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Abstract: Soil contamination by potentially toxic elements (PTEs) is intensifying under increasing
industrialization. Thus, the ability to efficiently delineate contaminated sites is crucial. Visible–
near infrared (vis–NIR: 350–2500 nm) and X-ray fluorescence (XRF: 0.02–41.08 keV) spectroscopic
techniques have attracted tremendous attention for the assessment of PTEs. Recently, the application
of fused vis–NIR and XRF spectroscopy, which is based on the complementary effect of data fusion,
is also increasing. Moreover, different data manipulation methods, including feature selection
approaches, affect the prediction performance. This study investigated the feasibility of using single
and fused vis–NIR and XRF spectra while exploring feature selection algorithms for the assessment
of key soil PTEs. The soil samples were collected from one of the most heavily polluted areas of
the Czech Republic and scanned using laboratory vis–NIR and XRF spectrometers. Univariate
filter (UF) and genetic algorithm (GA) were used to select the bands of greater importance for the
PTE prediction. Support vector machine (SVM) was then used to train the models using the full-
range and feature-selected spectra of single sensors and their fusion. It was found that XRF spectra
alone (primarily GA-selected) performed better than single vis–NIR and fused spectral data for
predictions of PTEs. Moreover, the prediction models that were derived from the fused data set
(particularly the GA-selected) enhanced the models’ accuracies as compared with the single vis–NIR
spectra. In general, the results suggest that the GA-selected spectra obtained from the single XRF
spectrometer (for As and Pb) and from the fusion of vis–NIR and XRF (for Pb) are promising for
accurate quantitative estimation detection of the mentioned PTEs.

Keywords: soil contamination; vis–NIR spectroscopy; XRF spectroscopy; data fusion; feature selec-
tion; univariate filter; genetic algorithm

1. Introduction

The soil science society of America (SSSA) defines soil contaminant as any substance
in soil that exceeds naturally-occurring levels and poses human health risks. Indeed, soil
contamination refers to a process, in which non-pedogenic components with no relation to
the soil’s natural formation accumulate in soil and cause adverse effects on plant growth
as well as animal and human health [1]. Soil contamination has been increasing as a
result of anthropogenic influences, such as urbanization, industrialization, population,
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and agricultural growth [2]. As a major group of soil contaminants, potentially toxic
elements (PTEs) (e.g., As, Pb, Cd, and Cr ) can be primarily found in soluble and adsorbed
fractions [3]. These elements can present risks to animal and human health by entering
the food chain, water, soil, and plants [4,5]. Their persistent nature and long biological
half-lives disturb the soil balance and threaten the health of animals and plants, which
reduces the seed quality and root growth of some species [6,7]. Hence, assessing PTE
concentrations in soil is of particular interest for their effective monitoring and further
remediation.

PTEs are conventionally measured using laboratory chemical methods, such as soil
extraction or digestion, followed by atomic absorption spectrometry (AAS) or inductively
coupled plasma (ICP) analysis, which are time-consuming and expensive procedures and
not always suitable for a large number of soil samples. However, proximal spectroscopic
techniques, such as visible–near infrared (vis–NIR: 350–2500 nm) and X-ray fluorescence
(XRF: 0.02–41.08 keV), increase the proficiency of soil data collection and they deliver
more information on soil variation in less time and at a lower cost compared with con-
ventional methods [8,9]. vis–NIR spectroscopy is a passive technique that reflects diffuse
electromagnetic radiation at the surface of the sample, measured as reflectance, and the
absorbed energy causes the vibration of the molecular bonds in the target material (in this
case, soil); as a result, the energy of the reflected signal is lower than that of the originally
received signal [10]. The proportion of the incident radiation that is reflected by the target
material is sensed through vis–NIR spectroscopy, and the amount of light absorbed can be
evaluated, which enables the assessment of soil attributes [11]. It acquires one spectrum
per second that includes useful information for several soil attributes extraction [12]. XRF
spectroscopy is an active technique that is based on the excitation of inner electrons, which
causes the emittance of radiation (fluorescence) from the target material (in this case, soil).
The fluorescence is detected by an XRF spectrometer as a signal, and elements are measured
on the basis of the type and strength of this signal [9,13].

Over the last two decades, vis–NIR [6,14,15] and, recently, XRF [9,16] spectroscopy
have been individually used for the detection of PTEs in soil. However, a single soil sensor
does not provide a fully comprehensive characterization of soil PTEs. Moreover, according
to [17], soil assessment with a single sensor is sometimes less stable because of the complex
nature of soil, so it is reasonable to search for other techniques that are complementary and
appropriate for concurrent analyses [18]. Recently, the fusion of spectral data derived from
both sensors (vis–NIR + XRF) has been suggested to more efficiently provide soil attribute
information [19] within a greater spectral range [13]. The fusion of these technologies
has already been demonstrated to be capable of predicting certain soil attributes, such as
carbon and nitrogen [20,21], salinity [22], and petroleum hydrocarbons [23]. However, only
a few recent studies have focused on the potential of fused data from these two sensors and
compared their performance with independent data obtained from the individual sensors
for soil PTE estimation [13,24].

The application of fused vis–NIR and XRF proximal techniques has recently increased,
because of progress in technology, computational power, spectral pre-processing methods,
fusion approaches, machine learning algorithms, and the selection of bands of greater
importance for the prediction of PTEs. Different data manipulation techniques, including
the direct fusion of the data from single sensors [25], the direct fusion of selected spec-
tral features [26], the fusion of models developed from individual sensors [27], and the
outer product analysis (OPA) method [24] have been used to integrate different spectro-
scopic techniques and they have shown a wide range of prediction performances. In fact,
the choice of an appropriate method and its ability to handle data are essential in ob-
taining a robust, reliable, and accurate prediction [28,29]. Accordingly, comparing the
estimation ability of single sensor data sets (vis–NIR and XRF) and the fused sensor data
(vis–NIR + XRF) through the application of their full-range and feature-selected spectra
would be highly useful for improving soil PTE prediction. Hence, further works on finding
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more effective manipulation methods of the spectral data are needed for better exploitation
of the techniques.

