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Abstract: Molecular and clinical heterogeneity is increasingly recognized as a common character-
istic of neurodegenerative diseases (NDs), such as Alzheimer’s disease, Parkinson’s disease and
amyotrophic lateral sclerosis. This heterogeneity makes difficult the development of early diagnosis
and effective treatment approaches, as well as the design and testing of new drugs. As such, the
stratification of patients into meaningful disease subgroups, with clinical and biological relevance,
may improve disease management and the development of effective treatments. To this end, omics
technologies—such as genomics, transcriptomics, proteomics and metabolomics—are contributing
to offer a more comprehensive view of molecular pathways underlying the development of NDs,
helping to differentiate subtypes of patients based on their specific molecular signatures. In this
article, we discuss how omics technologies and their integration have provided new insights into
the molecular heterogeneity underlying the most prevalent NDs, aiding to define early diagnosis
and progression markers as well as therapeutic targets that can translate into stratified treatment
approaches, bringing us closer to the goal of personalized medicine in neurology.

Keywords: neurodegenerative diseases; multi-omics; stratified medicine

1. Introduction

Neurodegenerative diseases (NDs) are debilitating and largely untreatable conditions
characterized by a decline of nervous system functions due to a progressive neuronal loss
in the brain and spinal cord. The classification of NDs is still usually based on the clinical
presentation (i.e., cognitive decline, speech difficulties and motor impairment), anatomical
regions and cell types affected [1,2]. As the exact molecular mechanisms of the disease
pathogenesis and progression remain unclear, the clinical management of NDs is limited to
simply mitigating neurodegeneration and relieving symptoms rather than reversing the
damage done [1,3,4].

NDs can be either monogenic, like Huntington disease, or complex, highly heterogen-
eous—including Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic
lateral sclerosis (ALS)— and characterized by variable molecular phenotypes, progres-
sion courses or patterns of neuro-biochemical markers of brain damage, making patient
counseling, disease management and pharmaceutical care particularly difficult [3]. The
underlying mechanisms of these complex NDs are polyfactorial and depend on the combi-
nation of genetic, biological and environmental factors. The presence of abnormal protein
conformations, excessive immune response and inflammation, impaired nucleocytoplasmic
transport, mitochondrial dysfunction, neuronal dysfunction and autophagy are common
features of neurodegeneration [5,6]. However, despite considerable efforts, the molecular
mechanisms involved in the complex phenotype of NDs are still largely unknown, and
current treatments cannot prevent the development of the disease. The failure of the
majority of neurological clinical trials, especially during Phase 3, can be attributed to a lack
of efficacy, probably due to the incorrect selection of the target population [7,8].
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To ensure a more accurate diagnosis and design more appropriate clinical trials,
we need to decipher molecular signatures, pathways and networks that can specifically
characterize different disease subtypes for the correct classification of patients. In this
context, personalized or at least stratified medicine for patients’ subgroups offers the
possibility of repurposing disease-modifying drugs or identifying new potential medical
solutions to ensure “the right therapeutic strategy for the right person at the right time” [9,10].

In the last years, the advance of high-throughput “omics” techniques has provided
a more complete view with respect to the complexity of NDs from multiple levels (e.g.,
network, cellular and molecular), encouraging the identification of specific molecular
signatures and biomarkers for mechanism-based classification and tailored therapeutic
interventions [11,12]. These technologies include the detection of disease-associated DNA
sequence variants (genomics), transcriptome and noncoding RNA profiling (transcrip-
tomics), genome-wide identification of DNA–protein interactions (epigenomics), inter-
actome analysis for networks formed by protein-protein interactions (proteomics) and
metabolome analysis for metabolic systems (metabolomics) [13] (Figure 1).
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Figure 1. A full readout of ND conditions to support stratified medicine. From the genome onwards, information gathered
from all omics molecular layers of NDs conditions will aid researchers and clinicians to better characterize the disease’s
molecular heterogeneity, stratify patients by novel biomarkers and improve therapeutic outcomes.

However, single “omics” analyses, by capturing changes only for a small subset of
the components of a particular pathway, have limited prognostic or therapeutic value.
The majority of human diseases, including NDs, are multifactorial and characterized by a
plethora of molecular aberrations that act in a concurrent or synergistic way during the
development of the disease. Therefore, the analysis and integration of all these biological
big data allow for the simultaneous identification of molecular aberrations at different
levels (gene, transcript, protein synthesis and post-translational modifications, cellular
metabolic processes, etc.), maximizing the available information, and thus increasing the
possibility of identifying the root causes of the disease. In fact, individual changes in gene
expression or protein, metabolite and lipid concentration may have limited translational
potential, but when combined they increase the possibility of a particular gene or protein
and related pathways to play a crucial role in the disease’s pathogenesis. The multi-omics
analyses and the characterization of an “omic” profile of patients have started to enable a
deeper investigation of NDs providing a more comprehensive overview of these complex
and multifactorial disorders, promoting the development of patient-specific precision-
targeted personalized therapies to effectively treat neurodegenerative disorders [14–16]
(Figure 1).

