
Generalizing Double-Hybrid Density Functionals: Impact of Higher-
Order Perturbation Terms
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ABSTRACT: Connections between the Görling−Levy (GL)
perturbation theory and the parameters of double-hybrid (DH)
density functional are established via adiabatic connection
formalism. Moreover, we present a more general DH density
functional theory, where the higher-order perturbation terms
beyond the second-order GL2 one, such as GL3 and GL4, also
contribute. It is shown that a class of DH functionals including
previously proposed ones can be formed using the present
construction. Based on the proposed formalism, we assess the
performance of higher-order DH and long-range corrected DH
formed on the Perdew−Burke−Ernzerhof (PBE) semilocal func-
tional and second-order GL2 correlation energy. The underlying
construction of DH functionals based on the generalized many-
body perturbation approaches is physically appealing in terms of
the development of the non-local forms using more accurate and sophisticated semilocal functionals.

1. INTRODUCTION
Nowadays, density functional theory (DFT)1,2 becomes a
standard framework of performing the electronic structure
calculations of atoms, molecules, and solids, being an
indispensable tool for quantum chemists and solid-state
physicists. Despite its theoretical exactness, in practical
calculations, the many-body interactions are included in DFT
through density functional approximations (DFA) of the
exchange-correlation (XC)3 energy term. Therefore, the
accuracy of the DFT depends on the accuracy of the XC
approximations constructed from the exact quantummechanical
constraints satisfaction4−9 and/or the empirical way.10−13 The
quantum mechanical constraints that have been used to
construct the semilocal XC approximations are also equally
important for developing higher-order accurate hybrids and
double-hybrid (DH) functionals. Within the known exact
constraints, we find uniform or non-uniform coordinate
transformations,5,14−16 density gradient expansions,17−22 high
and low-density limit of the correlation energy functionals,23−25

correct asymptotic behavior of the XC energy density,26−33

dimensional crossover or the quasi-2D behavior of the XC
energy,34−37 bounds of exchange and XC energies,38−44 and
exact properties of the XC hole.8,45−47 All of these have been
used regularly to construct the different rungs of non-empirical
functionals48 including higher-order accurate wave function
methods.
The first three rungs of the XC DFAs,48 which are recognized

as the local density approximation (LDA),1 generalized gradient
approximation (GGA),49 and meta-generalized gradient ap-

proximation (meta-GGA),50 are constructed using the local or
semilocal quantities (i.e., density, the gradient of density,
Laplacian of density, and Kohn−Sham (KS) kinetic energy
density), being very accurate for the diverse nature of the
molecular51,52 and solid-state properties.9,53−61 However, there
are important limitations in semilocal functionals perform-
ance.62 Several resolutions are adopted to improve the
functional performance, such as the inclusion of Hartree−
Fock (HF) exchange within the semilocal approximations.
Functionals constructed in this way are known as hybrid
functionals, being extensively used for the chemical and solid-
state properties.51,63−82 Despite the attempt of constructing the
best hybrid density functional, an important dynamic
correlation, which is the key of the ab initio wave functional
theory (WFT), are missing in density functional correlation
energy functionals. Inclusion of non-local virtual orbital-
dependent terms is shown to overcome many problems of
DFAs including the best hybrid density functionals. The
resulting functionals developed by mixing a part of second-
order Møller−Plesset (MP2)83 correlation energy expression
are known as the DHDFA, which connect the density functional
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world with that of the ab initio WFT. Beginning from the
Grimme’s B2-PLYP62 DFA, several DH functionals have been
proposed (see, e.g., refs 84 and 85 and references therein).
In general, the construction of a DH functional starts from the

global hybrid DFA (also known as DFA0) having the form

= + − +E a E a E E(1 )DFA
x x

EXX
x x

DFA
c
DFA0

(1)

Also, the range-separated (RS) scheme is applied in the
construction of the hybrid density functionals using the RS
screening approach of the exchange hole. Such XC functionals
are known as the screened hybrids (SH), and they can achieve
the correct asymptotic behavior of exchange potentials,
important for the barrier heights, charge transfer excitation,
and many-electron self-interaction related problems.86−122 The
screening of the exchange energy part is achieved through the
decoupling of the electron−electron interaction as
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whereω is the range-separation parameter. Despite the plethora
of considerable successes, there are limitations of both the DFA0
and SH functionals, which have been further improved by
mixing the semilocal correlation functional with the non-local,
second-order Görling−Levy (GL2), (i.e., MP2-like expression
neglecting the single excited term) correlation energy expression

= + − + + −E a E a E a E a E(1 ) (1 )xc
DH
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DFA

c c
GL
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(3)

Therefore, the DH DFA is considered as the fifth rung
functional where the two parameters {ax, ac} are fixed either
empirically (with respect to the benchmark data) or in the non-
empirical way. In particular, there exist two known relations
between {ax, ac} parameters, namely, ac = (ax)

2 proposed in ref
123, and used by B2-PLYP62 or DS1DH123 XC functionals, and
the cubic scaling relation124

=a a( )c x
3

(4)

which is adopted in the hereto study. The DH functionals
achieved their accuracy over a large range of molecular
properties beyond the limitations of the DFA0 and SH
functionals.85 In particular, the improvement of many-electron
self-interaction problems and non-covalent interactions are
noticeable.
The formal construction of the DH was first attempted in ref

125 using the adiabatic connection (AC)-based coupling
constant integral formalism, which is the basis of the density
functional many-body perturbation theory. Physically, the DH
functionals are constructed from the perturbation theory of the
XC functionals in the weakly interacting limit where the
exchange part is treated by HF, and correlation is approximated
by the GL2 expression. The higher-order terms of the
perturbation series, i.e., GL3, GL4, etc., can also be used
through the perturbation theory to construct the general mth-
order hybrids (mH); however, due to substantial numerical cost
of evaluation of these terms, they never have been considered.
Nevertheless, in general, a form of the mH functional can be
proposed, which allows one to include all the higher-order
perturbation terms. This is the main motivation of the present
study. In this work, we “generalized the double-hybrid density
functional” derived from the many-body perturbation theory,
which connects the higher-order GL perturbation terms via the

adiabatic connection formalism. The novelty of the present
method is also attributed via the assessment of the series of
double hybrids based on mth-order integrand and RS scheme.
In the following, we will present the key equations and

features of the prime DH functionals proposed so far. Following
this, we will present the theory and results obtained from
constructed functionals. We will conclude with future prospects.