Over the last few decades, soils in several regions of the Czech Republic, as well as in
other countries, have been heavily affected by industrial activities. Therefore, this study
aimed to test the capability of individual vis–NIR and XRF spectra as compared with the
fused data set to detect and determine six PTE concentrations (As, Cd, Cu, Pb, Zn, and
Mn) in the soils of one of the most heavily polluted areas of the Czech Republic. The
specific objectives were: (i) to investigate the feasibility of the full-range spectra and the
selected features from the individual spectrometers (vis–NIR and XRF) for prediction of
the PTEs, (ii) to examine the PTEs prediction accuracies using fusion of the instruments’
full-range spectra (vis–NIR + XRF) and their spectra derived from the selected features of
each spectrometer (vis–NIR + XRF feature-selected), and (iii) to compare the performance
of the single vs. fused spectra while exploring the potential of univariate filter (UF)
and the genetic algorithm (GA) for feature selection and support vector machine (SVM)
regression for model calibration. Because the spectral range of each technique offers specific
contributions to the prediction procedure, it is expected that the complementary effect of
data fusion will have a promising influence on the PTE models’ predictive performance.
Moreover, the improvement of PTE quantification is anticipated because bands of greater
importance for prediction are selected using feature selection techniques.

2. Materials and Methods
2.1. Study Area, Soil Sampling, and Soil Analysis

Soil samples from the Příbram district (49◦71′ N; 14◦01′ E) in the Czech Republic
were analyzed to achieve the study goals. Příbram is a town in central Bohemia that is
located 50 km to the south of Prague (Figure 1). As a result of long-term ore mining and
metallurgical activities, the area of the Litavka river alluvium is heavily polluted, with
PTEs from three sources: (i) naturally increased metal content because of the specific
composition of parent rocks, (ii) atmospheric deposition from a smelter, and (iii) floods
of water polluted with metal-processing wastes [30,31]. According to the World reference
base of soil resources [32], soils of the area are predominantly characterized as Fluvisols,
Gleysols, and, in areas that are slightly elevated relative to the alluvium, Cambisols.

Figure 1. The Czech Republic and location of Příbram in the country, the location of the sampling
area, and the sampling points. Sampling points’ colors are distinguishing between different sampling
strategies (at different periods); yellow points are the new sampling points and red points represent
previously analyzed, but newly collected and re-analyzed, sampling points.

One-hundred fifty-eight soil samples (Figure 1) were collected in April 2018 using
both grid and transect sampling designs with manual augers. The selected sample size
had sufficient coverage of the predictor space, and the samples were suitable indicators
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for the area to which the models were applied. The position of each sampling point was
recorded by a GeoXM (Trimble Inc., Sunnyvale, CA, USA) receiver with an accuracy of
1 m. For each sample, about 2 kg soil was taken at depths 0–20 cm as a composite sample
over an area of 5× 5 m and then air-dried, ground, sieved (62 mm), and thoroughly mixed
before analysis. The pseudo-total contents of six key PTEs, namely, As, Cd, Cu, Pb, Zn,
and Mn, were extracted using aqua regia (ISO, 11466:1995). The solution was 10-fold
diluted with deionized water (conductivity 18.2 MΩ) and then filtered through 0.45 µm
Nylon Membrane Disc Filters (Thermo Fisher Scientific, Waltham, MA, USA) prior to
analysis. The extract was analyzed for PTE content by ICP-OES iCAP 7000 (Thermo Fisher
Scientific, Waltham, MA, USA). The concentration measurements were subjected to quality
control (QC) using the SRM 2711 (Montana II soil) internal reference material (National
Institute of Standards and Technology, Gaithersburg, MD, USA). The obtained values were
in good agreement with the reference data; the recovery differences were generally less
than 10% (n = 3). Using the same method as in the evaluation of PTEs, total iron (Fe),
and using the rapid dichromate oxidation technique [33], soil organic carbon (SOC), were
also determined as auxiliary data for further use (correlation with PTEs), since they are
well-known spectrally active soil properties [5,34] and they strongly adsorb PTEs [35]. The
samples and standards were matrix-matched to compensate for matrix effects that influence
analytical response [36]. All of the analyses were performed in triplicate.

2.2. Spectral Data Acquisition and Pre-Processing
2.2.1. vis–NIR Spectroscopy

The vis–NIR (350–2500 nm) spectroscopic measurements were acquired using an ASD
FieldSpec 4 Pro FR (ASD Inc., Denver, CO, USA) in an harmonized dark box environment
with fixed illumination and geometry (Figure 2) that was developed at the German Research
Center for Geosciences (GFZ) [12]. The spectral resolution of the spectroradiometer was
3 nm for the range of 400–1050 nm and 10 nm for the region 1050–2500 nm. The radiometer
bandwidth from 350 nm to 1000 nm was 1.4 nm, while it was 2 nm for 1000–2500 nm, and
the data were interpolated every 1 nm over the whole wavelength range.

Figure 2. vis–NIR spectra measurement setup.

The instrument was run for 60 min to warm up the spectrometer and lamps. The spec-
tral measurements were acquired with an 8◦ fore-optic and ∼7 cm height nadir viewing
sensor above the target, producing a ∼1 cm ground instantaneous field of view (GIFOV) in
the middle of the sample. The samples were placed in 5 cm diameter Petri dishes to form
2 cm layers of soil and they were scanned in the center (three replications each, rotating and
steering the sample, flattening before each measurement). The spectrometer was optimized
using a SpectralonTM white reference (Labsphere, North Sutton, NH, USA) at the beginning
and end of each batch of five soil sample measurements. In order to minimize systematic
errors during measurements, the internal soil standard (ISS) sample that was introduced
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by [37] was scanned after the SpectralonTM white reference at the beginning of each batch
and also before the next SpectralonTM measurement at the end of each batch.

