1, FLAIR,
T1, T2) need to be present. If one of the series is not available, the
proposed model cannot be applied.

It is of particular clinical importance that the automatic segmen-
tation results are in the same range as the interrater variability (Table 4,
row 4; DSC range, 0.74–0.85) reported by Menze et al.13

Furthermore, in the first pass of our manual segmentation proce-
dure, we observed differences between neuroradiologists' and neurosur-
geons' annotation in 45% of the cases for CE tumor VOIs and in 8% of
the cases for the whole tumor VOIs, based on a volume discrepancy
threshold of 30%.

Applying the same 30% volume threshold to the differences be-
tween the deep learning algorithm and the ground truth, we obtained dis-
crepancies in 25% of the cases for CE tumor VOIs and in 8% of the cases
for the whole tumor VOIs. This further supports our finding that the var-
iability between automatic and ground truth segmentations is in the range
of the variability of manual segmentations by expert readers.

To put this in perspective, we compare the results from our data
with the selected deep learning algorithm to another high scoring algo-
rithm on the BRATS data by Pereira et al.22 Our results are slightly better
for the CE tumor segmentation (Pereira et al: DSC, 0.75; DeepMedic on
our clinical data: DSC, 0.78).

The second part of the study addressed the variations of the seg-
mentation results across the acquired clinical MRI examinations. In
contrast to other studies,23,24 we did not use a standardized protocol
across institutions. The data analyzed in our study was obtained using
a wide range of MRI acquisition protocols (15 institutions, 8 MR scan-
ner models, eg, slice thickness ranging from 1 to 8 mm). Within the
wide range of scanner models, there is a predominance of Philips 1.5 T
scanners in our data. However, due to the fact that these scanners (Intera,
Achieva, and Gyroscan models) are located at 6 different institutions and
heterogeneous image protocols have been applied on the scanners, the
data has sufficient heterogeneity to be suitable as a proof point for wider
Contrast-Enhancing Tumor Necrosis

62 53
27.6 ± 16.7 17.0 ± 14.8
26.0 ± 16.4 13.8 ± 14.1

0.90 0.84
0.78 ± 0.15 0.62 ± 0.30
0.78 ± 0.20 0.57 ± 0.31
0.83 ± 0.09 0.89 ± 0.20
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FIGURE 4. Scatter plots of correlations between volumes of automatic andmanual segmentations for CE tumor (top left), necrosis (top right), andwhole
tumor (bottom).
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applicability of the deep learning algorithm. Furthermore, the deep learn-
ing algorithm was trained on a completely independent, heterogeneous
data set (BRATS data), based on GE, Siemens, and Philips scanners.

Independent from the variations in the imaging protocols, we
have observed high DSC for the automatic compared with the ground
truth segmentation. We have found no correlation between the DSC
and slice thickness. Furthermore, no relevant correlation was found be-
tween quality of automatic segmentation and VOI properties (surface-
to-volume ratio and volume).

These observations are clinically relevant because they show that
the reported results of the selected deep learning algorithm, trained on
the BRATS data, are reproducible on heterogeneous data sets acquired
in clinical routine. Furthermore, the detection and segmentation results
were not affected by variations in the imaging protocols and variations
in the tumor shape and size.

It should be noted that we have not analyzed images without the
presence of GB in this study. Thus, the sensitivity and specificity of the
detection part of the algorithm has not been evaluated, which should be
the subject of future work.

We see the potential of the deep learning algorithms, as evaluated
in this work, in automatically analyzing images from primary GB. The
analysis would take place in the background and before the images are
read by the radiologist. At the time of the reading, the radiologist would
be able to review the segmentation results, which could aid in the
decision-making process. For this kind of workflow integration, it is
necessary to provide an automatic and precise segmentation of the
TABLE 3. Correlation Coefficient r for DSC for Image Resolution, VOI Sur

Lowest Resolution (r)

DSC (whole tumor) −0.133 (P = 0.30)
DSC (CE tumor) −0.068 (P = 0.60)
DSC (necrosis) −0.022 (P = 0.85)

Lowest resolution was defined for each subject as largest slice thickness of the 4 M

DSC indicates dice similarity coefficient; CE, contrast-enhanced; VOI, volume of
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different tumor areas. In the primary GB setting, important clinical
questions are as follows25:

• The selection of the area for maximum safe resection of the tumor to
improve overall survival, while at the same time reducing the patients'
functionality as little as possible.

• Identifying different compartments of the tumor, for example, rele-
vant biopsy targets.

• Identifying relevant prognostic markers.

The segmentation of tumor compartments (whole tumor, CE tu-
mor, and necrosis) evaluated in this work is important to address these
questions properly.