In this review, we provide an overview of the current state of the field and how the
progress made in genomics, transcriptomics, proteomics, epigenomics and metabolomics
is offering a new perspective to uncover the molecular heterogeneity underlying the
most prevalent NDs, aiding to refine early diagnosis, depict patient subgroups, guiding
the development of therapies and improving drug discovery efforts. In particular, the
literature consulted for this review includes original research contributions, academic and

Figure 1. A full readout of ND conditions to support stratified medicine. From the genome onwards, information gathered
from all omics molecular layers of NDs conditions will aid researchers and clinicians to better characterize the disease’s
molecular heterogeneity, stratify patients by novel biomarkers and improve therapeutic outcomes.
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However, single “omics” analyses, by capturing changes only for a small subset of
the components of a particular pathway, have limited prognostic or therapeutic value.
The majority of human diseases, including NDs, are multifactorial and characterized by a
plethora of molecular aberrations that act in a concurrent or synergistic way during the
development of the disease. Therefore, the analysis and integration of all these biological
big data allow for the simultaneous identification of molecular aberrations at different
levels (gene, transcript, protein synthesis and post-translational modifications, cellular
metabolic processes, etc.), maximizing the available information, and thus increasing the
possibility of identifying the root causes of the disease. In fact, individual changes in gene
expression or protein, metabolite and lipid concentration may have limited translational
potential, but when combined they increase the possibility of a particular gene or protein
and related pathways to play a crucial role in the disease’s pathogenesis. The multi-omics
analyses and the characterization of an “omic” profile of patients have started to enable a
deeper investigation of NDs providing a more comprehensive overview of these complex
and multifactorial disorders, promoting the development of patient-specific precision-
targeted personalized therapies to effectively treat neurodegenerative disorders [14–16]
(Figure 1).

In this review, we provide an overview of the current state of the field and how the
progress made in genomics, transcriptomics, proteomics, epigenomics and metabolomics
is offering a new perspective to uncover the molecular heterogeneity underlying the
most prevalent NDs, aiding to refine early diagnosis, depict patient subgroups, guiding
the development of therapies and improving drug discovery efforts. In particular, the
literature consulted for this review includes original research contributions, academic and
perspective articles published over the last five years and focused on the use of omics
science for disease taxonomy and patient subtyping. In addition, where possible, we also
discuss how bringing data from these techniques together through an integrated “systems
biology” view will move our understanding and management of NDs forward, bringing
us closer to the goal of stratified medicine in neurology.

2. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of brain dementia, affecting over
44 million individuals worldwide and clinically characterized by a progressive loss of
memory, cognitive decline and neurodegeneration [17]. In general, the physiopathology
of AD includes a loss of synapses, mainly related to the accumulation of the β-amyloid
peptide into extracellular plaques and intraneuronal aggregates of the abnormally hy-
perphosphorylated microtubule-associated protein tau, particularly in the hippocampus
and neocortex. These events induce generalized neuroinflammation, vascular and cell
membrane dysregulation, axonal disintegration and synaptic dysfunction and degenera-
tion, brain metabolic dysfunction and, ultimately, a deterioration of physiological neural
connectivity [18]. Currently, the diagnosis of AD is confirmed through post-mortem analy-
sis and the identification of the neurofibrillary tangles and/or abnormal plaque deposits
within the brain. Only approximately <5% of the AD cases are familial forms of autosomal
dominant inheritance and are generally characterized by an early-onset and associated
to genetic mutations in some proteins (e.g., presenilin 1, presenilin 2, amyloid-β protein
precursor AβPP), while 95% cases of AD are late-onset and sporadic, resulting from a
complex interaction of genes and environmental factors [19].

During the last ~25 years, an impressive amount of progress has been made in the
understanding of the genetic causes and molecular mechanisms related to AD. Recent
advances in AD genomics and high-throughput sequencing, as well as large-scale genome-
wide association studies (GWAS), allowed us to investigate not only the principal disease-
causative genes but also several low-frequency genetic loci that seem to exert large effects on
AD risk. These studies highlighted a significant locus heterogeneity for AD and indicated
that common variants with small effect sizes in combination with many rare genetic variants
with moderate to large effect sizes may jointly contribute to AD risk [20]. Single-cell RNA-
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sequencing analyses allowed for the identification of a novel microglia type associated
with AD and other neurodegenerative diseases (known as disease-associated microglia,
DAM), whose genetic and functional characterization can be used to evaluate the preclinical
feasibility of new, more promising drug targets [21]. Moreover, a distinctive blood-based
transcriptomic signature of AD emerged when compared to other neurological diseases,
favoring the development of a blood RNA test (e.g., AclarusDx™) able to discriminate
rapidly progressing AD patients and slowly progressing patients with other forms of
dementia before the onset of the disease [22,23].