For spectral data pre-processing, noisy portions between 350 nm and 400 nm, as well
as 2451 nm and 2500 nm, were removed, leaving spectra in the range from 400 nm to
2450 nm (2051 variables) for further processing. The resulting spectra were then smoothed
using the Savitzky-Golay approach [38] with a second-order polynomial fit and window
size of 11 wavelengths in order to remove the artificial noise within the working spectral
range [6,39], and the first derivative was generated and used to remove baseline offset
and enhance spectral features [40]. In this study, influential outliers in a set of predictor
variables were detected by applying ensemble sparse partial least squares [41].

2.2.2. XRF Spectroscopy

An Olympus Delta Premium XRF (Olympus, Center Valley, PA, USA) spectrometer
was used to collect XRF spectra in the range of 0.02–41.08 keV (Figure 3). The measurements
were acquired in Soil Mode, which emits three beams of 50 keV, 40 keV, and 15 keV per
scan [27]. The XRF spectrometer was calibrated by the manufacturer sets for soil. The soil
samples were placed in 10 mL plastic cups, covered with 4 µm thick polypropylene film,
and then set on the XRF laboratory stand [13]. Afterward, the soil surface was directly
scanned by the instrument in triplicate with a scanning time of 60 s per scan (amounting to
180 s total time), and the average results were used for the direct PTE concentration and
raw XRF spectra.

1 
 

 

 

Figure 3. X-ray fluorescence (XRF) spectra measurement setup.

A recent study was conducted on the same soil samples and focused on the deter-
mination of the As concentration, which was directly derived from the XRF sensor and
then compared with the result obtained using the ICP-OES conventional laboratory tech-
nique [42]. The study confirmed that XRF was capable of predicting the As concentration in
soil at comparable levels of accuracy to the ICP-OES method. In the current study, the XRF
spectra were employed for further analysis. To pre-process the extracted raw spectra, the
range of the spectra was first reduced to 0.64–14.99 keV (716 variables) to exclude the
low-energy bands, followed by the application of the Savitzky-Golay spectral smoothing
algorithm with a second-order polynomial fit and window size of 11 wavelengths and the
first derivative to improve the modelling efficiency [24].

2.3. Feature Selection

A practical approach for improving the models’ robustness and accuracy is the elimi-
nation of irrelevant variables and redundancies in the data and the selection of relevant
spectral features [26]. According to [43], feature selection reduces spectral complexity and
maintains only useful wavelengths that are highly correlated with the predicted variables.
In this study, the UF [44] and the GA [45] approaches were used to select the most relevant
vis–NIR and XRF spectral features for PTE assessment. These selected features, instead of
the full-range spectra, were then used to develop models to predict the concentrations of
PTEs from each sensor.
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The UF technique selects those variables that have the greatest correlation with the
response, thereby only observing the properties that are inherent to the data without using
any clustering algorithms to guide the search for relevant features. The relevance score
for the feature is then calculated individually and it does not include feature interactions.
The main advantages of this method over other feature selection approaches are the
processing speed and the ability to process large data sets [46]. The GA is a popular
heuristic optimization algorithm, as introduced as an evolutionary algorithm [47], which
uses a flexible search strategy to randomly select an initial set of spectral variables and
optimize this set by analyzing multiple combinations of features and their interactions [1].
In other words, the GA aims to reach the global optimum for a problem by retaining
the best individuals in the population using mutation and crossover operations. The GA
procedure can be summarized into five steps: (i) the coding of all variables, (ii) initiation of
the population, (iii) evaluation of the responses, (iv) reproduction, and (v) mutations [48].
An initial set of spectral variables is typically randomly selected, and this set is then
optimized by evaluating many combinations of spectral features by following the principles
of reproduction and mutation [49]. More details on the GA approach can be found in [50].
The parameters that were adopted in this study were primarily related to the population
size of each generation (5), the number of iterations (50), deletion group (5), crossover
probability (0.8), and mutation probabilities (0.1). The Caret package of the R software
(R Development Core Team, Vienna, Austria) was used to implement feature selection [51].

2.4. Data Fusion

For the fusion of the data sets that were obtained from the vis–NIR and XRF spec-
troscopy techniques, three types of data integration were considered: (i) full-range spectra
from single sensors (vis–NIR + XRF full-range) [25,52], which was termed as low-level
fusion by [24], (ii) spectral features selected from each sensor by UF (vis–NIR + XRF UF-
selected), and (iii) spectral features that were selected from each sensor by GA (vis–NIR
+ XRF GA-selected). The fusion of selected features from the two sensors was termed
middle-level fusion by [24]. For each approach, the data sets were directly concatenated in
a single table as a variable matrix and defined as the fused sensor data set [53].

2.5. Model Construction and Evaluation

Each data set was randomly divided into training (75%) and testing (25%) data sets [12].
The training data set was used to develop the regression model, and the testing data set
was used to validate the developed model’s generalization capability [54]. The spectral
modelling of the selected soil components was performed using SVM. The implementation
of the applied method for spectroscopic modelling has previously been explained in
detail by the authors [55,56]. A basic grid search approach was applied to tune SVM’s
hyperparameters (i.e., Cost function and Sigma). All of the spectroscopic models were
validated using 10-repeated 10-fold cross-validation [57].

The final accuracy prediction was evaluated using standard model evaluation metrics:
the coefficient of determination (R2), root mean squared error (RMSE), and mean error (ME)
or bias. R2 is the proportion of variation in the response that is explained by the regression
model, and RMSE describes the model’s prediction capability. The bias or ME represents
the error of means and is independent [58,59].

