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Abstract. Molecular gene-expression datasets consist of samples with
tens of thousands of measured quantities (e.g., high dimensional data).
However, there exist lower-dimensional representations that retain the
useful information. We present a novel algorithm for such dimensionality
reduction called Pathway Activity Score Learning (PASL). The major
novelty of PASL is that the constructed features directly correspond to
known molecular pathways and can be interpreted as pathway activity
scores. Hence, unlike PCA and similar methods, PASL’s latent space
has a relatively straight-forward biological interpretation. As a use-case,
PASL is applied on two collections of breast cancer and leukemia gene
expression datasets. We show that PASL does retain the predictive infor-
mation for disease classification on new, unseen datasets, as well as out-
performing PLIER, a recently proposed competitive method. We also
show that differential activation pathway analysis provides complemen-
tary information to standard gene set enrichment analysis. The code is
available at https://github.com/mensxmachina/PASL.

Keywords: Pathway activity · Dimensionality reduction · Disease
classification · Differential activation analysis

1 Introduction

Molecular data, such as gene expressions, are often very high dimensional, mea-
suring tens of thousands molecular quantities. For example, the Affymetrix
micro-array platform GPL570 for humans measures the expressions of 54675
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probe-sets, corresponding to all known human genes. As such, visually inspect-
ing the data, understanding the multivariate gene correlations, and biologically
interpreting the measurements is challenging. To address this problem, several
methods have appeared that reduce the dimensionality of the data. Dimension-
ality reduction (a.k.a. latent representation learning) constructs new dimensions
(features, quantities, variables). The purpose is to reduce the number of features
making them amenable to inspection while maintaining all “useful” informa-
tion. For example, consider the representation of music. The raw data (original
measured quantities) correspond to the sound spectrum which is visually incom-
prehensible to humans. However, music at each time-point can be represented
as a sum of prototypical states (notes) and musical scores, which are much more
intuitive. Similarly, we can ask the questions: Are there prototypical cell states
whose sum can represent any cell state (e.g., gene expression profile)? What are
the “notes” of biology? How can we learn such representations automatically?

Numerous dimensionality reduction techniques have been proposed. Some of
the most prevalent ones are arguably the PCA, Kernel PCA [15], t-SNE [11],
and Neural Network autoencoders. All of these methods learn a lower dimen-
sional space (latent space) of newly constructed features and represent the data
as a linear combination of those. The projection aims to retain the data variance
and exhibit a low data reconstruction error. However, the data representation
in the new feature space is biologically unintepretable. To improve interpretabil-
ity other methods introduce sparsity to the latent space in the sense that new
features are constructed as linear combinations of only a few of the original
molecular quantities. Such methods are the Sparse PCA [20] and sparse vari-
ants of Non-negative Matrix Factorization [10] for molecular data [4,6]). The
new constructed features are sometimes called meta-genes [3]. Any clustering
method could also be defined as creating meta-genes and new features. How-
ever, the meta-genes are still hard to interpret biologically as they do not directly
correspond to the known biological pathways or other known gene sets.

In this work, we develop a novel method for unsupervised feature construction
and dimensionality reduction based on the availability of prior knowledge, called
Pathway Activity Score Learning or PASL. PASL aims at a trade-off between
biological interpretability, and computational performance. PASL accepts as
input a collection of predefined sets of genes, hereafter called genesets, such
as molecular pathways or gene ontology groups. It has two phases, the inference
phase and the discovery phase. During the inference phase, PASL constructs
new features that are constrained to directly correspond to the avail-
able genesets. The new features could be thought as activity scores of the
corresponding genesets. The inference phase ends when it has captured as much
information as possible (maximum explained variance) given only the provided
genesets. However, a large percentage of the measured quantities is not mapped
to any known genesets. In the discovery phase, PASL constructs features that
are not constrained to correspond to the given genesets trying to capture the
remaining information (variance) in the data.
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We evaluate PASL in two sets of computational experiments. (a) We use
two collections of real micro-array gene expression datasets, one for Breast Can-
cer and one for Leukemia. It is shown that PASL learns latent representations
that allow it to perform predictive modeling based on the novel features. The
computational experiments are performed on test datasets never seen by PASL
during feature construction. Predictive modeling uses an AutoML platform for
molecular data called Just Add Data Bio or JADBIO [17] that searches thou-
sands of machine learning pipelines to identify the optimally predictive one and
estimates the out-of-sample predictive performance of the final model in a con-
servative fashion. Analysis in the new feature space is orders of magnitude faster
than the one performed using the original feature space. In addition, the result-
ing predictive models are on par and often outperform the ones constructed
using the original molecular quantities. PASL is compared against PLIER [12],
arguably the algorithm closer in spirit to PASL. PASL outperforms PLIER in
terms of predictive performance.