In addition to the single-omic analysis, results from multiple multi-omic analyses
have greatly advanced the understanding of AD pathogenesis not only by revealing its
global structures, but also by detailing circuits of complex molecular interactions and
regulations in affected key brain regions (Table 1) [24–28]. In Nativio et al. (2020), for
example, the authors described the utility of an integrated transcriptomic, proteomic and
epigenomic approach of postmortem human brains to identify the molecular pathways
involved in AD [28], while Xicota et al. (2019) performed an integrative blood RNAseq,
and plasma metabolomics and lipidomics, by generating a blood omics signature for
the prediction of amyloid positivity in asymptomatic at-risk subjects, allowing for a less
invasive, more accessible and less expensive risk assessment of AD [27] (Table 1). A recent
study using deep profiling of whole proteome, phosphoproteome and transcriptome in
different disease stages of AD illustrates the ability of deep proteomics technologies to
complement genomics and transcriptomics in AD research, revealing crucial molecular
networks and pathways associated with AD and demonstrating that protein changes are
only partially consistent with the corresponding RNA levels [29]. Taken together, these and
other multi-omic studies, thanks also to the implementation of publicly available datasets
in international projects such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
and the Religious Orders Study and Memory and Aging Project (ROSMAP), provide a
valuable resource for more comprehensive analyses of AD, representing a potential key
enabler of novel biomarker discovery [30,31].
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Table 1. Exemplary studies of omics approaches and/or their integrative analysis for stratifying NDs into their different molecular subtypes.

Study (Year) Sample Omics Technique Main Findings Ref.

Nativio et al. (2020)

Postmortem human brain samples (lateral
temporal lobe, Brodmann area 21 or 20) of AD

patients (n = 12; mean age = 68), cognitively
healthy older individuals (n = 10; mean age =

68) and healthy younger individuals (n = 8,
mean age = 52) obtained from the Center for

Neurodegenerative Disease Research brain bank
at the University of Pennsylvania.

Transcriptomics, proteomics
and epigenomics

Multi-omics analysis revealed that AD involves a
reconfiguration of the epigenome, wherein

H3K27ac and H3K9ac affect disease pathways by
dysregulating transcription and chromatin–gene

feedback loops.

[28]

Xicota et al. (2019)

Blood and plasma samples from 48 individuals
amyloid positive and 48 amyloid negative
(enrolled at the Pitié-Salpêtrière University

Hospital, Paris, France).

Transcriptomics (RNA-sequencing),
metabolomics and

lipidomics using liquid
chromatography-mass spectrometry

This study suggests a potential blood omics
signature for the prediction of amyloid positivity

in asymptomatic at-risk subjects.
[27]

AD

Clark et al. (2020)

Cerebrospinal fluid of 120 individuals, aged 55
or older, including subjects with normal

cognition, mild cognitive impairment (MCI) or
mild AD dementia were enrolled at the

University Hospital of Lausanne, Switzerland.

Genetics, proteomics, metabolomics,
lipidomics, one-carbon metabolism

and neuroinflammation markers

Multi-omics integration identified five major
dimensions of heterogenicity, explaining the
variance within the cohort and differentially

associated with AD. The analysis also identified
combinations of a group of molecules that

significantly improved the prediction of both AD
and cognitive decline.

[26]

Ma et al. (2019)

10,441 unrelated non-Hispanic white
individuals (5522 with AD, 4919 cognitively
normal controls) in the Alzheimer’s Disease

Sequencing Project case-control WES data set.

Genomics (whole-exome
sequencing), genome-wide

association analyses

This study highlighting the possibility to stratify
AD patients based on their APOE genotype. In

fact, the APOE ε4 allele shows a dose-dependent
relationship with increased risk for late-onset and
sporadic cases of AD, while the inheritance of the

∈2 allele is protective.

[32]

Dagan et al. (2020)

951 brain samples, obtained from up to 17 brain
regions of 85 AD patients with varying
severities of AD neuropathology and

22 non-demented subjects. All subjects ranged
from 60 to 100 years of age.

Transcriptomics
(Expression array)

The authors identified different altered
transcriptional signatures characterized AD

samples vs non-demented samples and specific
transcriptional signatures associated with

different subsets of AD patients, demonstrating
the high molecular variability and complexity of

gene expression in AD.

[33]

Milind et al. (2020)

Post-mortem brain from 2114 human samples
from three cohorts of patients with late-onset

AD (including 312 North American Caucasian
patients and 987 individuals from across the

United States).

Genomics (whole-genome
sequencing), transcriptomics

(RNA-Sequencing)

The authors identified different molecular
subtypes of late-onset AD patients associated

with specific biological pathways and
molecular processes.

[34]
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Table 1. Cont.

Study (Year) Sample Omics Technique Main Findings Ref.

Neff et al. (2021)

1543 transcriptomes across five brain regions in
two AD cohorts (the Mount Sinai/JJ Peters VA
Medical Center Brain Bank (MSBB-AD) and the

Religious Orders Study–Memory and
Aging Project).

Transcriptomics (RNA-Sequencing)

The authors identified three major molecular
subtypes of AD corresponding to different

combinations of multiple dysregulated pathways
and subtype-specific drivers.

[35]

Iqbal et al. (2005)

CSF samples of 468 clinically diagnosed Finnish
and Swedish Alzheimer’s disease patients

(N = 353) or non-Alzheimer’s subjects (N = 115)
(mean age = 70)

Proteomics
The authors identified five AD subgroups based
on CSF levels of Aβ1-42, tau, and ubiquitin; each

subgroup presented a different clinical profile.
[36]

Toschi et al. (2019)

CSF samples from 113 participants (20 healthy
controls, 36 subjective memory complainers,

20 mild cognitive impairment, and 37 AD
dementia). The multicenter cross-sectional

study includes subjects from France, Germany
and Sweden. All subjects ranged from 60 to

77 years of age.