Thewhole tumor VOI includes edema, the CE tumor, and the ne-
crosis. The DSC on our clinical data and the BRATS test data is around
0.85 with a high PPVof 0.9, showing that only a low number of voxels
are misclassified by the algorithm as normal tissue. Furthermore, the
DSC is equal to the interrater DSC. In the clinical reading, the whole tu-
mor VOI would be used to, for example, determine the extent of the
edema. In the research setting, the edema part of the whole tumor
VOI could be used to further evaluate potential tumor invasion in
this area via, for example, diffusion tensor analysis.26 Compared
with the time-consuming and user-dependent manual segmentation,
the results of the automatic segmentations suggest a high potential
for integration in the radiology reading workflow.
face-to-Volume Ratio, and VOI Volume

Surface-to-Volume Ratio (r) Volume (r)

−0.419 (P < 0.01) 0.218 (P = 0.09)
−0.421 (P < 0.01) 0.180 (P = 0.16)
−0.622 (P < 0.01) 0.492 (P < 0.01)

R sequences.

interest.

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
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FIGURE 5. Scatter plots of correlations between segmentation accuracy (DSC) with lowest resolution, surface-to-volume ratio, volume for whole tumor,
CE tumor, and necrosis VOIs.
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The CE tumor compartment is the area of the tumor with contrast
agent accumulation, hyperintense on a postcontrast, T1w image. Bio-
logically, this area reflects the part of the tumor with leaky and poorly
constructed vessel. The DSC in our clinical data (0.78) was higher than
on the BRATS test data (DSC, 0.63). Similar to the whole tumor VOI,
the PPV value of 0.83 shows that a relatively low number of voxels is
misclassified as non-CE tumor.

In the clinical reading, the CE tumor compartment is important
to determine the resection boarder and to identify relevant biopsy tar-
gets. In the research setting, this VOI is important, for example, in
multiparametric analysis of potential pseudoprogression after radiation
therapy as part of the longitudinal tracking.

Taking into account that the CE tumor compartments are more
fragmented and complex in shape, they will take longer to segment man-
ually than the whole tumor VOI. Therefore, the results will be even more
user dependent. The automatically generated and user-independent CE
tumor VOI segmentation with a DSC of 0.78 further supports the poten-
tial for the integration in the radiology workflow.

To our knowledge, no data are currently available on interrater
variability or on comparison of automatic and manual segmentations
TABLE 4. Comparison of Results From Different Segmentation Approach

DSC

Whole Tumor CE Tumo

1 DeepMedic (our data set) 0.86 0.78
2 DeepMedic (BRATS 2015 test data)18 0.85 0.63
3 Pereira et al (BRATS 2015 test data)22 0.87 0.75
4 Interrater BRATS mean13 0.85 0.74

DSC indicates dice similarity coefficient; PPV, positive predictive value; CE, contr

© 2018 Wolters Kluwer Health, Inc. All rights reserved.
for necrosis. For automatic segmentation of necrosis, a DSC of 0.62
was achieved, which is a reasonable result for small and heterogeneous
volumes of the necrotic compartment (eg, Fig. 3) in this study cohort
(17.0 ± 14.8mL). Furthermore, as for the other compartments, the algo-
rithms achieved a high PPV (0.89 ± 0.20) for necrosis, showing that
only a low number of voxels are misclassified by the algorithm as
nonnecrosis. Manual segmentation of tumor necrosis would be the
most challenging part because these areas are sometimes very small,
heterogeneous, and scattered. Furthermore, the required accuracy
for the segmentation of the necrosis needs more discussion and
clinical evaluation.

The results of the study show that the proposed algorithm for au-
tomatic detection of the primary GB tumor and the segmentation of the
different tumor compartments has the potential to reproducibly and fully
automatically support the clinical reading and preoperative planning.

The results are reproducible compared with former studies on
different data and show a stable performance on a wide variety of clin-
ical scanners and protocols. This reduces the risk described by some
authors that spatial-temporal changes due to new MR machines or
protocols will affect the performance of the algorithm.25
es With the Selected Algorithm

PPV Sensitivity

r Whole Tumor CE Tumor Whole Tumor CE Tumor

0.90 0.83 0.84 0.78
0.85 0.63 0.88 0.66

ast-enhanced; BRATS, Multimodal Brain Tumor Segmentation Challenge.
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To reduce a possible bias in our ground truth generation, we
combined semiautomatic approaches with a manual, consensus-based,
repeated annotation by experts from radiology and neurosurgery. Next
steps in research include using the automatic segmentation in the
postsurgery setting to automatically detect and determine a residual tu-
mor volume, which would influence the patient prognosis. A further
step would be to apply the approach for automatic VOI generation in
longitudinal tumor tracking to enable a multiparametric analysis in
the case of, for example, pseudoresponse in targeted therapy. For these
clinical questions, using the VOIs as input for a radiomics—27,28 or in
combination with genetic markers for a radiogenomics-analysis,29,30

could be of further research interest.
To drive clinical acceptance of automatic segmentation in rou-

tine reading further validation of the clinical applicability of the algo-
rithm is needed. Seeing the stability on the heterogeneous data a next
step could be to pool the data from different centers for a multicenter
trial to further prove and validate the stability and reproducibility of
the algorithm results.
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