In the second set of computational experiments, (b) we show that PASL’s
constructed features can complement standard gene set enrichment analysis
(GSEA). Specifically, the geneset activity scores output by PASL can be
employed to perform differential activation analysis (DAA) and identify the
genesets that behave differently between two different classes (e.g., cases vs con-
trols, or treatment vs controls). Conceptually, this is equivalent to gene differen-
tial expression analysis that identifies genes whose expression behaves differently
in two classes. Our experiments indicate that DAA complements GSEA: it can
identify genesets that are not identified by GSEA as statistically significant.
Moreover, DAA has larger statistical power than GSEA and, in general, it iden-
tifies the affected genesets with lower p-values than GSEA.

2 Pathway Activity Score Learning Algorithm

2.1 Preliminaries

The PASL algorithm accepts as input two 2D matrices X and G. Matrix X ∈
IRn×p contains the molecular measurements, where n is the number of samples
and p the number of features. Typically n � p. For micro-array gene expression
data, the rows of X correspond to molecular profiles while the columns to the
gene expressions of the probe-sets. Hereafter, we will refer to probe-sets as genes
for simplicity, unless otherwise noted; however, the reader is warned that there is
not a one-to-one correspondence between probe-sets and genes. PASL also accepts
a gene membership matrix G ∈ {0, 1}g×p with g being the number of predefined
groups of genes. Each row of G, denoted by gi for the i-th row, corresponds to
a molecular pathway, gene ontology set, or any other predefined gene collection
of interest called geneset hereafter. We set Gij = 1 if gene j belongs to the i-th
geneset, and 0 otherwise.

PASL assumes the data X can be decomposed as: X = L · D + σI , where
D ∈ IRa×p is a sparse matrix. In other words, each molecular profile at row j of
X is a linear combination of rows of D with coefficients in the jth row of L with an
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isotropic noise added to it. D is called the dictionary and its rows the dictionary
atoms, denoted withdi. Given training data X, PASL outputs the two matrices D
and L. D is the concatenation of two sub-dictionaries D1 and D2 (D = [D1;D2])
with dimensions a1 × p and a2 × p, respectively (hence, a = a1 + a2). D1 is a
dictionary where each atom di is constrained to correspond to only one geneset of
the matrix G, in the sense that the non-zero elements of di correspond to the genes
in the particular geneset. Thus, D1 is the part of the dictionary that is biological
interpretable. D2 is just a sparse dictionary meant to explain the remaining vari-
ance of the data and suggest the existence of yet-to-be-discovered genesets. D1 is
the outcome of the first phase of PASL, called inference phase, while D2 is the
outcome of the second phase, called the discovery phase. L ∈ IRn×a is the rep-
resentation of the data in the latent feature space (PASL scores). It provides the
optimal projection of X on the row space of D and it is computed by minimizing
the Frobenius norm between X and L · D.

2.2 Inference Phase

One approach to extract the genesets with the highest variance in the dataset
is to restrict the data matrix to the features that correspond to a pathway,
estimate the first principal component, repeat the same for all pathways and then
keep the principal component with the highest variance (dynamic approach). We
mathematically formulate this problem as

i∗ = arg max
i=1,...,g

max
d∈IR||gi||0

||X(:,gi)d||22 (1)