2. RUNGS OF DOUBLE-HYBRID DENSITY FUNCTIONS
2.1. Adiabatic Connection View on DH Functionals.

The starting point of the construction of DH functionals can be
encapsulated through the AC formalism, where the coupling
constant integral is used to construct the exact expression of the
XC functional as

∫ρ λ ρ

ρ ρ ρ ρ

[ ] = [ ]

[ ] = ⟨Ψ [ ]| ̂ |Ψ [ ]⟩ − [ ]

λ

λ λ λ

E W

W U

d

V

xc xc

xc ee

0

1

,

, (5)

where V̂ee, U[ρ], and Ψλ[ρ] are the Coulomb operator, the
Hartree energy, and the anti-symmetric wave function that
yields the correct many-electron interacting density ρ(r) and
minimizes the expectation value of ⟨T̂ + λV̂ee⟩, where T̂ is the
kinetic energy operator and λ is the coupling constant. In the AC
formalism, two limiting cases are important for the DH DFA
construction, namely, the λ → 0 (weak-interaction limit) and λ
→ 1 (full-interaction limit). When λ → 0, the GL223−25,126

becomes the dominant correction to EXX energy. These two
terms are most commonly employed to construct the XC energy
integrand in this regime:24

ρ ρ ρ λ[ ] = [ ] + ′[ ]λ→W W Wxc , 0 0 0 (6)

where W0[ρ] = Ex
EXX[ρ] and ρ ρ′[ ] = [ ]W E2 c

GL
0

2 . We remark,
however, that for any small value of λ (λ > 0), higher-order terms
contribute as well. Therefore, one should also consider their
inclusion in theWxc, λ → 0 integrand. In the full interacting limit,
in turn, the Wxc,1[ρ] is usually approximated by non-local or
semilocal formula.14,128 Thus, the DH functional connects, by
construction, the XC worlds of both the semilocal DFT and
WFT approaches.128 The utilization of the GL2 correlation
energy term allows one to include non-local dynamic correlation
effects into the XC DFA going beyond the semilocal correlation
DFA description.
The AC formalism was applied in the construction of many

semi-empirical or non-empirical DHDFAs among which we can
recall the DFA0-DH,129 DFA0-2,130 DFA-CIDH,127 or DFA-
CIDH127 DFA-QIDH131 to be themost successful. In particular,
the quadratic integrand DH (QIDH)131 DFA was constructed
consideringWxc, λ as the quadratic function

132 of λ, i.e.,Wxc, λ[ρ]
= a1[ρ] + a2[ρ]λ + a3[ρ]λ

2. In the following, we adopt a general
mth-order integrand function, which allows one to go beyond
the QIDH formalism.

2.2. Beyond the DFA-QIDH Model. Let us consider the
XC m-hybrid (mH) functional defined as

ξ ξ ξ ξ

ξ

= + + ···+ +

+

−
+

+

E E E E E

E
xc x c m c

m
m x

m c

DFA mIH
1

EXX
2

GL2 GL
1

DFA

2
DFA

(7)

where ξk, k = 1, ..., m + 2 are parameters. The Ex
DFA and Ec

DFA

denote standard semilocal DFAs of exchange and correlation
functionals, respectively, whereas the Ex

EXX is the HF (or exact)
exchange energy:
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the two-electron integrals. The expression for the GL2
correlation energy reads23

∑
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where ⟨ij∥ab⟩ = ⟨ij | ab⟩− ⟨ij | ba⟩ are the antisymmetrized two-
electron integrals, and εp is the energy of the KS orbital p,
whereas vx

KS and v̂x
HF denotes the local, multiplicative KS and the

non-local HF exchange potentials, respectively. The higher-
order GL energy terms23,133 are denoted generally as Ec

GLk and
the indices i, j, ... and a, b, ... are used to denote occupied and
virtual KS orbitals, respectively.
The ξi parameters in eq 7 can be, in principle, determined

using adiabatic connection formalism, which defines, via eq 5,
the exact XC functional. The coupling-constant integrand of eq
5 has the well-known small-λ expansion24,134

∑ρ λ[ ] = +λ→
=

∞
−W E n Exc x

n
c

n n
, 0

EXX

2
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Hence, truncating the above summation at n = m, it reads

ρ λ λ[ ] = + + +λ→
−W E E mE2 ...xc x c c

m m
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Now, as in ref 131, we can define Wλ integrand as
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where ak (k = 1, ..., m) are the density or orbital dependent
functionals. By comparing eq 11 and eq 12 at λ → 0, we get

ρ ρ[ ] = [ ] =a E a iE;x i c
i

1
EXX GL

The am +1[ρ] can be set from similar reasoning as in ref 131. At
the upper limit (λ = 1), the integrand can be approximated by

ρ α α ρ ρ[ ] ≈ + − [ ] + [ ]W E E E(1 ) 2xc x x c,1
EXX DFA DFA

(13)

where the parameter α (together with m) ranging between [ −
m,1] controls the amount of EXX in eq 7. Comparing eq 12 and
eq 13 at λ = 1, we obtain
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Now, employing eq 12 into eq 5 leads, after some algebra, to
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Direct comparison with eq 7 allows to connect (in the
quantize manner) the ξi parameters with orders of the GL
perturbation theory as
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Note that, when m → 1, we get
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On the other hand, when m → ∞, eq 15 recovers
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c
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which, in general, exhibits a diverging behavior.135,136 For an
arbitrary (but small) value of m, the kth GL terms in eq 15 are
always scaled by the coefficient ξk < < 1. Thus, the diverging
behavior of DFA-mIH DFA should be avoided.

2.3. Generalized mth Hybrid with Range-Separation
Model.Having eq 15, the obvious viable next step is to extend it
to the domain of the range-separated DH (RSDH) framework.
The background of the perturbative RS functionals, it was
initially adopted by Ángyań et al.137 Later, the RSDH was
adopted by Chai et al.138 in ωB97X family of functionals
(ωB97X-2) and by Breḿond et al.139,140 in QIDH-based
functionals (RSX-QIDH). Both the ωB97X-2 and RSX-QIDH
showed an improvement over the base ωB97X and QIDH
functionals. Particularly, a significant improvement has been
observed for the problems related to the self-interaction
corrections, barrier heights, and ionization potential, which are
important and viable for RSDH.
In this respect, we extend the generalized formalism presented

in Section 2.2 to the RS scheme. By usingWxc,1[ρ]≈ Ex
EXX, LR(ω)

+ Ex
DFA, SR(ω) + 2Ec

DFA, we obtain the following expression:
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Similarly to the DFA-mIH family of functionals, the LRC-
ωDFA-mH functionals also depend on the choice of two
parameters, namely, m and ω. This is done by disregarding the
dependence on the α parameter in eq 17. Note that, in this case,
the present RS functional form is closely related to the LRC-
ωPBEh decomposition proposed by Rohrdanz et al.,94 which
reduces to the standard PBEh hybrid for a certain choice of the
two parameters, namely, mixing (ax) and range-separated (ω)
parameters.
We underline, however, that by choosingWxc,1[ρ] ≈ αEx

EXX +
(1 − α)[Ex

DFA, SR(ω) + Ex
EXX, LR(ω)] + 2Ec

DFA, we can define also
the family of RSX-mIH functionals, where for m = 2 we recover
the RSX-QIDH139,140 DFA.