Proteomics

The authors found a set of biologically defined
clusters not significantly linked to the clinical

diagnosis but exclusively based on core biological
fluid markers which reflect distinct

pathomechanistic alterations associated with the
disease (i.e., brain Ab accumulation and

neurofibrillary pathology, neuro-inflammation,
axonal damage, and neurodegeneration).

[37]

Lerche et al. (2021)

CSF samples from 516 PD patients (102 PDGBA,
414 PDGBA_wildtype). The multicenter

cross-sectional study includes subjects from
United States, Europe, Israel, and Australia.

Genetics, proteomics,
metabolomics

The authors demonstrated that variants in the
glucocerebrosidase gene (GBA) may allow patient

stratification for clinical trials merely based on
mutation status and that might serve as a

biochemical read-out for target engagement.

[38]

PD Prasuhn et al. (2019) The study is ongoing. So far, >950 PD patients
have been included.

Genomics, genome-wide
association study

This study focuses on genetically stratified
subgroups of Parkinson’s disease patients (PD)

with enrichment of risk variants in mitochondrial
genes, assuming that individuals with a “higher

mitochondrial burden” will likely respond to
coenzyme Q10.

[39]

Carling et al. (2020)

Skin fibroblasts of 100 sporadic PD patients
(sPD) and 50 age-matched controls (age in years
± standard deviation (SD): sPD patients

61 ± 10.7 years; controls, 61 ± 13.1 years) from
the Oxford Parkinson’s Disease Centre

Discovery cohort and Sheffield Teaching
Hospitals in UK.

Transcriptomics (RNA-sequencing),
genomics, proteomics.

The authors identified distinct subgroups with
mitochondrial (mito-sPD) or lysosomal (lyso-sPD)
dysfunctions, sustaining the utility of using skin
fibroblasts to undertake mechanistically rather

than clinically defined sPD subgroups.

[40]
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Table 1. Cont.

Study (Year) Sample Omics Technique Main Findings Ref.

Hipp et al. (2018)

The study is ongoing. So far, 498 patients and
520 healthy control have been included. The

study includes all patients with parkinsonism in
Luxembourg and the surrounding ‘Greater
Region’ (including the German, French, and

Belgian border regions).

Genomics, genotyping,
transcriptomics,

metabolomics/proteomics

The authors envision the Luxembourg
Parkinson’s study as an important research
platform for defining early diagnosis and

progression markers that translate into stratified
treatment approaches. The study is ongoing.

[41]

Kia et al. (2021)

GWAS: 26,035 PD patients and 403,190 controls
of European ancestry; eQTL Data: 134 control
individuals (frontal cortex, temporal cortex,

occipital cortex, hippocampus, thalamus,
putamen, substantia nigra, medulla, cerebellum,
and white matter); genome-wide methylation:

substantia nigra and the frontal cortex of
134 individuals with PD from the Parkinson

Disease UK Brain Bank.

Genome-wide association study,
genomics,

transcriptomics, epigenomics

The authors identified candidate genes whose
change in expression, splicing or methylation are

associated with the risk of PD. Interaction
network analyses also highlighted the functional
pathways and cell types in which these candidate

genes have an important role.

[42]

Aronica et al. (2015); Morello
et al. (2019)

Post-mortem motor cortex from caucasian SALS
patients (31, mean patient age = 57)) and control

individuals (10, mean patient age = 55 years).

Transcriptomics
(gene expression array), genomics

The authors demonstrated the utility of an
integrative multi-omics molecular classification of

ALS, by stratifying the genomes and
transcriptomes of SALS postmortem cortex

samples into two distinct molecular subtypes
(sALS1 and sALS2) characterized by different

combinations of genes and pathways.

[43,44]

Tam et al. (2019)
Frontal cortex samples from 77 ALS patients

and 18 neurological and non-neurological
controls from the NYGC ALS Consortium.

Transcriptomics
(RNA-sequencing),

genomics, proteomics

Unbiased machine learning algorithms identified
three distinct ALS patient molecular subtypes

representing both ALS disease-implicated
signatures as well as additional correlated

pathways.

[45]

Wuolikainen et al. (2012)
Cerebrospinal fluid (CSF) from 16 ALS patients

with 6 different mutations in the SOD1 gene
compared with ALS-patients without mutations

Metabolomics (GC-TOFMS platform)

The authors found that patients with SOD1
mutations have a distinct metabolic profile in CSF

and highlight the utility of metabolomics
signature to distinguish ALS entity

[46]

ALS

Chen et al. (2018) 77 ALS -derived dermal fibroblast lines and 45
age/sex-matched controls. Metabolomics (LC-QTOF platform)

The authors emphasize that sporadic ALS patients
can be stratified into metabotypes, helping future

development of personalized medicine.
[47]
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Despite such advancements in the understanding of the disease, establishing a defini-
tive diagnosis and developing rational treatments is complicated, also because AD drug
trials do not account for the heterogeneity of the disease in trial design [48]. In fact, it is
widely recognized that AD is characterized by an etiological and clinical heterogeneity
with substantial variability from patient to patient with respect to age at onset, disease
manifestation, progression, response to treatment and susceptibility to risk factors and
their downstream pathophysiologic consequences [49].