where X(:,gi) denotes the data matrix restricted by the i-th geneset. Then, we
add the i∗ principal component to the dictionary, remove its contribution from
the dataset and repeat the same procedure until a pre-specified criterion is met.
The described algorithm is guaranteed to return an ordered dictionary whose
atoms have the highest variance. Nevertheless, it can be prohibitively expensive
in terms of computational cost since at each iteration it computes thousands
of principal components that are discarded. In order to remedy the computa-
tional burden, one solution could be to pre-compute the principal components
for all restricted-to-the-pathways data matrices, then, order them and keep the
principal components with the highest variance (static approach). Despite being
relatively computationally efficient, this approach does not necessarily lead to an
optimal solution. Specifically, the ordering of the genesets is fixed, but at each
iteration the data matrix changes because the contribution of each new atom is
removed from it. This might affect the actual ordering of the variance, hence the
optimality of the solution.
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Algorithm 1 Pathway Activity Score Learning
Input:Data Xn×p, Geneset Matrix Gg×p

Output:Dictionary Da×p, Representation of data in D: Ln×a

1: //Inference Phase

2: Xz ← zscore(X)
3: X ← Xz

4: i ← 1, i′ ← 1 //i: running geneset index, i′: atom counter

5: [iḠ, vḠ] ← OrderOfGenesets(X,G) //vḠ : pre-computed variance

6: Ḡ ← G(iḠ, :) //Ḡ: ordered geneset matrix

7: while i′ ≤ a1 do
8: Xr ← X(:, ḡi)
9: [dr, vr] ← pca(Xr, #pc = 1) //vr : current variance

10: if vr
vḠ(i)

≤ t then //how close is vr to vḠ(i)

11: [iḠ, vḠ] ← OrderOfGenesets(X,G)
12: Ḡ ← G(iḠ, :)
13: i ← 1 //Reset counter

14: Xr ← X(:, ḡi)
15: [dr, vr] ← pca(Xr,#pc = 1)
16: end if
17: D1 ← [D1; expand(dr;gi)] //Insert the new atom in D1

18: X ← X I − D1(i,gi)TD1(i,gi)
)

//Remove the contribution

19: vz ← ||Xz(I − D+
1 D1)||2F / ||Xz||2F

20: if |vz − vz−1| < tol then break end if
21: i ← i+ 1, i′ ← i′ + 1
22: end while
23: //Discovery Phase

24: Xz ← zscore(X)
25: D2 ← spca(Xz, #pc = a2, #nz = m) //a2 = a − i′

26: D ← [D1;D2]
27: L ← XzD

+

28: return D, L

29: function OrderOfGenesets(X,G)
30: vG ← ∅, iG ← ∅
31: for i ← 1 to g do
32: Xr ← X(:,gi)
33: [∼, vr] ← pca Xr, #pc = min(n, ||gi||0)

)

34: vG ←
[
vG; λ·vr

(||gi||λ0 −1)

]
//Box-Cox normalization

35: iG ← [iG|i|...|i] //Insert min(n, ||gi||0) elements

36: end for
37: [vḠ, j] ← sort(vG)
38: iḠ ← iG(j)
39: return iḠ, vḠ //ordered genesets ids and their corresponding variance

40: end function

The inference phase of PASL shown in Algorithm 1 (lines 1–22 and 29–40)
balances between the dynamic and the static approach. As in the static app-
roach, it computes the ordering of the principal components’ variance (lines 5
and 29–40) and iteratively select the atoms based on this ordering (while loop;
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lines 7–22). The difference between PASL and the static approach is that PASL
checks how close is the current variance from the expected pre-computed vari-
ance (line 10). If the relative change is below a threshold then PASL recomputes
the ordering of the principal components’ variance (lines 11–15). The hyper-
parameter t, which takes values between [0, 1], controls how often the variance
reordering is performed henceforth the proximity to optimality. The higher the
value of t the more often the evaluation of the ordering is happening thus more
accurate the dictionary in terms of explained variance is on the cost of being
computationally more expensive.The stopping criterion asserts that the inference
phase of PASL stops when there is no further decrease in the relative reconstruc-
tion error (i.e., the variance of the normalized residual error) (line 20). Finally,
we remark that the variance values are normalized before they are ordered (line
34). This is absolutely necessary due to the wide variation of the number of
genes in each geneset which varies from few dozens to few thousands of genes.
We choose as normalization method the Box-Cox transformation on the number
of genes and optimize over its hyper-parameter λ.