2.4. Choice of Functionals and α and ω Parameters.
Based on the generalized consideration presented in Sections 2.2
and 2.3, we consider two forms of the functionals to assess their
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performance for the quantum chemistry test sets. However, due
to the substantial computational cost of the inclusion of higher-
order GL terms, we restrict our assessment to DFAs whose form
include only the second-order GL2 term (in eqs 15 and 17) and
m = 2,3,4. The impact of higher-order terms is discussed in
Section 3.1.
In eq 15, for the semilocal part of XC approximation, we

consider the PBE and thus we denote this family of functionals as
PBE-mIDH (m, α) as it is based on the mth-order integrand
limited to second order and the m and α parameters. In the
second case, we investigate LRC-ωDFA-mH functionals defined
via eq 17) where, as the SR part of DFA, we have chosen the
ωPBE92 functional and therefore the functional family is
denoted as LRC-ωPBE-DH (m, ω) as it is based on the m
and empirically fitted ω.
In order to make the PBE-mIDH and LRC-ωPBE-DH

methods feasible, we need to set the values of α and ω
parameters, respectively. In the case of α, we can directly utilize
the cubic scaling relation (ξ2 = ξ1

3) from ref 124 usually adopted
in the construction of novel DH DFAs. This allows one to
express α as a function of m:

α = + − − −m m m m m( ) ( 1)3 2 1/3 (18)

Thus, the PBE-mIDH family of functionals can be considered
as “non-empirical” in this sense. The present PBE-mIDHmodel
not only correctly recovers the PBE-QIDH131 form = 2, but also
it recovers the PBE0-2130 functional form = 3. This allows one to
view the construction of the PBE0-2 functional from an entirely
new physical point of view. As m = 2 and m = 3 are the two
previously proposed functionals, here, we additionally assess the
functional performance for m = 4.
In the case of the LRC-ωPBE-DH (m, ω) family of

functionals, we cannot establish a direct relation between m
and ω. Thus, in order to determine the ω screened parameter,
several schemes can be utilized, such as empirical fit-
ting,89,92,95,99,119,141 optimal tuning,142 or imposing an addi-
tional constraint to the XC functional.139,143

In this study, in order to be consistent with the LRC-ωPBEh
functional, we have tunedω considering themean absolute error
(MAE) of the small representative test sets AE6 and BH6.144

The AE6 is the atomization energies of six molecules simulating
the error statistics of the full G2/148 molecular test set.
Meanwhile, the BH6 is the hydrogen transfer barrier heights of
six small molecules. In the optimization procedure, we have used
the AE6 and BH6 geometries from Lynch and Truhlar,144 and
for the reference values, we consider the non-relativistic
coupled-cluster singles-doubles with perturbative triples
(CCSD(T)145 values [FC-CCSD(T)/cc-pVQZ-F12] of ref
146.
In Figure 1, we report theMAE of AE6 and BH6 for few values

of m. We observe that, for m = 2, the minimum of the MAE
becomes at ω = 0.2 bohr−1. This choice of {m = 2, ω = 0.2} is
certainly a good choice for BH6 also, where theMAE is obtained
to be about 1 kcal/mol smaller than the LC-ωPBE and LRC-
ωPBEh. Interestingly, in ref 94, the choice of ω is also 0.2
bohr−1, which is certainly matching with our present LRC-
ωPBE-DH functional.
In Table 1, we present the parameters {m, α} and {m, ω} of

the studied functionals. Note that, for LRC-ωPBE-DH (m = 3,
ω), we choseω = 0.2 bohr−1, which gives a balanced description
of both AE6 and BH6, while for LRC-ωPBE-DH (m = 4,ω), we
chose ω = 0.5 bohr−1, considering solely the optimization of the
AE6 test set.

3. RESULTS
In this section, we discuss the general trends found in the
performance of both families of functionals. The details about
the computational setup can be found in Section 5.

3.1. Impact of the Higher-Order Terms on the
Functional Performance. In Table 2, we report the MAE
and mean absolute relative error (MARE) obtained for several
ab initioWFT approaches together with the results obtained for
both families of DHDFAs. The errors have been calculated with
respect to CCSD(T) data obtained using the same computa-
tional setup. Additionally, to investigate the impact of higher-
order terms (HOT) on the quality of predictions, we report the
triple-hybrid (TH) (PBE-TH, LRC-ωPBE-TH) and quadruple-
hybrid (QH) (PBE-QH, LRC-ωPBE-QH) results. To this end,

Figure 1. MAE (in kcal/mol) of AE6 and BH6 test sets for different
values of m and ω.

Table 1. Choice of Different Sets of {m, α} and {m, ω} as
Used in the Calculationsa

PBE-mIDH (m, α) LRC-ωPBE-DH (m, ω)

m α1 m ω MAE (kcal/mol)

2 0.080 AE6/BH6 2 0.2 5.5/1.08
3 0.175 AE6/BH6 3 0.2 5.3/1.382

4 0.217 AE6/BH6 4 0.5 4.2/2.84
aThe ω values are in bohr−1 unit. 1Obtained via Eq. (18). 2Minimum
of AE6 is obtained at ω = 0.35 bohr−1 (3.6 kcal/mol) but choice of ω
= 0.20 bohr −1 is the most preferable for both the AE6 and BH6.
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the energies have been calculated via eqs 15 and 17 taking into
account all terms up to mth order, on top of GKS orbitals
obtained for m = 3 and m = 4 for TH and QH, respectively. As
aforementioned, in order to evaluate the higher-order GLk
energy contributions (GL3, GL4), we utilize the MP-like
formulas (MP3 and MP4) (evaluated on the same GKS
reference state), which give the dominant energy contribution.
This is mostly dictated by the lack of quantum chemistry codes
that are capable to calculate full higher-order GLk terms (see
Section 5 for more details).
In the case of total energies (TE), both MAE and MARE

indicate that all DH DFAs give the results at least twice better
than MP2 total energies, which yield a MAE of 16.81 mHa
(MARE = 0.09%). The addition of HOT leads to further
improvement. In the case of TH, the inclusion of the GL3 term
leads to a decrease in MAE/MARE of about 1 mHa/0.01%,
whereas for QH, the decrease is slightly larger (2 ÷ 3 mHa/0.02
÷ 0.03%) in comparison to their m = 3 and m = 4 DFA
counterparts. Moreover, one can note that TH and QH DFAs
give results that lie between MP3 and MP4 predictions. This
indicates that the inclusion of HOT might lead to quite
substantial improvement of the results than the standard DH
expressions.148

In the case of the AE6 atomization energies, we see that all DH
DFAs outperform all reported ab initioWFTmethods. Here, the
worst performance is observed for the MP2 method (MAE =
12.4 kcal/mol, MARE = 3.58%) and surprisingly also for the
CCSD method (MAE = 10.3 kcal/mol, MARE = 3.01%). In the
case of the PBE-mIDH family of DFA, we see the worsening, and
for LRC-ωPBE-DH, the improvement of the predictions along
with an increase in m. For the latter species, this can be easily
linked with the optimization of the ω parameter, which was
performed with respect to the AE6 set. One can note that
inclusion of HOT in both families of DFAs lead, in general, to
improvement in the prediction. The PBE-TH and PBE-QH
functionals improve upon their DH counterparts, giving here a
MAE of 3.8 kcal/mol (MARE = 1.08%) and a MAE of 2.7 kcal/
mol (MARE = 0.61%), respectively. In the case of LRC-ωPBE-
TH, we observe a similar trend. The only exception is seen in the
case of LRC-ωPBE-DH (m = 4) and LRC-ωPBE-QH DFAs
where the latter exhibits almost twice worse performance with
respect to its DH variant. This can be most probably related to
theω value, which is not optimal for the LRC-ωPBE-QH energy
expression.