The substantial heterogeneity of AD from a genetic point of view emerged, for example,
in recent genome-wide association studies revealing how the ∈4 allele of the apolipoprotein
E (APOE) gene shows a dose-dependent relationship with increased risk of late-onset and
sporadic cases of AD, while the inheritance of the ∈2 allele is protective, highlighting the
possibility of stratifying AD patients based on their APOE genotype [32,50–52] (Table 1).

In another study, researchers categorized people with late-onset AD into six biologi-
cally coherent subgroups based on clinical symptomatology and genetic backgrounds [53].
Additional stratification analyses of AD patients were also obtained by analyzing whole
genome sequencing and whole transcriptome data from post-mortem brain tissues of
AD patients, identifying clusters of patient-specific transcriptional signatures and demon-
strating the high molecular variability and complexity of gene expression in AD [33–35]
(Table 1). In particular, Neff et al. (2021), by analyzing transcriptomes across different AD
affected brain regions, identified three major molecular subtypes of AD independent of
age and disease severity, each one characterized by different combinations of dysregulated
pathways and a unique set of key regulator genes, suggesting that specific gene modules
are subtype-specific, and subtypes may be driven by a specific, yet diverse set of disease
mechanisms that lead to AD [35].

In view of the translation of molecular-based stratification into clinical practice, cere-
brospinal fluid (CSF) biomarker-guided stratification is proving helpful to identify specific
AD patient subgroups and can also serve as the outcome measure of drug treatment.
To this end, recent studies have demonstrated the possibility to subdivide AD patients
into different clusters based on the CSF levels of a set of potential biomarkers (including
Aβ1−42, tau and ubiquitin), demonstrating that each cluster was associated with a dif-
ferent clinical profile and thus potentially different disease-related trajectories and drug
responses [36,37,54] (Table 1).

In addition to genomics, transcriptomics, proteomics or other omics (i.e., epigenomics
and metabolomics) are moving toward a better definition and characterization of AD
heterogeneity. Recently, Nazarian et al. (2020) performed methylome-wide association
analyses of blood and brain tissue samples from AD patients and identified group-specific
methylation quantitative trait loci, suggesting a potential role for such epigenetic modifica-
tions in the heterogeneous nature of AD [55]. Similarly, the evidence that APOE, a lipid
chaperone protein, is the most important genetic risk factor for sporadic late-onset of AD,
suggests the importance of exploring lipid and metabolic dynamics in AD research. To
this end, several international projects (e.g., HUSERMET and PredictAD) are currently
available and aim to define serum-derived metabolic markers in AD [56]. Results from
these and other metabolomics studies have allowed us to assess multiple combinations
of metabolites to discriminate different AD subtypes characterized by different molecular
mechanisms and clinical manifestations, advancing efforts to biochemically define patient
heterogeneity in AD [57–61].

Another interesting aspect of multi-omics-based advances is the possibility of applying
these methodologies to accelerate target identification for drug discovery in AD. In this
regard, network-based drug repurposing offers a rapid and cost-effective solution for
drug discovery for complex diseases, like AD, and some studies have started to use this
approach for the discovery of drugs that show efficacy in network models in AD (e.g.,
sildenafil, pioglitazone), providing potential mechanisms for these drugs and facilitating
their subsequent experimental validation [22,23]. Recently, a new freely available database
and tool, termed AlzGPS (https://alzgps.lerner.ccf.org, accessed 30 April 2021), was

https://alzgps.lerner.ccf.org
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developed, containing rich and diverse information connecting large-scale data, including
multi-omics (genomics, transcriptomics, proteomics, metabolomics, interactomics) on
humans and other species, literature-derived evidence, drug-target networks, clinical
databases for genome-informed target identification and drug repurposing for AD [24].
Taking advantage of this and other computational platforms, it will be possible to prioritize
biologically and clinically relevant targets and relative drug candidates for multi-omics-
informed discovery in AD and other neurodegenerative diseases.

3. Parkinson’s Disease

Parkinson’s disease (PD) is a chronic debilitating and still incurable neurodegenerative
disorder, characterized by a variable combination of motor and non-motor symptoms, a
heterogeneous rate of disease progression and different prognostic outcomes [62]. It
increases with age, affecting more than 1% of the population over 60 years of age, with
a worldwide incidence rate of 8–18 per 100,000 person-years. From a neuropathological
point of view, PD is characterized by a selective degeneration of dopaminergic neurons
in the pars compacta region of the substantia nigra (SNc) and by the cytoplasmic and
axonal accumulation of aggregated misfolded α-synuclein into Lewy bodies (LB) and Lewy
neurites (LN) [63].

Although the precise etiology of this disease remains largely unclear, multiple genetic
and environmental factors have been elucidated during the last decades. About 5–10% of
all patients suffer from a monogenic form of PD where mutations in autosomal-dominant
(AD) genes—SNCA, LRRK2 and VPS35—and autosomal recessive (AR) genes—PINK1,
DJ-1 and PARK2—cause the disease [63]. The vast majority of PD corresponds to complex
multifactorial sporadic cases without a family history, resulting from a combination of
common genetic risk loci in concert with environmental factors (lifestyle, exposure to
toxins, physical activity), and triggered by several molecular processes (e.g., synaptic
damages, apoptosis, mitochondrial dysfunctions, oxidative stress, impairment of the
ubiquitin/proteasome system, neuro-inflammation) [64].