2.3 Discovery Phase

After the inference phase where we extracted as much as possible variance from
prior knowledge, we will distill the remaining variance of the data without restric-
tions on the location of the non-zero elements of the dictionary atoms using
a sparse –hence, interpretable– dimensionality reduction technique aiming to
reveal new potential pathways which were previously unknown. Based on its
generality, efficiency and speed, we employ in our experiments Sparse Principal
Component Analysis (SPCA) [20] (line 25 in Algorithm 1). We note though that
any sparse dimensionality reduction technique can be utilized. SPCA applies
both l1 and l2 penalties in order to regularize and enforce sparsity.

However, we do not tune the respective hyper-parameters, instead, we require
the SPCA algorithm to return a fixed number of non-zero elements per atom.
We denote this number with m and we set it to 2000 in our experiments.

2.4 Selection of the Hyper-Parameters’ Value

Effect of t on the explained variance and the execution time. The most
time-consuming part of PASL is the execution of the function OrderOfGenesets
in Algorithm 1 due to the large number of PCA calculations (one for each gene-
set). Hyper-parameter t controls how often the function OrderOfGenesets will
be called. When t = 1 then it is called at every iteration while it is called once
at the beginning and never again when t = 0. In order to determine the optimal
value for t, we perform an experiment with a merged collection of microarray
datasets where the total number of samples is n = 4235, the number of genes
p = 54675 and a fixed number of atoms a1 = 200. Figure 1(a) demonstrates the
explained variance as a function of the execution time for different values of t.
Based on this plot, we set t to be equal to 0.9 (cyan star symbol in Fig. 1(a)).
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Fig. 1. (a) The explained variance (y-axis) as a function of the execution time (x-axis)
is shown for different values of t. For 0.4 ≤ t ≤ 0.9, the execution time is reduced by
a percentage between 65% and 85% with minimal impact on the explained variance.
(b) The simulated dictionary (ground truth; left bar) consists of equally distributed
pathways with 30, 50, 100, 200 genes. The middle bar shows the distribution of selected
pathways when PASL is applied without normalization while the right bar shows the
selected pathways when Box-Cox normalization is applied with λ = 1/3. Apparently,
the normalization of the variance is necessary for PASL in order to avoid being biased
towards selecting genesets with a larger number of genes.

Box-Cox Normalization of the Variance. The number of genes, i.e., the
number of non-zero elements in each row of the geneset matrix G, varies from
few dozens to several thousands making the geneset ordering based on variance
susceptible to such variations. Indeed, we experimentally observe that genesets
with more genes tend to be selected frequently while genesets with a low number
of genes were rarely selected (see also the middle plot of Fig. 1(b)). Therefore,
it is essential to normalize the variance of each geneset relative to the number
of genes it contains. We propose to normalize the variance using the Box-Cox
transformation [2] on the number of genes (i.e., on ‖gi‖0) which is given by

y′ =

{
(yλ − 1)/λ if λ �= 0

log(y) if λ = 0
(2)

where λ is a tunable hyper-parameter which controls the power scaling on y.
The value of λ is determined by a targeted experiment using simulated data

which are generated using genesets with both small and large numbers of genes.
Simulated data are generated by first creating the prior information matrix G
consisting of equally distributed genesets with specific number of genes. Then, we
construct a dictionary using randomly selected genesets which are also equally
distributed. Specifically, we create n = 400 samples with p = 500 features while
the numbers of genes per geneset take the values 30, 50, 100, 200.