In order to check how these trends change for AE6 with basis
set size, in Fig. S5 of Ref 147., we report the MARE calculated
with respect to CCSD(T) data obtained using the cc-pVXZ149

basis set family (where X =D, T,Q). As one can note, for most of
DFAs we observe, a drastic improvement between DZ and TZ
results. The differences between TZ and QZ results are several
times smaller. One exception can only be noted for LRC-ωPBE-
DH (m = 4) and LRC-ωPBE-QH functionals. Here, the DZ
results are quite similar to TZ and QZ counterparts. As
previously noted, this behavior can be related to the ω value,
which was optimized solely with respect to the AE6 data set.
Nevertheless, we conclude that, for the DZ basis set, all DFAs
give the worst performance, whereas TZ and QZ results do not
differ significantly from each other.
Finally, we have tested all DFAs with respect to a small set of

NCI systems.150 Similar to AE6 data, the worst performance
among WFT approaches is given by CCSD (MAE = 0.17 kcal/
mol, MARE = 16.27%) andMP2 (MAE = 0.13 kcal/mol, MARE
= 20.76%)methods. TheMP4, in turn, gives the best predictions
here, yielding a MAE of 0.04 kcal/mol (MARE = 3.49%). All
PBE-mIDH functionals show almost the same performance with
MAEs in the range of 0.08−0.09 kcal/mol (MARE between
19.39% and 20.21%). The addition of HOT terms, also here,
leads to an improvementmostly visible for PBE-QHDFA, which
gives a MAE of 0.06 kcal/mol (MARE = 15.22%). In the case of
the LRC-ωPBE-DH family of functionals, the inspection of
MAEs shows almost identical performance (MAE between 0.5
and 0.09 kcal/mol) for all DFAs. However, MAREs exhibit a
substantial increase in error (almost twice), which is caused by
the very bad performance of LRC-ωPBE-DH (large MAE) for
weakly interacting systems (see Tab. S2 in ref 147). In ref 147,
we also report MAE and MARE without considering WI
systems. One can immediately note the substantial decrease in
MARE values mostly visible for the LRC-ωPBE-DH family of
functionals. This indicates that WI binding energies can be
considered as very sensitive tools for testing the quality of
quantum chemistry methods.
To conclude, the inclusion of HOT leads in general to the

improvement of the result. However, the substantial cost of
MP3-like andMP4-like correlation contribution makes it almost
impossible to apply, especially for large molecular systems.

3.2. Performance without Considering HOT. 3.2.1. Mo-
lecular Properties. To assess the PBE-mIDH and LRC-ωPBE-
DH families (m = 2,3,4) of functionals, we report in Table 3 the
MAEs for several standard benchmark tests. For comparison, we

Table 2. Error Statistic on Total Energies, Atomization Energies of AE6, and Binding Energies for Several Ab Initio Wave-
Function Theory and Density Functional Theory Methodsa

PBE-mIDH LRC-ωPBE-DH

CCSD MP2 MP3 MP4 m = 2 m = 3 m = 4 PBE-TH PBE-QH m = 2 m = 3 m = 4 LRC-TH LRC-QH

Total energies (TE)1

MAE [mHa] 8.93 16.81 11.82 2.42 5.57 6.14 7.11 5.08 3.11 5.25 5.86 6.84 4.81 4.92
MARE [%] 0.01 0.09 0.03 0.01 0.04 0.04 0.05 0.03 0.02 0.03 0.04 0.03 0.03 0.01

AE61

MAE3 10.3 12.4 6.7 5.9 4.0 4.7 6.2 3.8 2.7 3.5 4.5 2.3 3.4 4.3
MARE [%] 3.01 3.58 2.36 1.59 1.34 1.23 1.68 1.08 0.61 1.10 1.08 0.71 1.03 1.63

Non-covalent interactions (NCI)2

MAE3 0.17 0.13 0.05 0.04 0.08 0.09 0.09 0.07 0.06 0.09 0.06 0.05 0.07 0.07
MARE [%] 16.27 20.76 10.17 3.49 20.21 19.90 19.39 19.16 15.22 41.40 32.06 34.64 32.46 33.27

aThe full results can be found in ref 147. The LRC-TH and LRC-QH denotes LRC-ωPBE-TH and LRC-ωPBE-QH, respectively. 1Calculation
performed in cc-pVQZ basis set, all electrons are correlated. 2Calculation performed in aug-cc-pVQZ basis set, all electrons are correlated. 3In
kcal/mol.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00823
J. Chem. Theory Comput. 2020, 16, 7413−7430

7417

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00823?ref=pdf


T
ab
le
3.
M
ea
n
A
bs
ol
ut
e
E
rr
or
s
(M

A
E
)
(i
n
kc
al
/m

ol
)
fo
r
th
e
B
en
ch
m
ar
k
T
es
ts
O
bt
ai
ne
d
U
si
ng

V
ar
io
us

D
ou

bl
e-
H
yb
ri
d
Fu

nc
ti
on

al
sa

M
P2

PB
E0

-D
H

PB
E-
Q
ID

H
(m

=
2)

PB
E0

-2
(m

=
3)

PB
E-
m
ID

H
(m

=
4)

LR
C
-ω
PB

E-
D
H

(m
=
2)

LR
C
-ω
PB

E-
D
H

(m
=
3)

LR
C
-ω
PB

E-
D
H

(m
=
4)

PB
E0

LC
-ω
PB

E
(ω

=
0.
40
)1

R
SX

-Q
ID

H

M
ai
n
gr
ou
p
th
er
m
oc
he
m
is
tr
y
(M

G
T
)

A
E6

11
.6

5.
8

5.
3

5.
3

6.
0

5.
5

5.
3

4.
2

5.
4

5.
0

7.
0

G
2/
14
8

10
.7

5.
7

5.
4

5.
6

6.
2

5.
3

5.
4

4.
9

4.
5

4.
4

7.
8

G
21
EA

4.
02

3.
39

3.
03

2.
75

2.
75

3.
30

2.
72

3.
52

2.
91

2.
98

3.
39

G
21
IP

3.
37

3.
31

2.
64

2.
23

2.
11

2.
85

2.
21

2.
62

3.
78

4.
78

3.
12

PA
26

1.
52

2.
55

2.
04

1.
60

1.
38

2.
20

1.
60

1.
80

2.
52

2.
60

1.
80

B
H
76
R
C

2.
50

1.
44

1.
52

1.
68

1.
82

1.
51

1.
69

1.
78

1.
59

3.
62

2.
12

SI
E4

×
4

1.
62

7.
36

3.
33

1.
68

0.
99

2.
67

2.
00

1.
88

14
.1
2

9.
42

1.
91

T
M
A
E

5.
04

4.
22

3.
32

2.
97

3.
13

3.
33

2.
98

2.
95

4.
97

4.
68

3.
87

B
ar
ri
er

he
ig
ht
s
(B
H
)

B
H
6

3.
54

1.
85

0.
88

1.
39

1.
82

1.
08

1.
38

2.
84

4.
59

1.
39

1.
42

H
T
B
H
38

3.
61

1.
53

0.
95

1.
50

1.
89

1.
11

1.
48

2.
97

4.
21

1.
20

1.
28

N
H
T
B
H
38

5.
49

1.
70

1.
78

2.
55

3.
04

2.
20

2.
63

4.
82

3.
76

2.
22

2.
57

T
M
A
E

4.
21

1.
69

1.
20

1.
81

2.
25

1.
46

1.
83

3.
54

4.
18

1.
60

1.
75

N
on
-c
ov
al
en
t
in
te
ra
ct
io
ns

(N
C
I)