The large heterogeneity of PD in clinical presentations, together with the presence of
different genetic or environmental causes, has currently led to the suggestion that what we
term PD is actually a collection of distinct disease entities [62]. The current traditional PD
patients classification is mainly based on clinical disease milestones such as age at disease
onset (juvenile, early and typical forms), demographic profiles, motor phenotypes (tremor-
dominant and non-tremor-dominant), the severity of motor symptoms based on functional
scores (hypo-/bradykinesia, rigidity, rest tremor, postural instability—Unified Parkinson
Disease Rating Scale) and neuropathological alterations (Braak staging) [65]. Moreover, non-
motor features (cognitive performance indicators, apathy, depression/anxiety, dementia
status and the co-occurrence of REM sleep behavior disorder) are increasingly receiving
major attention, since they can precede the diagnosis for years and can help to prognosticate
disease progression [65].

Despite these attempts to stratify patients into the disease-related motor or non-motor
clinical patterns [66,67], classifications fall short of comprehensively describing and char-
acterizing the broad, continuous and multidimensional spectrum of PD manifestations
and their progression under real-life conditions. Therefore, these initial empirical clas-
sifications are starting to be gradually replaced by data-driven cluster analyses without
a priori hypotheses [68–71] or integrative multi-level studies combining detailed clinical
information, omics information and neuropathological findings [72]. However, the search
for more refined taxonomic systems is still ongoing, in order to facilitate a better clinical
care and personalized therapeutic decisions.

Firstly, patients’ stratification based on genetic status is turning out to be a particu-
larly helpful approach to certain subtypes of PD cases in order to address clinical trials
and therapeutic targeted pilot studies. For example, (i) LRRK2 inhibitors (DNL201 and
DNL151) were specifically designed by Denali Therapeutics with the aim of restoring the
LRRK-mediated lysosomal dysfunction in PD and have recently finished a double-blinded,
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placebo-controlled phase Ib drug trial [73]; (ii) a number of specific clinical trials focusing
on PD patients carrying GBA mutations are underway (i.e., Venglustat—GZ/SAR402671 in
NCT02906020; Ambroxol in NCT02914366) [74]; (iii) polymorphisms in the dopamine D2
receptor gene are under study for their meaningful predictive clinical response to rasagiline
treatment [75], (iv) homozygous carriers of certain SNCA mutations are candidates for
the positive outcome to deep-brain-stimulation [76]. However, this genetic stratification
relying on causative Mendelian PARK gene mutations is unlikely to be applicable to the
majority of sporadic PD cases.

To add further complexity, patients carrying mutations in the same gene locus (e.g.,
GBA) often manifest distinct phenotypic profiles, making it necessary to cluster patients
into single-gene-related subgroups based on the variant types or into biochemical profiles
for developing better disease-modifying strategies [77]. To this end, a metabolomics-based
study investigating the biochemical metabolic profiles associated with GBA mutations
(lysosomal GCase activity, glucosylceramides, ceramides, lactosylceramides, sphingosines,
sphingomyelin and α-synuclein levels) in biofluids derived from PD patients carrying GBA
mutations compared to PD-GBA-wildtype has recently confirmed that GBA variants have
a relevant functional impact on biomarker profiles in patients, bridging the gap between
genetics and biochemical status to allow an appropriate patient stratification for clinical
trials [38] (Table 1).

A further interesting aspect raised by omics observations derives from a challenging
clinical trial recently launched with the aim to assess the treatment response of the coen-
zyme Q10 (a “mitochondrial enhancer”) in four PD patient subgroups genetically stratified
through an omics-score predictive for their potential “mitochondrial risk burden” (i.e.,
homozygous or compound heterozygous Parkin/PINK1 mutation carriers, heterozygous
Parkin/PINK1 mutation carriers, “omics” positive and “omics” negative patients) [39]
(Table 1). In this study, the authors aim to integrate data from these stratified groups about
motor and non-motor symptoms, magnetic resonance imaging and changes in structural
and functional brain anatomy (MRI). Clinical trial results are expected to provide cues
about the utility of this omics-score to stratify PD patients as well as to provide findings
about the opportunity to personalize treatment choices for PD based on the genetic, clinical
and neuroimaging data [39].

PD precision medicine focusing on mechanistically-anchored disease subgroups de-
rived from integrated omics findings may also hold promise [78]. In this regard, in-depth
phenotyping of peripheral tissues from sporadic PD patients through a combination of
cellular assays and whole-transcriptome RNA-seq based pathway analysis, along with
genotyping information, allowed for the stratification of patients characterized by mi-
tochondrial (mito-sPD) or lysosomal (lyso-sPD) main dysfunctions and facilitated the
selection of putative neuroprotective compounds [40] (Table 1). This successful strategy of
combining deep clinical phenotyping with a comprehensive assessment of genetic, tran-
scriptomic and biological data, along with a focused assessment of putative neuroprotective
compounds, is a promising approach toward disease stratification and precision medicine
in sporadic PD.