After extensive tests with different values of Box-Cox transformation hyper-
parameter, we set λ = 1/3. The geneset selection results obtained with PASL
are presented in Fig. 1(b). Evidently, the use of Box-Cox transformation with
λ = 1/3 (right bar) produced results similar to the ground truth (left bar) while
PASL without normalization failed to correctly infer the true dictionary (middle
bar).
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3 PASL Evaluation on Real Gene Expression Data

Dataset Collections. For our experiments we downloaded microarray datasets
available in the Biodataome database [9]. Specifically, we downloaded all the
available Breast cancer and Leukemia datasets as of May 2020 measured with
the Affymetrix Human Genome U133 Plus 2.0 - GPL570 platform, each having at
least 20 samples. The datasets form the Breast Cancer collection and Leukemia
collection. For each collection we select 80% of the datasets to pool together
and use them as training data. PASL and PLIER dimensionality reduction algo-
rithms are applied on this training set to learn a dictionary matrix D of atoms
(Fig. 2(a)). The remaining 20% of the available datasets are employed as test
dataset and are not seen by neither PASL or PLIER during training. The selec-
tion of datasets used for the train or the test set is random, with the restriction
that test datasets have to be accompanied by a discrete outcome (phenotype)
for each sample, e.g., disease or mutation status or multiple phenotypes related
to the diseases (e.g. rapid/slow early responder). The outcome is either binary
or multiclass. The training set for the Breast cancer and the Leukemia collection
contains 4200 and 5600 unique gene-expression profiles respectively.

Provided Genesets. In all experiments with real data, the gene membership
matrix G includes 1974 pathways found in KEGG [7], Reactome [5] and Biocarta
[14] which were downloaded from Molecular Signatures Database (MSigDB) of
the Broad Institute [16].

Constructing a Latent Feature Space with PASL and PLIER. Applied
to a training dataset Xtrain, PASL learns a transformation to a new feature
space given data Xtrain and a geneset matrix G. Subsequently, PASL learns a
dictionary D and scores Ltrain such that X ′

train ≈ Ltrain ·D. Each atom (row) in
D corresponds to only one geneset in G or a newly discovered geneset (Fig. 2(a)).
To apply the transformation to new test data Xtest one projects them to the
row space of D by computing Ltest = Xtest · D+ (Fig. 2(b)). An important
detail is that both train and test data are first standardized using the means
and standard deviations of the training data; thus, the transformation does not
require to estimate any quantity from the test data. This is important to avoid
information when evaluating predictive performance on the transformed data.

We comparatively evaluate PASL against a recently introduced algorithm
called PLIER [12]. Like PASL, PLIER learns a latent feature space that corre-
sponds to known genesets. PLIER also accepts as input data X and a geneset
matrix G. Similarly to PASL, it returns the scores L and the dictionary D,
such that X ≈ L · D. PLIER accepts several hyper-parameters. The maxpath
hyper-parameter indicates how many genesets an atom of D is supposed to cor-
respond to. We set maxpath = 1 requesting that each atom in D corresponds
to one and only geneset, so that the output is comparable to PASL. Unfortu-
nately, PLIER treats maxpath as indicative; atoms in D may correspond to the
union of several genesets, even when maxpath = 1. In that sense, the atoms in D
are not as easy to interpret as the ones returned by PASL. PLIER also ignores
genesets with fewer features than minGenes. We set minGenes = 1 so that no
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Fig. 2. Experimental Setup. For the construction of the latent feature space, the meth-
ods are trained on a collection of gene expression datasets. The evaluation is performed
on new unseen test datasets, where the recostruction ability, predictive performance
and the significance of the pathways of the latent feature space are examined.

genesets are ignored. Finally, we note that in PLIER the scores L are computed
as X · DT · (DDT + λ2I)−1, where λ2 is a parameter learned by the algorithm.

The atoms of PLIER are not as sparse as the ones output by PASL. For
example, for the Breast Cancer collection analysis, the mean number of non-
zero coefficients in each atom of PLIER is 25833 (almost half of the original
feature size), while for PASL it is 1329. For the same number of atoms, PLIER
uses more degrees of freedom (non-zero coefficients) to find a suitable transfor-
mation to a latent space. For a fair comparison in the subsequent experiments,
we impose the restriction that the learned dictionaries DPLIER and DPASL have
approximately the same number of non-zero elements. To this end, we first run
PLIER allowing it to construct a large number of atoms and estimate the num-
ber of atoms a required to reach approximately the same number of non-zeros
as PASL. Then, we re-run PLIER constrained to produce only a atoms. Specifi-
cally, when PASL is restricted to 500 atoms, its dictionary contains 664695 and
700020 non-zeros for the Breast Cancer and the Leukemia collections, respec-
tively. PLIER is limited to 29 and 30 atoms instead, producing dictionaries with
699976 and 782114 non-zeros, respectively.