3. Results
3.1. Descriptive Statistics, Spectral Response, and Correlation of PTEs, Total Fe, and SOC

Table 1 presents the number of samples after outlier detection and the results of
descriptive statistical analysis of the measured pseudo-total content of PTEs, total Fe, and
SOC content, including the mean, median, minimum (Min), maximum (Max), standard
deviation (SD), coefficient of variation (CV), and skewness.
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Table 1. Statistical description of measured pseudo-total content of potentially toxic elements (PTEs),
total Fe, and soil organic carbon (SOC).

Element No. Unit Mean Median Min Max SD CV% Skewness

As 150 200 197 4.50 492 102 51 0.3
Cd 152 24.2 24.5 1.60 48.4 10.3 43 0.0
Cu 151 54.6 53.7 13.2 104 19.6 35 0.3
Pb 152 (mg/kg) 1803 1656 37.9 4170 920 51 0.5
Zn 154 2217 2124 49.4 5351 1128 51 0.4
Mn 142 2380 2324 499 5720 1140 48 0.8
Fe 152 20,973 20,503 9670 35,428 5522 26 0.4

SOC 147 (%) 3.1 2.9 0.9 6.2 1.1 35 0.5

The samples that were used in this study contained wide ranges of all elements
(Table 1). According to the pollution levels for the Czech soils reported by [60–63], the soils
of the area are classified as highly polluted, with mean values of 200 mg/kg, 24.2 mg/kg,
54.6 mg/kg, 1803 mg/kg, 2217 mg/kg, and 2380 mg/kg for As, Cd, Cu, Pb, Zn, and Mn,
respectively (Table 1). The data distribution features were illustrated by the SD values,
where all SDs were lower than the corresponding mean values for all examined PTEs.
The lowest PTE CV, which is the degree of variability in the element’s concentration in
the soil, was obtained for Cu (CV = 35%) because of its moderate variability and greater
homogeneity [64]. However, the CVs of other PTEs were ≥ 43%, indicating that their
values were moderately to highly variable in this study area [64,65]. Additionally, the
skewness was used to test the normality of the PTE data and revealed that most of the
elements were approximately normally distributed, with skewness values that were close
to 0 (Table 1). The Fe statistics had a high mean (20,973 mg/kg), relatively low CV (26%),
and skewness of 0.40. The soil samples indicated the average SOC contents of 3.1% ± 1.1%
(SD) with a distribution that shows rather low variability (CV = 35%).

Figure 4 highlights the representative mean soil spectra with their variance acquired
from both spectrometers. Both spectra have the typical shape and pattern of the vis–NIR
and XRF spectra of soil samples. In the vis–NIR spectrum, a gradual increase over the
range of 400–700 nm and an almost flat segment between 700 nm to 1000 nm can be
observed, which are characteristic patterns of SOC and Fe-oxide mixtures. A few of the
observed absorption features can also be attributed to the presence of water (at 1400 nm
and 1900 nm) and clay minerals (at 2200 nm) [34]. In the XRF spectrum, the count rates
represent the emitted spectrum intensity at each photon energy, so they are the basis for
quantitative analysis as well as the built-in algorithm [66]. Some visible peaks can be seen
in the spectrum that reflect the signals for Mn and heavy elements of Zr and Sr, although
the highest count rate in the XRF spectrum is at around 6–7 keV (Figure 4), which is the
signal for Fe [21].

Figure 4. Representative soil mean spectra (bold lines) and their variance (shaded areas) of vis–NIR
and XRF.
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The Pearson correlation coefficients (r) between the examined PTE concentrations and
between the PTEs, total Fe, and SOC contents of the soil samples were calculated (Figure 5).
All of the examined soil PTEs were positively correlated with each other, implying their
robust mutual dependence [12], with the highest Pearson correlation coefficient between
Cd and Zn (r = 0.90). Generally, the highest correlation among contaminants was observed
between Zn and other PTEs (0.55 6 r 6 0.90). Fe, as a spectrally active element and as
a secondary product related to the impact of PTEs on the soil, was significantly and
positively correlated with all PTEs, with r values between 0.55 and 0.70, as shown in
Figure 5. Nevertheless, SOC demonstrated no (with Zn) or a very low correlation with all
other elements, with the highest negative correlation with As (r = −0.20).

Figure 5. The Pearson correlation coefficients between soil PTEs, total Fe, and SOC.

3.2. Estimation of PTEs Using the Single Spectrometers Full-Range Spectra

Table 2 highlights the results of the PTE prediction models using the non-linear SVM
algorithm applied to the full-range spectra of individual sensors (vis–NIR and XRF).

It was found that the models used for the prediction of PTE concentrations by the
vis–NIR full-range spectra were poor (R2 < 0.50) for Cd, Zn, and Mn, according to [67]’s clas-
sification. Other elements, namely As, Cu, and Pb, were better predicted (0.53 ≤ R2 ≤ 0.61),
although they still cannot be fairly recommended for qualitative analysis. The estimation
results obtained from the XRF full-range spectra were more satisfactory and considerably
better (0.71 ≤ R2 ≤ 0.89) than those from the vis–NIR spectra, in which the prediction
accuracies for Pb, Zn, and Mn were characterized as good [67]. The results shown in
Table 2 also indicate that, when compared with other PTEs, soil Pb was the most accurately
predicted element with confidence in both vis–NIR (R2 = 0.61, RMSE = 665 mg/kg, and
bias = 64.3 mg/kg) and XRF (R2 = 0.89, RMSE = 382 mg/kg, and bias = −8.93 mg/kg)
full-range spectra.

Table 2. Statistics of the prediction model performance for soil PTEs concentration (mg/kg) using
the single spectrometers’ full-range and feature-selected spectra (validation data set).

Element Sensor Data Set R2 RMSE Bias

As

Full-range 0.59 76.7 11.9
vis–NIR UF-selected 0.55 78.5 13.8

GA-selected 0.61 76.5 9.43
Full-range 0.77 58.2 14.4

XRF UF-selected 0.70 66.4 15.8
GA-selected 0.82 52.5 14.4
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Table 2. Cont.