H
B
6

0.
24

0.
31

0.
29

0.
31

0.
32

0.
26

0.
24

0.
25

0.
32

0.
71

0.
91

D
I6

0.
57

0.
30

0.
24

0.
25

0.
32

0.
28

0.
22

0.
20

0.
36

0.
81

0.
30

C
T
7

0.
56

0.
44

0.
40

0.
42

0.
44

0.
33

0.
31

0.
27

0.
84

1.
12

0.
57

PP
S5

1.
48

1.
12

0.
36

0.
34

0.
55

0.
46

0.
26

0.
63

1.
89

1.
96

0.
27

W
I7

0.
04

0.
16

0.
14

0.
11

0.
10

0.
18

0.
14

0.
13

0.
16

0.
28

0.
15

S2
2

1.
39

1.
60

0.
74

0.
26

0.
37

0.
92

0.
34

0.
28

2.
37

2.
75

0.
71

T
M
A
E

0.
71

0.
66

0.
36

0.
28

0.
35

0.
41

0.
25

0.
29

0.
99

1.
27

0.
49

O
ve
ra
ll

T
M
A
E

3.
32

2.
19

1.
63

1.
69

1.
91

1.
73

1.
69

2.
26

3.
38

2.
52

2.
04

a
T
he

le
as
t
M
A
E
in

ea
ch

ca
te
go
ry

is
m
ar
ke
d
in

bo
ld
.T

he
to
ta
l
M
A
E
(T

M
A
E)

is
al
so

m
en
tio

ne
d
at

th
e
bo
tt
om

of
ea
ch

ca
te
go
ry
.1

ω
=
0.
40

bo
hr

−
1
as

su
gg
es
te
d
in

re
f.
14
1

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00823
J. Chem. Theory Comput. 2020, 16, 7413−7430

7418

pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c00823?ref=pdf


also supplied the results obtained from PBE0-DH, PBE0, LC-
ωPBE, and RSX-QIDH methods. Note that, except LC-ωPBE
and PBE0, all other functionals belong to DH DFA species.
One can immediately note that all DH functionals outperform

the global hybrid PBE0 and RS hybrid LC-ωPBE in all cases.
This indicates that the addition of the scaled MP2 term leads, in
general, to the improvement of the results with respect to its
global or RS hybrid predecessor.
The overall performance of all DH DFAs is quite similar. The

total MAEs (TMAEs) can be found in the range of 1.63−2.26
kcal/mol. The best TMAE of 1.63 kcal/mol is given by PBE-
QIDH (m = 2), which is closely followed by PBE0-2 (m = 3,
TMAE = 1.69 kcal/mol) and LRC-ωPBE-DH (m = 3, TMAE =
1.69 kcal/mol) functionals. Slightly worse results are provided
by LRC-ωPBE-DH (m = 2, TMAE = 1.73 kcal/mol) and PBE-
mIDH (m = 4), which gives a TMAE of 2.26 kcal/mol. One can
also identify general trends in the results depicted in Figure 2

where we report the ratio of MAE (form = 2,3,4) with respect to
the MAE of the MP2 method (MAEMP2), which represents the
m =∞ case for both families of functionals. In the case of PBE-
mIDHDFAs (top of Figure 2), increasing the amount of HF and
MP2 terms leads, in general, to the worsening of the predictions.
However, all functionals perform much better than the MP2
method. The change in overall performance between the m = 2
and m = 3 cases is very small. Nevertheless, an inspection of
subset performance reveals some interesting trends. For the BH
subset, we observe evident worsening of the results with m,
whereas for MGT, the worse performance between DH cases is
observed for m = 2. Here, along with m, we note worsening
(AE6, G2/148, BH76RC) and improvement (G21EA, G21IP,
PA26, SIE4×4) of the predictions. Almost the same is valid for

the NCI subset, where the best performance is obtained for the
m = 3 variant. This behavior is, however, dominated by the PPS5
and S22 results, which for m = 3 give the least MAE. For other
NCI subsets, we observe the increasing (HB6, DI6, CT7) or
decreasing (WI7) trend in MAE with an increase in m. Similar
trends can be observed for the LRC-ωPBE-DH family of
functionals (bottom of Figure 2). The amount of HF and MP2
terms governs the general behavior of DFAs. With increasing m,
we observe the improvement of the results for MGT and
worsening for BH. In the case of NCI, likewise for the PBE-
mIDH family of functionals, with increasing m, we observe an
improvement in the description of most types of interactions
especially visible for S22 subsets. This is in more detail shown in
Table 4, where we report separately the MAEs for different
subsets of complexes in the S22 test set. The PBE0-2 (m = 3)
performs significantly better for vdW and mixed complexes.
Meanwhile, LRC-ωPBE-DH (m = 3) is better for H-bonded
complexes. This behavior can be probably justified by the fact
that, for larger values of m, the SCF orbitals (optimized in the
presence of 100% LR HF exchange term) give a better starting
point (by reducing self-interaction error) for the description of
long-range dispersion interaction included in the MP2 term.
This is clearly seen in the case of the LRC-ωPBE-DH (m = 4)
functional, which gives good performance for NCI and MGT
benchmark sets, yielding here MAEs of 0.29 and 2.95 kcal/mol,
respectively.
Looking at the MP2 results (representing the m = ∞ case),

one can note that it gives the worst MAE for all benchmark sets
(MAE = 3.32 kcal/mol). This finding suggest that the relative
good performance of DH functionals rely on the mutual error
cancellation effect between non-local HF and MP2 and
semilocal DFA counterparts148 (see also Section 3.1).
As to the RSX-QIDH DFA performance, it gives an almost

identical behavior as PBE0-DH. They both perform similarly for
BH and NCI benchmark sets. One can note that RSX-QIDH
gives much better performance only for MGT where it yields a
MAE of 3.87 kcal/mol, what is still larger in error than the results
given by LRC-ωPBE-DH (m = 2) DFA. It is also worth
mentioning that RSX-QIDH improves over PBE-QIDH only for
PA26 and SIE4×4 subsets while its performance remains
unsatisfactory for all other benchmark sets. This is also the case
for vertical ionization potentials (VIP) calculated as an energy
difference (see G21IP results and discussion in Section 3.2.4).
What is worth noting that, for the SIE4×4 test set, LRC-

ωPBE-DH (m = 4) gives twice worse results (MAE = 1.88 kcal/
mol) than the PBE-mIDH (m = 4) counterpart, which gives here
MAE = 0.99 kcal/mol. The identical trend is observed for the m
= 3 case, whereas for m = 2, we observe the improvement of the
results (PBE-QIDH gives a MAE of 3.33 kcal/mol, whereas
LRC-ωPBE-DH givesMAE = 2.67 kcal/mol). This behavior can
be justified from the percentage of the (LR-)HF mixing with the
semilocal DFAs. Note that the SIE4×4 test set consists of H2

+,
He+, NH3

+, and H2O
+ molecules (at several points along a

dissociation curve of each of the complexes) important to study
the problem related to (many-electron) self-interacting error

Figure 2. Overall and detailed (MGT, BH, and NCI subsets) trends in
the results obtained for (top) PBE-mIDH and (bottom) LRC-ωPBE-
DH families of functionals.