3.1 Predictive Performance in Latent Feature Space

This set of experiments examines the following research question: does the trans-
formation to the latent feature space capture all important information, defined as
the information required to classify to typical outcomes (phenotypes) such as the
disease state. To this end, we employ predictive modeling on the test datasets
and estimate the predictive performance of the best identified model. Each test
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Fig. 3. (a), (b) Mean AUC of Breast Cancer and Leukemia test datasets Lower row:
Out-of-sample probability of selected results of (c) The best visualization for PASL
vs Original, (d) The best visualization for PASL vs PLIER (The outcome stands for
the mutation status of immunoglobulin heavy chain (IGHV) gene) and (e) The best
visualization for PLIER vs PASL.

dataset’s outcome leads to binary or multiclass classification tasks. For the clas-
sification, we employ an automated machine learning architecture (AutoML),
called JADBIO (Just Add Data Bio, www.jadbio.com), version 1.1.21. JADBIO
has been developed specifically for small-sample, high-dimensional data, such as
multi-omics data. The use of JADBIO is meant to ensure that (a) out-of-sample
AUC estimates are accurate, and (b) performance does not depend on a single
classifier tried with just the default hyper-parameters. Instead, for classifica-
tion, JADBIO uses the SES feature selection algorithm [8], combined with ridge
logistic regression, decision trees, random forests, and SVMs for modelling. It
automatically tunes the hyper-parameters of the algorithms, trying thousands of
combinations of algorithms and hyper-parameters. It estimates the performance
of the final winning model produced by the best configuration (pipeline of algo-
rithms and hyper-parameter values) using the BBC-CV protocol [19]. The latter
is a version of cross-validation that adjusts the estimate of performance of the
winning configuration for multiple tries to provide conservative AUC estimates.
A detailed description of the platform along with a massive evaluation on hun-
dreds of omics datasets is included in [17]. JADBIO has produced novel scientific
results in nanomaterial prediction [18], suicide prediction [1] and others.

We performed classification analysis using JADBIO on 13 and 15 test datasets
for Breast Cancer and Leukemia, respectively. The analysis uses the original
feature space, as well as the PLIER and PASL feature spaces, for different
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Table 1. AUC of the test datasets for PASL, PLIER and Original space (initial test
datasets). PASL and PLIER are tested for approximately equal number of non-zero
entries in the dictionary matrix. For Breast cancer data PASL’s latent space consists
of 500 dimensions-664695 non-zeros. PLIER’s latent space consists of 29 dimensions
of 699976 non-zeros. For Leukemia, PASL’s latent space consists of 500 dimensions of
700020 non-zeros. PLIER’s latent space consists of 30 dimensions of 782114 non-zeros.

Breast Cancer Leukemia

Data ID PASL PLIER Original Data ID PASL PLIER Original

54002 0.999 1 0.995 15434 0.985 0.747 0.987

5460 0.952 0.958 0.96 14924 0.996 0.987 0.91

36771 0.935 0.933 0.963 23025 0.762 0.766 0.741

66161 0.664 0.486 0.579 21029 0.95 0.694 0.966

76124 0.976 0.98 0.97 28654 0.767 0.616 0.762

66159 0.759 0.506 0.776 14671 0.59 0.674 0.625

66305 0.513 0.569 0.535 7440 0.73 0.52 0.736

10780 0.976 0.995 0.962 66006 0.926 0.792 0.952

27562 0.835 0.776 0.914 28460 0.719 0.542 0.697

27830 0.725 0.671 0.759 26713 0.998 0.997 0.952

36769 0.953 0.963 0.96 31048 0.984 0.981 0.99

29431 0.997 0.982 0.991 39411 0.997 0.956 0.985

42568 0.991 0.975 0.927 49695 1 0.612 0.998

50006 0.979 0.994 0.983

61804 0.823 0.744 0.869

Mean 0.8673 0.830 0.868 Mean 0.8804 0.7748 0.876

Median 0.952 0.958 0.96 Median 0.95 0.747 0.952

dimensionalities. For PASL, the number of atoms to learn take the values 250, 400,
and 500. The number of atoms with approximately the same number of non-zeros
in the dictionary of PLIER is 20, 25, and 30. Thus, there are 7 analyses for each
dataset, and 91+105 analyses in total.For the Breast Cancer (Leukemia) datasets
860002 (983425) classification models were trained in total by JADBIO with differ-
ent combinations of algorithms and hyper-parameter values on different subsets of
the input data (cross-validation).