Element Sensor Data Set R2 RMSE Bias

Cd

Full-range 0.25 8.42 −1.90
vis–NIR UF-selected 0.22 8.96 1.86

GA-selected 0.25 8.41 1.73
Full-range 0.73 4.98 0.38

XRF UF-selected 0.78 4.51 0.50
GA-selected 0.74 5.05 0.08

Cu

Full-range 0.53 13.9 2.30
vis–NIR UF-selected 0.56 13.25 1.82

GA-selected 0.58 13.2 1.73
Full-range 0.71 10.8 −0.19

XRF UF-selected 0.78 9.91 −0.98
GA-selected 0.76 10.10 0.06

Pb

Full-range 0.61 665 64.3
vis–NIR UF-selected 0.64 630 62.4

GA-selected 0.68 613 56.2
Full-range 0.89 382 −8.93

XRF UF-selected 0.86 379 17.1
GA-selected 0.89 370 14.7

Zn

Full-range 0.37 907 141
vis–NIR UF-selected 0.37 939 205

GA-selected 0.52 808 131
Full-range 0.81 501 50.0

XRF UF-selected 0.79 520 58.8
GA-selected 0.80 509 43.8

Mn

Full-range 0.45 844 68.3
vis–NIR UF-selected 0.47 835 67.8

GA-selected 0.53 829 50.0
Full-range 0.82 488 −21.3

XRF UF-selected 0.80 517 53.8
GA-selected 0.83 509 −11.0

3.3. Estimation of PTEs Using the Single Spectrometers Feature-Selected Spectra

The entire vis–NIR and XRF pre-processed spectra that were used for predictions
included 2051 and 716 spectral variables, respectively. In order to reduce multicollinearity
and noise, the spectral dimension reduction was conducted by selecting the variables of
greater importance. After feature selection using the UF and GA methods, fewer spectral
variables of the vis–NIR and XRF spectra, as compared with their full-range spectra, were
selected to model the PTEs. Table 3 shows the number of features selected by the UF and
GA techniques for each data set.

Table 3. Number of spectral variables selected by Univariate filter (UF) and genetic algorithm (GA)
from vis–NIR (out of 2051) and XRF (out of 716) spectra.

Elements UF GA
vis–NIR XRF vis–NIR XRF

As 890 369 604 331
Cd 838 334 610 201
Cu 1024 380 353 342
Pb 1364 354 558 316
Zn 567 311 337 301
Mn 943 193 557 18

Table 2 presents the results of the PTE estimation models that were developed using
SVM coupled with the UF or GA feature selection method. These results show that
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the prediction models obtained using selected features were better for the XRF spectra
(0.70 ≤ R2 ≤ 0.89) than vis–NIR (0.22 ≤ R2 ≤ 0.68), which is a similar trend to the results
that were obtained from the full-range spectra. Table 2 also indicates that the estimations
by the GA feature selection technique were more effective than those obtained using the
UF for all elements when vis–NIR spectra were applied, and for As, Pb, Zn, and Mn, when
XRF spectra were employed.

More importantly, using the feature-selected vis–NIR spectra improved the perfor-
mance of the PTE estimation (except Cd), as compared with the vis–NIR full-range spectra
(Table 2). A similar effect was observed in the prediction of As and Cu for XRF, when the
GA was applied and in prediction of Cd and Cu, when UF was used. Although the increase
in prediction accuracy using both techniques on the XRF spectra was not very noticeable.

3.4. Estimation of PTEs Using vis–NIR and XRF Data Fusion

The data fusion approach was employed and tested for developing the spectral models
of the selected soil PTEs in this study. This involved concatenation of the vis–NIR and XRF
full-range, UF-selected, and GA-selected spectra, followed by SVM modelling of the fused
data. Table 4 presents the modelling results.

Table 4. Statistics of the prediction model performance for soil PTEs concentration (mg/kg) using
the fused spectra (validation data set).

Element Data Set R2 RMSE Bias

vis–NIR + XRF (Full-range) 0.76 60.9 17.1
As vis–NIR + XRF (UF-selected) 0.69 66.9 17.8

vis–NIR + XRF (GA-selected) 0.77 59.7 15.8

vis–NIR + XRF (Full-range) 0.77 5.85 0.57
Cd vis–NIR + XRF (UF-selected) 0.77 4.95 0.44

vis–NIR + XRF (GA-selected) 0.77 4.04 0.44

vis–NIR + XRF (Full-range) 0.75 10.85 -0.72
Cu vis–NIR + XRF (UF-selected) 0.74 10.84 -2.16

vis–NIR + XRF (GA-selected) 0.75 10.21 -0.40

vis–NIR + XRF (Full-range) 0.85 401 43.0
Pb vis–NIR + XRF (UF-selected) 0.86 389 42.2

vis–NIR + XRF (GA-selected) 0.89 350 14.6

vis–NIR + XRF (Full-range) 0.68 666 35.0
Zn vis–NIR + XRF (UF-selected) 0.75 592 10.9

vis–NIR + XRF (GA-selected) 0.71 659 -21.0

vis–NIR + XRF (Full-range) 0.74 583 29.3
Mn vis–NIR + XRF (UF-selected) 0.65 677 58.3

vis–NIR + XRF (GA-selected) 0.76 563 13.3

It can be seen that the fused spectra selected by the GA feature selection technique
generally provided higher R2 and lower RMSE and bias than either the full-range or the
UF-selected fused spectra (Table 4). This difference was more obvious in the estimation
accuracy of Pb, although it was less remarkable in other PTEs.