Table 4. Mean Absolute Errors (in kcal/mol) of the Subsets (H-Bond, Dispersion, and Mixed Complexes) of the S22 Test

interactions MP2
PBE0-
DH

PBE-QIDH
(m = 2)

PBE0-2
(m = 3)

PBE-mIDH
(m = 4)

LRC-ωPBE-DH
(m = 2)

LRC-ωPBE-DH
(m = 3)

LRC-ωPBE-DH
(m = 4)

RSX-
QIDH

H-bond 0.44 0.54 0.35 0.38 0.42 0.41 0.28 0.35 1.18
vdW 2.49 2.99 1.38 0.28 0.43 1.66 0.53 0.33 0.74
mixed 1.05 1.08 0.41 0.12 0.25 0.57 0.19 0.18 0.23
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((ME)SIE).151−156 The PBE-mIDH family of functionals mixes
HF more upon increasing m values and shows less many-
electron self-interaction error. In other sense, more HF mixing
with DFA eliminates the delocalization error of DFAs as the HF
is more localized. Similar trends are observed for the LRC-
ωPBE-DH family of functionals. For MP2, we observe
overestimation in the case of H2O

+, indicating that the error
cancellation from DFAs and HF mixing is important for H2O

+.
However, the error of RSX-QIDH is slightly larger than that of
LRC-ωPBE-DH (m = 4).
Here, a bit of analysis of the screened functionals in terms of

the dependence on both m and ω is required from the
standpoint of performances of the LRC-ωPBE-DH family of
functionals. This can be somehow explained by analyzing Figure
1 and Table 3. From Figure 1, one can note that, with increasing
ω values, we observe the significant worsening of the results
especially visible for the BH6 set. The full MP2 method results
can be recovered by going withm→∞ andω→∞. From eq 17,
in turn, we see that, when ω→ 0, we should recover most PBE-
mIDH family of functional results. From Table 3, it is also
noticed that the main differences in the performance of SIE4× 4
comes from the different mixtures of the HF percentage, where
LRC-ωPBE-DH (m = 4) gives the least error within the LRC-
ωPBE-DH (m) family of functionals. Overall, LRC-ωPBE-DH
(m = 3) performs better within this family of methods, which
may come from the balanced treatment of the HF exchange and
MP2 correlation with semilocal parts of the functional.
3.2.2. Dissociation Curves of H2

+, He2
+, and ArKr+. In Figure

3, we show the dissociation curves of three representative test
cases where the errors of functionals are dominated by themany-
electron self-interaction problem.
The dissociation of the H2

+ molecule (upper panel) can be
considered as a paradigm in quantum chemistry,157 describing
the delocalization errors of XC functionals. This system is
composed by one electron, such that Ec = 0, and the exchange
energy compensates the Hartree energy.158 We observe that
PBE and PBE0 fail badly, showing huge delocalization errors at
large internuclear distances, due to their XC hole densities.159

The LC-ωPBE improves over PBE and PBE0 but is still
considerably worse than PBE-mIDH (m = 4) and especially
LRC-ωPBE-DH (m = 4), which is very close to the exact HF
curve. We recall that the u-metaGGA exchange functional,
which uses as an additional ingredient the Hartree potential, is
exact for this system.158

Next, we consider the dissociation curves of rare gas cation
dimers,156 the He2

+ (middle panel), and the asymmetric ArKr+

molecule (lower panel). In both cases, the PBE and PBE0 are
showing delocalization errors. On the other hand, PBE-mIDH
(m = 4) and LRC-ωPBE-DH (m = 4) are very accurate, being
close to the CCSD(T) reference, at any internuclear distance R.
Moreover, for the He2

+ molecule, the HF and even MP2 show
localization errors at largeR,157 while LRC-ωPBE-DH (m = 4) is
almost exact. We also note that for H2

+ and He2
+ molecules

LRC-ωPBE-DH (m = 4) improve significantly over the RSX-
QIDH functional (reported in Fig. 1 in ref 140).
These results, corroborating with the ones for the SIE4×4 test

shown in Table 3, prove that PBE-mIDH (m = 4) and LRC-
ωPBE-DH (m = 4) are good candidates for real and difficult
applications of quantum chemistry.
3.2.3. Correlation Potentials and Densities. In Figure 4 and

Figure 5, we report the correlation potentials of PBE-mIDH and
LRC-ωPBE-DH families of functionals, respectively, for two
representative cases, namely, Ne atom and CO molecule.

One can note that all DH DFAs reproduce quite reasonable
the physical features of reference correlation potential obtained
from the self-consistent ab initioOEP2-sc148,165 method and the
one reconstructed from CCSD(T) relaxed density (KS[CCSD-
(T)]) via a WY inverse approach.164

The differences mostly occur in the core (due to Laplacian of
the density166,167 term in GGA potentials168) and asymptotic
regions (due to the differences in the asymptotic behavior
between OEPx (−1/r) and semilocal DFAs169). The oscillation
in both regions are significantly diminished for LRC-ωPBE-DH
potentials, which are quite similar to those obtained with OEP2-

Figure 3. Dissociation curves of H2
+ (upper panel), He2

+ (middle
panel), and ArKr+ (lower panel).
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SOS170 or interaction-strength interpolation methods.171 In the
asymptotic region, this is due to the incorporation of a proper
long-range asymptotic (−1/r) behavior in the XC potential via
LR part of the EXX term. This feature has a visible impact on the
quality of VIP potentials obtained directly from the HOMO
energy (see Section 3.2.4 for more details). In the core region, in
turn, the LR EXX potential introduces small but non-vanishing
contribution,101,163 which, combined with mutual error
cancellation between exchange and correlation part of DFA,
leads to a reduction of nonphysical oscillations.
As to the accuracy of methods, one can note that with

increasing m the DFAs seem to better reproduce the reference
CCSD(T) correlation potentials. Note also that both the PBE0-
DH and RSX-QIDH vc are quite similar in shape with the m = 2
variants differing only in the asymptotic region. For the m = ∞
case, this is the MP2 method, we should obtain the potential
similar in shape to the OEP2-sc method,172 which slightly
overestimates the reference one. The opposite trend is observed
when the calculations are performed in the full KS frame-
work162,163 (see Figures S1 and S3 in the Supporting
Information147). The fully local potential affect also the
unoccupied KS orbitals what in general have a large impact on

the functional performance (see the discussion in this context in
Sec 4.1. of ref 163). The increasing percentage of EXX andMP2
leads to increasing discrepancies between the OEP DH vc and
the one obtained from CCSD(T) density. In this case, for m =
∞, we will recover the OEP-GL2 method, which, as it is
generally known,165,170,172−176 significantly overestimates cor-
relation effects. This indicates that the full KS realization of DH
functionals might lead to a quite different behavior (trends) for
systems from Table 3.
In Figures 6 and 7, we report the correlation densities, which

support the correlation potential analysis. Also here, PBE0-DH
DFA gives almost the same behavior as PBE-QIDH (m = 2)
except the core region where it exhibits larger overestimation.
This can be simply explained by the larger percentage of
exchange DFA mixed in the PBE0-DH functional. Almost the
same behavior is observed for the RSX-QIDH density (in the
case of RS hybrids), which agrees quite nicely with LRC-ωPBE-
DH (m = 2) data. With increasing m, we observe an
improvement of densities also in the core region where
nonphysical oscillations (inherited from GGA terms176) start
to be less pronounced. Thus, for m = 4, the agreement with the
reference CCSD(T) densities is much better. This analysis
somehow also confirms the findings from ref 177 where it was
shown that the accuracy of the PBE-based DH densities
increases with the amount of EXX and MP2 terms included in
the functional (PBE0-DH > PBE-QIDH > PBE0-2 > PBE-

Figure 4. Correlation potentials of the Ne (uncontracted ROOS-
ATZP160) atom and CO molecule (uncontracted cc-pVTZ,149 R0 =
1.128Å) for various PBE-mIDH methods (m = 2 (PBE-QIDX), m = 3
(PBE0-2), and m = 4) obtained using a one-step scheme via the
optimized effective potential (OEP) method from refs 161−163. The
reference KS[CCSD(T)] has been obtained using a method from ref
164 using the same computational setup.