Regarding the execution time, the analysis in the space of PASL or PLIER
takes about 1 order of magnitude less time than in the original space. The
exact execution time in JADBIO depends on several factors, such as the load of
the Amazon servers on which the platform runs, and thus exact timing results are
meaningless. Indicatively, we mention a typical case: the analysis of GSE61804
for the original space took 1.15 h, 9 min and 5 min for PASL and PLIER respec-
tively. Figure 3(a),(b) shows the average AUC over all test datasets for each
disease for increasing number of non-zeros. PASL outperforms PLIER and
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Fig. 4. Upper row: Interaction plots of DAA and GSEA. The x-axis represents the
total number of significant genesets. The y-axis represents the number of significant
genesets that come from DAA and GSEA. Lower row: Box-plots of the activation
scores that correspond to the first, second, third differentially activated PASL fea-
ture/pathway. It is verified that the differentially activated pathways behave differ-
ently between the phenotypes. The outcome of GSE10780 stands for Invasive Ductal
Carcinoma/Unremarkable breast ducts, and the outcome of GSE15434 stands for the
mutation status of Nucleophosmin 1 (NPM1).

it is on par with analyses on the original space. Thus, the learned dic-
tionary by PASL generalizes to new test data and captures the important infor-
mation to perform classification with various disease-related outcomes. At the
same time, PASL achieves 2-orders of magnitude dimensionality reduction by a
sparse matrix whose atoms directly correspond to known genesets (pathways).

We now focus on the experiments for the largest dimension of PASL and
PLIER. The number of atoms in PASL is set to 500 (664695 non-zeros for Breast
Cancer, 700020 non-zeros for Leukemia). PLIER’s latent space consists of 29
(699976 non zeros) and 30 (782114 non-zeros) atoms for Breast Cancer and
Leukemia respectively. Table 1 contains the detailed results for each dataset and
method. The worst case (best case) for PASL is dataset with ID 27562 (14924)
where it achieves 8 AUC points (8 AUC points) lower (higher) performance vs
no dimensionality reduction. In contrast, there are several datasets (IDs 66161,
66159, 27562, 15434, 21029, 7440, 66006, 28460, 28460, 49695, 61804) where
PLIER’s performance is lower than 10 or more AUC points.

In the lower row of Fig. 3 we visually demonstrate the ability of PASL to lead
to highly predictive models. Each panel corresponds to a different test dataset.
Specifically, we chose to present the visualizations from datasets that lead to
the “best” visual differences for PASL vs the original space, PASL vs PLIER,
and PLIER vs PASL, in Fig. 3(c)–(e), respectively. Each panel shows the box-
plots of the out-of-sample probability of each molecular profile to belong to the



258 I. Karagiannaki et al.

positive class for the models produced in the original, PASL, and PLIER feature
space. The out-of-sample predictions are calculated by JADBIO during the cross-
validation of the winning model and thus, they do not correspond to the fitting
of the samples used for training. The larger the separation of the distribution of
the predicted probabilities, the larger the AUC.

3.2 From Gene Set Enrichment Analysis to Differential Activation
Analysis

The biological interpretability of PASL’s feature space is demonstrated in the
following experiments. Since the constructed features correspond to the genesets
(atoms of D), we can use their values (stored in the columns of L) to find which
genesets behave differently under two conditions, e.g., disease vs. healthy or
treatment vs. control. In other words, we can perform Differential Activation
Analysis (DAA) in a similar fashion that differential expression analysis iden-
tifies the genes that behave differently. A current standard alternative method
that provides insight into the underlying biology is to use Gene Set Enrichment
Analysis (GSEA). GSEA first summarizes the probesets that correspond to the
same gene e.g. by taking the minimum, maximum or average expression value.
Inherently, GSEA loses information by applying this summarization and by not
taking into account the covariances of the gene expressions. Subsequently, the
null hypothesis is that the p-values of the genes in a pathway have the same
distribution as the p-values of the genes that do not belong to the pathway.