The fusion of the vis–NIR and XRF spectra improved the prediction of PTE concentra-
tion (Table 4) as compared with the vis–NIR spectra alone, with and without the feature
selection approaches (Table 2). In other words, models that were based on the fused spectra
produced better predictions of more PTEs, when compared with those based on only the
vis–NIR spectra. For instance, Cd that was poorly predicted using the single vis–NIR
full-range or feature-selected spectra (0.22≤ R2 ≤ 0.25, 8.41 mg/kg≤ RMSE≤ 8.96 mg/kg,
and −1.90 mg/kg ≤ bias ≤ 1.73 mg/kg; Table 2), was reasonably predicted by the vis–
NIR and XRF fused spectra, with R2, RMSE, and bias values of 0.75, 4.04 mg/kg, and
0.44 mg/kg, respectively (Table 4). In contrast, as indicated in Table 2, the standalone XRF
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spectra (both full-range and feature-selected) led to the better performance of almost all
PTE prediction models than the vis–NIR + XRF spectra, regardless of whether the full-range
or feature-selected spectra were used (Table 4).

3.5. Comparison of Models Derived from Different Spectral Data Sets

From the estimations using the spectrometers’ individual and fused full-range and
feature-selected spectra (Tables 2 and 4), the optimal models provided the best predictions
for the Pb content of soil as compared with the other PTEs. In addition, among different
PTEs, Pb is identified as a major soil pollutant [2]. Hence, this element was considered in
the subsequent investigation to visualize the impact of the methods and input data sets on
the prediction performance (Figure 6).

Figure 6. Pb (mg/kg) prediction model performance using different spectral data sets.

Figure 6 shows that the SVM models for Pb estimation provided different prediction
accuracies, when using different sensors’ data sets. Pb was predicted from the single vis–
NIR sensor full-range spectra with R2 of 0.61, RMSE of 665 mg/kg, and bias of 64.3 mg/kg.
After feature selection, the redundant and irrelevant variables were discarded. Figure 7
clearly shows that GA was the more successful feature selection approach (than UF) for
the reduction of variables (for Pb). It can be seen that, in vis–NIR spectra, the more
useful features were in the ranges of 500–1300 nm and 1500–1700 nm. For XRF, it can be
seen that the GA excluded most of the features between 5.22 KeV and 7.74 KeV as less
important variables.

Figure 7. Feature selection by genetic algorithm (GA) from vis–NIR and XRF spectra (blue lines are
the first derivative spectra, and the red dots are the selected features).

Therefore, when compared with the use of the single vis–NIR full-range spectra,
the feature-selected spectra of single vis–NIR, particularly the GA-selected spectra, pro-
duced the better estimation of Pb (R2 = 0.68, RMSE = 613 mg/kg, and bias = 56.2 mg/kg).
The XRF GA-selected spectra provided similar R2, but slightly lower RMSE values as
compared with the XRF full-range spectra. Furthermore, the full-range and feature-
selected spectra from XRF alone both provided better Pb prediction models than the
single vis–NIR data. Spectroscopic full-range data fusion, as well as the fusion of the useful
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variables obtained from the spectra of two sensors, noticeably enhanced the prediction
ability of the Pb models (0.85 ≤ R2 ≤ 0.89, 350 mg/kg ≤ RMSE ≤ 401 mg/kg, and
14.6 mg/kg ≤ bias ≤ 43.0 mg/kg) in comparison with the single vis–NIR data, while no
substantial improvement was evident, when compared with the XRF standalone data sets.
Generally, the optimal models with higher estimation accuracies and/or lower error were
obtained using the single XRF (both full-range and feature-selected) as well as the fused
GA-feature-selected spectra.

4. Discussion

The soils of Příbram area in the Czech Republic were characterized as strongly pol-
luted by high accumulations of PTEs (As, Cd, Cu, Pb, Zn, and Mn) based on the pollution
levels reported for Czech soils [61,62]. The total Fe content in the soils of the area was also
high, ranging from 9670 mg/kg to 35,428 mg/kg. The soil samples indicated medium
average SOC contents of 3.1% (Table 1). Hence, the intense peaks in the spectra of both
spectrometers at specific wavelengths or energy levels (Figure 4) are not directly linked to
the presence of PTEs. It has been proven that PTEs mostly do not have direct and recog-
nizable spectral features within the vis–NIR region, and they may be indirectly detected
via inter-correlation with the soil attributes that are spectrally active in this region and
through their bonding with clay, SOC, and Fe, which are acquirable [14,34]. Thus, the
reflectance spectra can be utilized for the indirect assessment of PTEs in soil samples via
the spectrally active soil attributes and contaminant concentrations correlation. For ex-
ample, reference [68] indicated negative correlation between Cr, Cu, Zn, and As and the
absorption features of SOC, clay, and Fe-oxides. They also displayed correlations between
Cd, Pb, and Hg with the spectral region that is related to SOC. Therefore, they mentioned
that, by using soil proxy methods with reflectance spectroscopy, various soil PTEs can be
monitored efficiently. In this study, Figure 5 confirmed the effect of Fe, which highlights the
significant positive correlation of total Fe with all PTEs, indicating that they were closely
bond to Fe [14]. This shows that Fe, as a spectrally active soil property, more significantly
influenced the estimation of PTE concentrations from spectra and had higher priority
to interact with the examined PTEs than SOC. These results were similar to the results
of [2,12]. The reason for a more significant role of Fe as compared to SOC is perhaps because
the content of inorganic components in dry soils is larger than the organic components
and, hence, they can influence spectra more considerably, according to [69]. Nevertheless,
reference [70] mentioned that Fe in mineral soils acts as a stable background for spectral
response of SOC and, therefore, in these soils what can be seen as the spectral features of
Fe are practically the spectral response of SOC and organic matter. Thus, the role of SOC
cannot be ignored in the spectral modelling procedure of the examined PTEs in alluvial
soils of the Czech Republic.