Another example is represented by the Luxembourg Parkinson’s Study, a multi-level
clinical, molecular and device-based initiative for defining early diagnosis and progres-
sion markers of patients with typical and atypical parkinsonism [41] (Table 1). This ex-
ploratory unbiased multi-centered designed study aims to integrate a comprehensive
longitudinal clinical assessment accompanied by an omics-based molecular fingerprints
analysis from a high-quality bio-samples collection, including genomics, transcriptomics
and metabolomics/proteomics profiles from blood, saliva, urine, skin and CSF, integrated
with a device-based assessment via the use of an open-source digital platform to harmonize
international PD cohort studies. Such a multidimensional, still ongoing approach, ranging
from genes and complex molecular fingerprints to the longitudinal clinical assessment,
may facilitate the detection of PD subtypes and disease-specific biomarkers and precision
medicine [41].
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Furthermore, the integration of genome-wide association studies, together with ex-
pression and epigenetic datasets, has recently suggested that gene regulation data may
be used to identify candidate the genes and genomic processes underlying the risk of
sporadic PD [42] (Table 1). In particular, Kia and colleagues, using various complementary
bioinformatics tools, integrated GWAS, the transcriptome-wide association study (TWAS)
and methylation data and identified 11 candidate genes whose regulatory changes in
expression, splicing or methylation are associated with the risk of PD. Moreover, coex-
pression and protein level analyses of these genes demonstrated a significant functional
association with known mendelian PD genes. Future efforts in multilevel omics data inte-
gration along with advances in the understanding of PD pathogenesis will refine current
classification systems and biomarkers in order to assign treatments and shape the most
effective therapeutic approaches.

4. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive and lethal neurodegenerative
disease that affects upper and lower motor neurons, resulting in progressive muscular
paralysis and death, which predominantly occurs due to respiratory insufficiency. ALS
affects about 3–5 out of every 100,000 individuals worldwide, representing the most
common motor neuron disease in adults [79,80]. The disease arises sporadically (SALS)
in the majority of cases, while nearly 10% of patients have a family history (FALS) [81].
Currently, there is no cure or prevention for ALS, and the only licensed medications,
Riluzole and Edaravone, are largely symptomatic and provide modest effects on disease
progression only in some patients [82–86]. Many factors may have contributed to the
slow progress in developing effective treatments for this devastating disease, including
the complex and heterogeneous nature of ALS pathogenesis, characterized by distinct
clinical features and progression patterns, together with a plurality of associated genes.
In fact, since the discovery of mutations in SOD1, in 1993, as the first gene to be linked to
ALS, an increasing number of causal and risk genes have been identified, revealing a high
degree of genetic heterogeneity. Disease heterogeneity is also reflected by the involvement
of different mechanisms in ALS pathogenesis, including mitochondrial dysfunction and
oxidative stress, defective axonal transport, excitotoxicity, apoptosis, neuroinflammation,
impaired DNA binding and repair and aberrant RNA-processing [87]. Within this context,
it is clear that disentangling the phenotypic and genotypic heterogeneity of ALS may not
only improve the comprehension of the complexity of this disease but also, above all,
facilitate an appropriate stratification of ALS patients into disease subgroups for clinical
research purposes.

The advent of numerous high-throughput “omics” studies in the past decade have
started to provide a better understanding of the molecular basis underlying disease het-
erogeneity, enabling researchers to differentiate ALS from healthy controls and stratify
ALS patients into distinct subgroups, paving the way to the development of efficient and
effective personalized diagnostics and patient-guided therapies [88]. To this end, in the last
years, our research group has established, for the first time, the foundation for a functional
molecular classification of ALS, by stratifying the transcriptomes of SALS postmortem
cortex samples into two distinct molecular subtypes (SALS1 and SALS2) characterized
by different combinations of genes and pathways that were deregulated [43,44] (Table 1).
In particular, SALS1 showed predominant signatures of aberrant extracellular matrix
remodeling and antigen processing and presentation, while the largest SALS2 cluster dis-
played hallmarks of axonal damage, oxidative stress and neuroinflammation. Of note, a
stratification of ALS patients has been reproduced in a recent study conducted by Tam
et al. (2019), and other transcriptome profiling-based studies confirmed the existence of
distinct molecular subtypes of ALS [45,89] (Table 1). Considering the multifactorial nature
of the disease processes driving ALS pathogenesis, we explored the ALS heterogeneity
at different levels of omics data, by integrating our gene expression profiling with the
analysis of alternative splicing and genomic structural aberrations occurring in the same
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ALS patient cohort [90,91] (Table 1). In particular, we observed the differential expression
of a substantial number of genes encoding splicing factors in both the motor cortex and
spinal cord samples of two molecularly separated ALS subgroups, revealing a significant
overexpression for SALS1 and a down-regulation for SALS2. In addition, we also char-
acterized copy number variants occurring in these patients, identifying subtype-specific
genomic alterations positively correlated with transcriptional signature profiles, suggesting
that genomic and transcriptomic alterations may complement each other in driving the
molecular heterogeneity underlying ALS pathogenesis [90].