We next examine the ability of PASL to identify genesets (pathways) that
behave differently between two classes and compare it against GSEA. We employ
the GSEA v4.0.3 tool from https://www.gsea-msigdb.org/gsea/index.jsp [13,
16]. We run GSEA on the test datasets in the original feature space using 10000
phenotype permutations for the permutation-based statistical test employed in
the package. The input genesets are the same as the ones provided to PASL
in the geneset matrix G. We also perform DAA on the test datasets projected
to the latent space of PASL (activity scores) using the Matlab’s t-test function
mattest with 10000 permutations. The list of p-values from DAA and GSEA can
then be used to identify the affected pathways.

Figure 4 (upper row) shows the number of pathways identified by each
method (y-axis) in the top k (lowest p-value) pathways, for each k (x-axis).
Each panel corresponds to a different test dataset. We observe that the path-
ways identified by PASL have lower p-values and are encountered first on the
list; PASL has higher statistical power in identifying some genesets that behave
differently. PASL’s features correspond to pathways. The statistically significant
ones are referred as differentially activated. Figure 4 (bottom row) visualizes why
the PASL features are identified as differentially activated. Each panel shows the
box-plots for the activation scores corresponding to the first, second, and third
most statistically significant PASL feature/pathway (denoted with names 1DA,
2DA, and 3DA, respectively).

https://www.gsea-msigdb.org/gsea/index.jsp
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Specifically, the top 3 differentially activated pathways of GSE10780 are the
“Reactome signaling by GPCR”, “Reactome Fructoce Catabolism” and “Reac-
tome Hemostasis”. The top 3 differentially activated pathways of GSE14924
is the “Reactome metabolism of Lipids”, “Reactome Chromatin Organization”
and “Reactome Gene Expression Transcription”. The top 3 differentially acti-
vated pathways of GSE15434 are the “Reactome Transport of Small Molecules”,
“Reactome Developmental Biology”, “Reactome Post Translational Protein
Modification”. It is visually verified that the scores are different between the
phenotypes in an easy to understand and intuitive plot.

While DAA using PASL seems to offer several advantages (lower p-values,
intuitive visualization), it also has a major limitation. PASL requires a train-
ing set that is related to the application (test) set. It learns atoms that only
pertain to capturing information regarding the train data. For example, DAA
using PASL cannot be applied to a schizophrenia dataset, before we construct
a sufficiently large training dataset for the disease. As such, we consider DAA
and GSEA complementary and synergistic.

4 Conclusions

Molecular omics and multi-omics data are notoriously high-dimensional. Statis-
tical or machine learning analysis of such data could hit computational obstacles
due to the high dimensionality; results may be hard to interpret (e.g. interpreting
thousands of differentially expressed genes or pair-wise correlations and covari-
ances). As a result, several dimensionality reduction methods for such data have
been proposed, but usually end up with an unintepretable new feature space. To
the extent of our knowledge, PASL is the first technique where the new features
directly correspond to prior knowledge about genesets. PASL is relatively com-
putationally efficient by relying on a greedy, yet effective heuristic to construct
the next atom. PASL projects the data to a new feature space that maintains the
predictive information for a wide range of outcomes, e.g., disease or mutation
status, dietary restrictions and others. The classification models created on this
space outperform the ones created on the PLIER space and are on par with the
ones using the original features. Classification analysis is one order of magni-
tude faster in PASL space than in the original space. PASL’s learned features
can be used for Differential Activation Analysis identifying the pathways that
behave differently between the phenotypes. This analysis is synergistic to gene
set enrichment analysis, it is intuitively visualized, and often produces smaller
p-values. Based on these promising results, in a future work PASL will be applied
on a much larger corpus of gene expression data, spanning a wide plethora of
diseases and conditions.
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