Soil PTE sensing with single vis–NIR full-range spectra has been widely explored with
different ranges of modelling performances [6,12,14,54,71]. This study found poor accuracy
(Table 2), particularly for Cd and Zn, when using vis–NIR spectroscopy alone. But As,
Cu, and Pb were better (although still not very reasonable) predicted (0.50 < R2 < 0.65).
According to previous studies that analyzed these elements (As, Pb, and Cu) using vis–
NIR [1,12,24], successful modelling can be related to their strong correlations with other soil
properties, including Fe (Figure 5), which has a spectral response in this range [11,34,72].
Regarding the poor statistics of Cd and Zn, reference [73] explained that a larger fraction of
Cd and Zn penetrates the soil and precipitates from the solution phase of the spill. Hence,
a great proportion of these elements is distributed in the soil profile by an independent
process that prevents their detection by vis–NIR spectroscopy applied to topsoil samples.
The estimation accuracy and error (R2, RMSE, and bias) for the prediction of PTEs using the
single XRF data were better than those of the single vis–NIR data (Table 2); these findings
are in agreement with the studies by [13,24,26]. In recent years, the accuracy of XRF devices
has increased significantly, with limits of detection that are low enough to measure PTEs,
according to [74]. Generally, they have a relatively wide dynamic range and are able to
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detect PTEs at any concentration, which is probably a reason for the successful XRF outputs.
Moreover, XRF is based on electrons emitted from atoms, so it can be element specific.
On the other hand, vis–NIR is based on molecular vibrations, not on specific elements and,
thus, can predict the PTE content only indirectly through, for example, the soil components
to which the PTEs are bound (e.g., SOC and Fe-oxides). Therefore, XRF is anticipated to
provide better results. Despite the better results that were obtained from the single XRF
spectra in this study, the remarkable advantages of vis–NIR over XRF spectroscopy in soil
monitoring and assessment cannot be neglected. vis–NIR spectroscopy provides more
soil attribute information from the same spectrum in one measurement [9]. In addition,
while vis–NIR sensors allow for the acquisition of one spectrum per second, XRF devices
are typically employed with time ranges between 60 s to 90 s. Furthermore, vis–NIR
spectroscopy is more conveniently adopted by remote sensing [12]. These aspects support
the potential use of vis–NIR spectroscopy as a very efficient technique in the prediction of
soil properties, including soil PTEs.

The fused full-range spectrum (vis–NIR + XRF) was used to develop PTE prediction
models in order to further explore the potential of fusing the data of both sensors to
predict PTE concentrations (Table 4). The fused full-range data outperformed the prediction
models derived from the single vis–NIR method in terms of accuracy and error. This can
be linked to the ability of XRF to complement the information obtained from vis–NIR
spectroscopy, as XRF spectra allow for a broad characterization of the soil constitution with
a low detection limit [74]. However, data fusion was not found to be as successful as the
standalone XRF outputs for most of the elements. This result can be associated with the
poor results of the single vis–NIR data, which negatively influence the performance of
the fused spectra, introducing a form of additional noise and, thus, reducing the accuracy
compared with the single XRF data. Therefore, given a choice between using the full-
range vis–NIR and/or XRF spectra, the use of XRF individually or in combination with
vis–NIR can effectively predict soil PTEs, which is in correspondence with the findings
of [19]. Some studies that integrated vis–NIR and XRF data sets found that the fusion was
successful and it led to better model performances than either individual sensors for soil
assessment, including the prediction of petroleum contamination [23] and PTEs [13,26],
highlighting the feasibility of using both of them together. According to [13,53], the fusion
of vis–NIR and XRF spectra, although resulting in a much larger data set that requires
more computation time and memory than individual data sets, appears to be highly
suitable, because more comprehensive information is available. Nevertheless, in the studies
conducted by [24,27], no significant improvements were observed in the full-range spectra
fusion (low-level fusion) results, when compared with those obtained using the individual
sensors, particularly for As and Cd [24].

In the subsequent investigation, by employing the UF or GA feature selection algo-
rithms, we tested the benefits and usefulness of spectral dimension reduction and the
selection of an optimal set of features (instead of using the full-range spectrum) on PTE
prediction models. After feature selection, the unimportant and less relevant bands or
variables were discarded, the dimension of the spectra was reduced, and fewer variables of
the vis–NIR and XRF spectra were selected (Table 3). These methods are generally useful,
as their application can mitigate the computing issue and avoid potential over-fitting and
the need for large calculation and memory capabilities for soil data analysis [47]. In this
study, the model predictions had increased estimation accuracies and decreased errors,
when using the feature selection approach on the single vis–NIR spectra (except for Cd)
and when using the GA approach on the individual XRF full-range data set for monitoring
As and Cu (Table 2). This can be linked to the ability of feature selection to reduce spectral
complexity and only retain effective, highly correlated variables [43]. This is an important
indicator of the efficiency of using feature selection techniques to simplify models with
parsimonious data sets without a loss of prediction accuracy. Although the feature selection
procedure requires additional time, this may be offset by the more accurate and stable
predictions of PTEs that are produced by the applied models. The positive impact of feature
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selection on prediction performance was less pronounced for the fused spectra (vis–NIR +
XRF), when compared with the sensors’ individual spectra (particularly single vis–NIR).
It should be mentioned that, in the current study, the applied feature selection methods
generally did not meet our expectations, since we expected more obvious improvement in
prediction performances of all PTEs using either single or fused spectra. However, this was
only partially achieved. According to [75], although variable selection may provide more
reliable models, the reverse is also possible, since the selection of irrelevant variables can
have a negative effect. Hence, studying more efficient feature selection methods, which
can detect the most relevant wavelengths, can provide promising results.

In this study, the GA selected less spectral variables (Table 3) and it provided better
results than UF (Tables 2 and 4). The reason for the superiority of GA over UF is that, in
contrast to univariate approaches, such as UF, the GA gains deeper insight into the spectral
predictive mechanisms and the relevance of the spectral predictor variables for a successful
calibration model [47]. In a study conducted by [76], GA and uninformative variable
elimination (UVE) were applied to vis–NIR spectra to assess soil carbon. It was confirmed
that using GA-selected variables instead of the full-range spectrum increased the accuracy
of the models. The GA allows for an efficient search in high-dimensional and complex
response surfaces, as stated by [77]. As an evolutionary algorithm, it has high potential to
remove non-informative variables, determines the most relevant spectral discriminants, and
creates a smaller data set in terms of the number of original spectral variables included and,
thus, decreases the problem of multicollinearity and noise embedded in the spectra [47,49].