In addition to genomics and transcriptomics, other innovative omics sciences, includ-
ing metabolomics, have allowed the identification of specific markers and signatures that
can distinguish between ALS patients and healthy individuals, as well as stratify SALS
patients into different subgroups [46,47,92–94]. One striking example was reported in the
study of Wuolikainen and colleagues, where ALS patients bearing different SOD1 muta-
tions presented a very distinct metabolic signature (including a decrease in amino acids in
the CSF) in comparison to patients without SOD1 mutations (both familial and sporadic
cases), and this classification was also observed between homozygous and heterozygous
carriers of these ALS genetic variants, correlating with different disease progression pat-
terns [46]. Similarly, low urate plasma levels were related to a higher risk of developing
ALS, years before the onset of symptoms [95]. In another study, researchers categorized
the metabotype of skin-derived fibroblasts from SALS patients into different subgroups
characterized by distinct metabotypes, one of them typified by increased trans-sulfuration
pathway-derived cysteine to support GSH biosynthesis and glucose hypermetabolism, in
comparison with controls and other SALS subgroups [47].

Overall, the documented patient stratification and their peculiar molecular portraits
lay the foundations for developing more efficacious and individualized therapeutic inter-
ventions for ALS. In this context, our analyses provided a series of potential biomarkers
and therapeutic targets differentially deregulated in specific subsets of ALS patients, sug-
gesting their utility in the establishment of medicine based on individual molecular-level
profiles [96,97]. Among these, an example is represented by histamine-related genes that
we found deregulated at the genomic and transcriptomic level in the motor cortex, as well
as in the spinal cord of two molecular-based subgroups of SALS patients, supporting the
hypothesis that histamine-related target genes might represent candidate biomarkers and
targets for patient-oriented ALS care [98]. In this regard, preliminary results indicated
that the pharmacological modulation of this signaling seems to ameliorate ALS features,
improving motor performance and survival in ALS mice and increasing motor neuron
survival in ALS models [98–100].

5. Conclusions

The recent scientific breakthroughs and technological advancements have improved
our understanding of disease pathogenesis and changed the way we diagnose and treat
disease, leading to a more precise, predictable and optimized health care. The combination
of deep clinical phenotyping, multi-omics technologies and advanced molecular profiling
has provided benefits in several areas of medicine, especially in oncology, and there is great
enthusiasm to translate these approaches to NDs as soon as possible.

The evidence documented here shows that a deeper understanding of NDs based on
multi-omics levels may prompt a shift toward their molecular classification, highlighting
both the intrinsic heterogeneity of the pathologies and the differences in involved molecular
pathways, as well as the relationships and connections inside the neurodegenerative pro-
cess itself. Gathering multi omics-layers (genomic, transcriptomic and proteomic data) from
177 studies and more than one million patients suffering AD, PD, Huntington’s disease
(HD) and ALS has recently shown a remarkably high number of shared differentially ex-
pressed genes between the transcriptomic and proteomic levels for all conditions, shedding
light on processes like the humoral immune response, that have previously been described
only for certain diseases [101]. An accurate investigation of complex biological systems by
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integrating multiple underlying data sources may help to detect shared genetic patterns
between the neurodegenerative diseases, identifying biomarkers for differentiating disease
states and thereby facilitating the decision-making process and treatment management.

Although these great technological breakthroughs are certainly encouraging, a routine
implementation of omics data on clinical decisions for personalized interventions in NDs
will require further improvements in data acquisition, analysis and cost-effectiveness.
In this regard, the most formidable challenges lie perhaps in data analysis and storage,
as well as in elucidating the biological meaning of various omics data, differentiating
causality from correlation. This aspect is further amplified when working with human
brain samples, where sample size, subject variation (gender, ethnicity, age, diet and lifestyle
choices), brain region, disease stage, tissue quality and technical noise can confound
or obscure findings. Therefore, to make omics data concretely suitable for molecular
signature discovery, the samples must be collected through appropriate and standardized
experimental and analytical procedures, in order to reduce the prevalence of batch effects.
If they are not carefully controlled, these factors can be incorrectly associated with the
clinical phenotype of interest, leading to the development of a classifier that performs very
well on the data used in its development but poorly on independent test samples. Another
aspect to consider is that although the cost of omics analyses continues to decrease, an
although multiple high-throughput data can guide individualized treatment regimens
and be integrated into the clinic, their analysis and integration still require extensive
and time-consuming human input for correct and reliable data interpretation, due to the
heterogeneous and wide variability of the datasets generated. Therefore, going forward,
standardized bioinformatically integrated omics approaches and better statistical methods
will be required to identify and extract the correct biological meaning from omics data.

To be efficient and translatable in the clinic, the integrated whole systems approach
would require coordinated collaborative efforts among the clinical, pharmaceutical and
biotechnological industries, and researchers’ communities to foster new joint multidisci-
plinary applications that will enable the translation of findings into neurology practice.
To this end, a number of major international initiatives and funding grants have been
promoted by international agencies to support the development of omics-based projects
fostering precision medicine (e.g., ERACoSysMed—Systems Medicine to address clinical
needs; Personalised Medicine for Neurodegenerative Diseases—National Science Centre,
Poland; IMI Innovative Medicines Initiative; Clinical utility of omics for better diagnosis of
rare diseases by CORDIS EU research) and are still ongoing. We believe that, if successful,
such collaborations could increase the power to identify new statistically significant ND-
associated alterations and build more accurate prediction models, providing opportunities
to the clinical implementation of stratification for treatments with the potential to transform
ND management and dramatically improve patient outcomes.
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