Figure 5. Similar as in Figure 4, but for the LRC-ωPBE-DH (m = 2,3,4)
family of functionals.
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mIDH (m = 4)). As previously, the full self-consisted KS
densities (see Figs. S2 and S4 in ref 147) lead to an opposite
trend, and thus the better agreement with reference is obtained
for m = 2. The larger the m, the bigger contribution comes from
the GL2 term, which leads to an overestimation of correlation
effects. This might indicate that DH functionals can benefit from
the utilization of orbitals obtained within the GKS framework.
3.2.4. Ionization Potentials. In Figure 8, we report the mean

absolute relative errors (MARE) for VIP calculated in two
manners: (i) using total energies of neutral and ionic species VIP
= E(N) − E(N − 1); (ii) as VIP = − εHOMO what is directly
related with the quality of the XC potential148,169−171,176,178 (see
Section 5 for more details). We note that, for exact DFT
calculations, the two computed quantities should be identical.
Let us first turn our attention to the results obtained as energy

differences. In this case, all the methods perform quite similarly,
givingMAREs in the range of 1.19%−2.77%. The best results are
obtained by the PBE-QIDH (m = 2) functional with a MARE of
1.19%, closely followed by the OEP2-sc method (MARE =
1.27%). Surprisingly, the RSX-QIDH functional gives here
slightly worse performance with a MARE of 1.62% (see also the
G21IP results in Table. 2). The worst VIP is provided by PBE0-
DH (MARE of 2.77%)DFA.With increasing ofm parameter, we

also observe an increase in MARE for both families of
functionals, which for m = ∞ should reach the MP2 results,
which display a MARE of 2.1%.
Now let us focus on the VIPs obtained from the opposite of

the energy of HOMO. Here, the worst performance is provided
by PBE0-DH (MARE = 13.31%) followed by PBE-QIDH,
which yields a MARE of 9.13%. These two functionals actually
exhibit the worse correlation (and thus XC) potentials reported
in Section 3.2.3. As previously, the increase in EXX and MP2
terms leads to the improvement of VIP. For PBE-mIDH (m = 4),

Figure 6. Correlation densities, Δρc = ρmethod − ρEXX, of the Ne atom
(uncontracted ROOS-ATZP160) and CO molecule (uncontracted cc-
pVTZ,149 R0 = 1.128Å) for various PBE-mIDH methods (m = 2 (PBE-
QIDX), m = 3 (PBE0-2), and m = 4). The reference CCSD(T)
correlation density was calculated with respect to HF density as Δρc =
ρCCSD(T) − ρHF using the same computational setup.

Figure 7. Similar as in Figure 6, but for the LRC-ωPBE-DH (m = 2,3,4)
family of functionals.

Figure 8. Mean absolute relative errors (MAREs) calculated with
respect to CCSD(T), computed with different methods for the vertical
ionization potentials of several atoms and molecules. The systems are
listed in Table S1 of ref 148. The MP2 and OEP2-sc results are taken
from ref 148.
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we get a MARE of 5.6%, which is about 0.9−1.0% off the MP2
(m = ∞) and OEP2-sc results. These predictions are still quite
bad with respect to other second-order approaches such as the
OEP2-SOSc179 method, which for the same VIP set yields a
MARE of 1.03% (similar to the state-of-art IP-EOM-
CCSD180,181 method, which gives here a MARE of 1.07%).
In the case of RS DH functionals, we observe a drastic

improvement in the quality of HOMO energies. Already form =
2, the inclusion of the LR EXX term reduced the MARE to
3.18%. Surprisingly, form = 4, we get aMARE of 1.84%, which is
identical with MARE calculated for VIP from energy differences
(MAEs in this cases are 0.26 and 0.23 eV for −εHOMO and E(N)
− E(N-1), respectively). This indicates the good quality of both
the XC potentials and total energies obtained with these DFAs.
Similar to LRC-ωPBE-DH (m = 4) DFA, the RSX-QIDH
HOMO energies agree quite nicely with VIP calculated as
energy differences, giving here a MARE of 1.86%. This can be
justified by the optimization/proper selection of the ω
parameter in RSX-QIDH DFA, which, as recently shown,143 is
almost equivalent to optical tuning.142

4. CONCLUSIONS

We have introduced a generalized theory of the DH density
functional using the AC formalism and higher-order many-body
perturbation theory. The flavors of the present construction are
quite physical and allow one to construct mH functionals of any
order. We have shown that the present generalization recovers
already existing DFA, namely, the PBE-QIDH and PBE0-2
functionals for certain choices of the parameter m.
Based on the here developed theory, generalized PBE-mIDH

and long-range corrected DH functionals have been inves-
tigated. These functionals are applied to well-known molecular
test cases, and their performances showed an improvement in
many cases compared to other DH functionals. In particular, it
has been shown that the constructed PBE-mIDH and long-range
DH (mixing a larger amount of HF and MP2 terms with
increasing value of m parameter) may offer a guiding tool in
other areas where mitigating self-interaction error is important.
The constructed functionals may also be attractive from the
standpoint of application in time-dependent density functional
theory.
As the final reflection, the inclusion of HOT of themany-body

perturbation theory such as GL3/MP3 and GL4/MP4 leads in
general to the improvement of the results, seen in the here
investigated total, atomization, and binding energies. However,
the substantial computational cost does not allow us to construct
a usable functional with the higher perturbation terms such as
triple and quadruple hybrids. Those can be considered in the
future development of functional construction.

5. COMPUTATIONAL DETAILS

For molecular properties we consider selection of well-defined
test sets from the Minnesota 2.0 and GMTKN55.182 The test
sets are divided into three subsets, namely, main group
thermochemistry (MGT), barrier heights (BH), and non-
covalent interactions (NCI). For the thermochemistry test set,
we consider the following: (1) AE6, atomization energies of 6
molecules;144,146 (2) G2/148, atomization energies of 148
molecules;183 (3) G21EA, 25 electron affinities;182,184 (4)
G21IP, 36 ionization potentials;182,184 (5) PA26, 26 proton
affinities;185−187 (6) BH76RC, 30 reaction energies of the BH76
test;182 and (7) SIE4×4, 16 single-point self-interaction

correction problems.182 For barrier heights, we consider the
following: (1) BH6, 6 barrier heights;144 (2) HTBH38, 38
hydrogen barrier heights;144 and (3) NHTBH38, 38 non-
hydrogen barrier heights.188 For the non-covalent interaction
test set, we consider the following: (1) HB6, 6 hydrogen bond
test set;189 (2) DI6, 6 dipole interactions;189 (3) CT7, 7 charge
transfer molecules;189 (4) PPS5, 5 π−π stacking molecules; (5)
WI7, 7 weak interaction complexes, bound by dispersion-like
interactions;189 and (6) S22, 22 non-covalent interaction
molecules including H-bond, dispersion interactions, and
mixed bonds.190,191 We underline that the here considered
test sets represent the overall important chemical properties.
Further, we also consider the dissociation energies of H2