Overall, this study revealed that the single XRF data provided reliable results with
R2 ≥ 0.80 for the assessment of Pb, Zn, and Mn. Although the standalone GA-selected
spectra as well as the fused spectra (vis–NIR + XRF) coupled with the GA feature selection
approach were the superior techniques for detecting As and Pb contamination in a Czech
Republic’s case study with alluvial soils in an accurate and environmental-friendly manner.
Moreover, when we used vis–NIR spectroscopy alone, employing the feature selection
approaches (particularly GA) resulted in improved prediction performances (except for
Cd). The prediction results of PTEs in this study indicated that the fusion of vis–NIR
and XRF spectra provided comprehensive information, particularly when compared to
vis–NIR single spectra. However, selecting featured variables and eliminating irrelevant
features using GA and UF were less advantageous than they were expected to be and
need more studies to be conducted testing more feature selection algorithms. This will
bring an advancement in soil testing that can provide a considerable amount of additional
soil information and it can render the implementation of soil monitoring schemes more
feasible. This will also provide an opportunity to perform novel and accurate retrieval
algorithms in operational processing chains for the global quantitative determination of
soil contamination.

It should be stated that, in this study, processed dry samples were used for spectral
measurements and model development, and the resulting models might not be suitable
for vis–NIR and XRF measurements in the field, because the techniques are sensitive to
soil surface disturbance factors, such as moisture and particle size distribution [16,78].
Therefore, it is necessary to assess the potential for using sensors fusion in-situ. Moreover,
the increasing number of proximal and remote soil sensing instruments across the electro-
magnetic spectrum extends the possibility of using sensors fusion. Thus, future studies
are required to focus on the fusion of these techniques as complementary data to assess
multiple soil attributes for agricultural and environmental applications simultaneously.
Finding solutions to avoid the classic disadvantage of data fusion related to handling
large volumes of data from multiple sources should also be among the objectives of future
investigations. Additionally, different machine learning algorithms, deep learning, and
other fusion and feature selection approaches need to be investigated.
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5. Conclusions

This study employed the fusion of vis–NIR and XRF soil scanning technologies and
feature selection algorithms (UF and GA) to predict key PTEs (As, Cd, Cu, Pb, Zn, and Mn)
in the soils of one of the most heavily polluted areas of the Czech Republic.

The results showed that: (i) when using the full-range data of individual sensors,
XRF predicted all PTEs with an R2 larger than 0.71, which is better than the results that
were obtained from vis–NIR; (ii) the predictions obtained from the sensors’ fused data
set enhanced the models’ accuracies, when compared with the use of solely vis–NIR.
Nevertheless, the single XRF data set provided better results than the fused spectra in the
majority of the examined PTEs; (iii) the use of the GA method improved the estimation
accuracies of As and Pb models as compared with the full-range spectra using either single
or fused spectra; (iv) the escalating impact of feature selection on prediction performance
was more pronounced for the individual vis–NIR spectra as compared with the XRF and
fused spectra; and (v) Pb was the most accurately predicted element using all of the
examined data sets with confidence in the individual and fused vis–NIR and XRF spectra.

The general conclusion of this study is that the GA-selected spectra of XRF alone
and vis–NIR + XRF were the more efficient methods for assessing soil As and Pb of the
study site. In this study, a better performance for single vis–NIR spectra was also observed
when coupled with the spectral bands of greater importance, although the results were
not yet favorable. There are some advantages of vis–NIR over XRF spectroscopy that
cannot be neglected, including a shorter scanning time, the delivery of more soil attributes
information from the same spectrum, and the convenience with which it is adopted by
remote sensing. Therefore, when using solely vis–NIR spectroscopy for the prediction of
PTEs, which is very common, employing feature selection approaches (e.g., UF and GA) is
highly recommended.

Author Contributions: Conceptualization, A.G. and J.A.C.; methodology, A.G., J.A.C. and M.S.;
software, J.A.C. and M.S.; validation, A.G. and M.S.; formal analysis, J.A.C., M.S., K.N., O.D. and
J.D.; investigation, A.G., J.A.C. and E.B.-D.; data curation, A.G., K.N. and L.B.; writing—original
draft preparation, A.G. and J.A.C.; writing—review and editing, A.G., M.S., E.B.-D., J.A.M.D., O.D.
and S.C.; visualization, J.A.C. and M.S.; supervision, A.G.; project administration, A.G.; funding
acquisition, A.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Czech Science Foundation, project No. 18-28126Y, and The
Centre of Excellence, European project No. CZ.02.1.01/0.0/0.0/16-019/0000845.

Data Availability Statement: The field data and resulting data sets presented in this study are
available on request from the corresponding author.

Acknowledgments: Authors acknowledge the efforts of Daniel Berger to compile the spectral data
for processing.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil

contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [CrossRef] [PubMed]
2. Khosravi, V.; Ardejani, F.D.; Yousefi, S.; Aryafar, A. Monitoring soil lead and zinc contents via combination of spectroscopy with

extreme learning machine and other data mining methods. Geoderma 2018, 318, 29–41. [CrossRef]
3. Bruemmer, G.W.; Gerth, J.; Herms, U. Heavy metal species, mobility and availability in soils. Z. für Pflanzenernährung und

Bodenkd. 1986, 149, 382–398. [CrossRef]
4. García-Sánchez, F.; Galvez-Sola, L.; Martínez-Nicolás, J.J.; Muelas-Domingo, R.; Nieves, M. Developments in Near-Infrared

Spectroscopy; IntechOpen: London, UK, 2017; pp. 97–127. [CrossRef]
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