+, He2
+,

and ArKr+ to assess the functional performance. The
calculations of all the functionals are performed using the
developed version of the Q-CHEM code192 except the RSX-
QIDH functional calculations, which are done in the NWChem
package.193 The def2-QZVP basis set is used for our present
calculations, except for the G21EA test set, for which the def2-
QZVPD basis set is used. All quantities in this part have been
calculated without counterpoise (CP) corrections for the basis
set superposition error (BSSE).
Additionally, to assess the accuracy of PBE-mIDH and LRC-

ωPBE-DH (m = 2,3,4) family of functionals, we have considered
several test cases:

• in Section 3.1, we investigate the impact of higher-order
terms (HOT) in eqs 15 and 17 onto the quality of results.
In this respect, we define the triple-hybrid (TH) (m = 3,
including GL2 and GL3 correlation contributions) and
quadruple-hybrid (QH) (m = 4, including GL2, GL3, and
GL4 correlation contributions) functionals. In the
assessment, we have examined the total energies of
several atoms and molecules,150 interaction energies of a
small set of non-covalently bondedmolecules from150 and
atomization energies of AE6144 benchmark set. This is
mostly dictated by the substantial computational cost of
the inclusion of GL3 and GL4 terms.
We remark that, because for the HF reference state, the

Taylor series around λ = 0 has almost the same small-λ
expansion134 expressed throughout MPk terms; usually in
the construction of DH DFAs, one utilized an MP2-like
correlation energy expression (the same expression as for
the HF theory, but with KS reference orbitals and orbital
energies). This is further justified by the small
contribution coming from the single excited term (i.e.,
the last term of eq 9) in the GL2 energy expression.170

Higher-order GLk energy contribution differ much more
from MPk ones (evaluated on the same KS reference
state), mostly due to non-vanishing off-diagonal con-
tributions in H0 (see ref 181 and ref 133 for the
diagrammatic representation of third- and fourth-order
energy terms). Nevertheless, the dominant energy
contribution comes from the MPk-like formula. This is
especially valid in our generalized formalism where the
HF EXX energy enters the XC expression with at least
66% (HF dominant) contribution. Taking into account
that the DH is generally treated within the GKS
framework, we expect that the difference between GLn
and MPn terms should be rather small. Thus, in the
current study, we approximate GL2 and higher-order GLk
terms by their MPk counterparts, namely, GL2 ≈ MP2,
GL3 ≈ MP3, GL4 ≈ MP4, etc.
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The calculations in Section 3.1 have been carried out
within the GKS framework using the NWChem pack-
age.193 All interaction energies have been calculated with
counterpoise (CP) corrections to remove the basis set
superposition error (BSSE).

• using the formalism developed in refs 162. and 163 we
have computed the correlation potentials for the Ne atom
and CO molecule (see Section 3.2.3). Due to the explicit
orbital dependence of EXX and GL2 energy terms, the
corresponding correlation potential (vc(r) = δEc [ρ]/
δρ(r)) was computed using the optimized effective
potential (OEP) formalism in a post-SCF fashion for
fixed reference orbitals, orbital energies, and densities
coming from generalized KS (GKS)194,195 calculations in
a one-step procedure.161 Because eqs 15 and 17, mix
semilocal DFAs with WFT energy expressions, in the
following, we define the DH correlation functionals as

= −E E Ec xc x
EXX

(19)

We note that a similar approach was already
successfully used in several studies161,171,178,196−198 to
investigate the most relevant features of functional
derivatives. As shown in ref 161, the behavior of
correlation potential depends on the reference orbitals
utilized in a one-step procedure. Therefore, the
correlation potentials might be considered as a first
indicator of the quality of GKS orbitals and densities.
Additionally, for comparison, in ref 147, we report the full
self-consisted OEP correlation potentials obtained using
the formalism developed in ref 162 and taking into
account all functional derivative terms. Likewise, in our
previous studies,148,168,170,171,179 in order to solve the
OEP equations, we have employed the finite-basis set
procedure from refs 199 and 200.
In the same section, we report correlation den-

sities170,172,176,201,202 defined as

ρ ρ ρΔ = −c
method xref

where ρxref is the density obtained for the exact exchange
only (OEPx)200,203 (xref = EXX) and HF (xref = HF)
calculations for DFT and conventional WFT methods,
respectively. We underline, however, that for all
investigated cases, the difference between HF and EXX
densities is very small (see, e.g., Fig. S4 in ref 169); thus,
the mutual comparison is consistent. In the case of DH
DFAs, the ρmethodwas obtained as follows. As one knows in
the DH GKS scheme, the KS equations are solved with
disregarded vc

MP2 contribution. This means that the self-
consistent density does not take into account the orbital
relaxation due to this missing correlation term. However,
using the converged GKS orbitals, we can include the
missing contribution describing this effect. The re-scaled
MP2 part204 can be obtained in a post-SCF fashion from
the relaxed MP2 density matrices205−207 constructed
using the Lagrangian approach.208−210 In principle, the
corrected DH density (ρmethod) should allow to generate
via one of the inverse methods (e.g., the WY method164)
the same correlation potentials as the one obtained via the
one-step procedure. We note that a similar strategy is
adopted within the orbital-optimized DH frame-
work211,212 or EKT-DH213 method to include the effect

of missing second-order contribution. As previously, the
full self-consistent OEP results are reported in ref 147.
To compare our results, we have utilized the CCSD(T)

correlation densities obtained from the relaxed density
matrices205−207 constructed using the Lagrangian ap-
proach.208−210 The reference correlation potential have
been obtained using the method from ref 164 taking as a
starting point the relaxed CCSD(T) densities. All
calculations have been carried out with a locally modified
version of the ACES II214 program. The Ne and COOEP
calculations have been performed in fully uncontracted
ROOS-ATZP160 and cc-pVTZ149 basis sets, respectively.
For more technical details, we refer the reader to refs 170
and 172.

• as in ref 148, we have obtained the vertical ionization
potentials (VIP)179 for several atoms and molecules
computed in two manners: (i) as the energy difference
between the neutral and the ionic species215 (VIP = E(N)
− E(N − 1)); (ii) the opposite of energy of the highest
occupied molecular orbital (HOMO) (VIP = − εHOMO).
In the case of DH, the HOMO energies are calculated as
in refs148, 162, and 163, where the second-order self-
energy correction133 is calculated in a post-SCF fashion
on top of GKS DH orbitals (likewise for HF
orbitals215,216). Like in ref 148, we did not take into
account the additional orbital relaxation term due to the
second-order correlation; however, as pointed out in ref
217, this contribution should be rather small. The
computational setup, namely, basis sets and molecular
geometries are identical as in ref 179 (for more details, see
Section 3.2.4). The calculations have been performed
with a locally modified version of PSI4 quantum
chemistry packages.218
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(163) Śmiga, S.; Grabowski, I.; Witkowski, M.;Mussard, B.; Toulouse,
J. Self-Consistent Range-Separated Density-Functional Theory with
Second-Order Perturbative Correction via the Optimized-Effective-
Potential Method. J. Chem. Theory Comput. 2020, 16, 211−223.
(164) Wu, Q.; Yang, W. A direct optimization method for calculating
density functionals and exchange?correlation potentials from electron
densities. J. Chem. Phys. 2003, 118, 2498−2509.
(165) Bartlett, R. J.; Grabowski, I.; Hirata, S.; Ivanov, S. The exchange-
correlation potential in ab initio density functional theory. J. Chem.
Phys. 2005, 122, No. 034104.
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