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Simple Summary: Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Beta (PGC-1β)
and Estrogen-Related Receptor Alpha (ERRα) are proteins that are over-expressed to support the
survival of colorectal cancer (CRC) cells, but the details of how they promote the growth of CRC has
not been defined. In this article, we determine that PGC-1β and ERRα work together to increase the
transcription of mitochondrial Phosphoenolpyruvate Carboxykinase 2 (PCK2). We show that PCK2
is required by CRC cells to optimally use amino acid L-glutamine to generate energy through the
TCA cycle to support tumor cell survival and this is one mechanism used by PGC-1β and ERRα to
promote the growth of CRC.

Abstract: Background: Previous studies have shown that Peroxisome Proliferator-Activated Receptor
Gamma, Coactivator 1 Beta (PGC-1β) and Estrogen-Related Receptor Alpha (ERRα) are over-expressed
in colorectal cancer and promote tumor survival. Methods: In this study, we use immunoprecipitation
of epitope tagged endogenous PGC-1β and inducible PGC-1β mutants to show that amino acid motif
LRELL on PGC-1β is responsible for the physical interaction with ERRα and promotes ERRα mRNA
and protein expression. We use RNAsequencing to determine the genes regulated by both PGC-1β
& ERRα and find that mitochondrial Phosphoenolpyruvate Carboxykinase 2 (PCK2) is the gene that
decreased most significantly after depletion of both genes. Results: Depletion of PCK2 in colorectal
cancer cells was sufficient to reduce anchorage-independent growth and inhibit glutamine utilization
by the TCA cycle. Lastly, shRNA-mediated depletion of ERRα decreased anchorage-independent
growth and glutamine metabolism, which could not be rescued by plasmid derived expression of PCK2.
Discussion: These findings suggest that transcriptional control of PCK2 is one mechanism used by
PGC-1β and ERRα to promote glutamine metabolism and colorectal cancer cell survival.

Keywords: PGC-1β; colorectal cancer; ERRα; PCK2; metabolism; K-Ras; precision medicine

1. Introduction

PGC-1 family proteins (PGC-1α, PGC-1β, and PPRC1) are transcriptional co-activators
that bind a diverse array of transcription factors to promote the transcription of genes that
regulate metabolism [1]. The combinations of PGC-1 family members and transcription
factors are highly context dependent. In the context of colon cancer, intestinal specific
genetic deletion of Peroxisome Proliferator-Activated Receptor Gamma, Coactivator 1 Beta
(PGC-1β) in mice does not harm normal colon epithelium, and makes the mice resistant to
genetic and chemically induced carcinogenesis [2]. We have previously shown that PGC-
1βand the transcription factor, Estrogen-Related Receptor Alpha (ERRα), are upregulated
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in colorectal cancer (CRC) in response to K-Ras mutations and that depletion of either
protein decreases growth in vitro and in vivo [3,4]. However, the nature of the association
between PGC-1β and ERRα and the genes they regulate in CRC has not been elucidated.

In this study, we first sought to confirm the interaction between PGC-1β and ERRα and
subsequently identify the specific motif on PGC-1β required for the interaction with ERRα.
Next, we identified the genes that are regulated by both PGC-1β and ERRα and found that
mitochondrial Phosphoenolpyruvate Carboxykinase 2 (PCK2) was the gene most significantly
decreased after depletion of either protein. Then, we explored the role of PCK2 in TCA cycle
metabolism, glutamine utilization, and cell survival. Lastly, we determined if PCK2 can rescue
the loss of ERRα on L-glutamine utilization and anchorage-independent growth.

2. Materials and Methods
2.1. Cell Culture

Colorectal cancer cell lines HCT116, T84, SW620, HT-29, SW480, and HCT15 were
purchased from American Type Culture Collection (ATCC) and cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) with 10% Fetal Bovine Serum (FBS), 2 mM L-glutamine
and 1 mM sodium pyruvate at 37 ◦C with ambient oxygen (O2) and 5% CO2.

2.2. Lentiviral Transduction

For virus production, a 15-cm plate of HEK-293T cells at a confluence of 75% was
transfected with 3 µg of pMD2.G, 6 µg of pPAX-2, and 12 µg of pLKO-shRNA-puro using
63 µL of polyethylenimine (PEI—1 µg/µL; Polysciences—24765) mixed in 750 µL of 10 mM
HEPES pH 7.4 and 150 mM NaCl in water. The viral supernatant was cleared at 2000 RPM
for five minutes before being filtered through a 0.45 µM membrane filter then centrifuged
at 12,000 RPM for two hours in a Sorval Lynx6000 with a F14 rotor. The resulting pellet was
resuspended in four mL of media and 8 µL of polybrene (8 µg/µL) was added. 1 mL of
the virus-polybrene solution was mixed with 1 mL of media containing 500,000 colorectal
cancer cells and plated in one well of a six well plate.

DNA sequences are listed in Supplementary Supplementary File S1.

2.3. Epitope-Tagging of Endogenous PGC-1β

The homology directed repair (HDR) template for epitope tagging of endogenous
PGC-1β was prepared by Gibson assembly of 3 pieces: (1) A 5′ prime homology arm con-
taining approximately 750 base pairs of the genomic DNA upstream of the PGC-1β stop
codon, a tobacco etch virus (TEV) cleavage site, and a twin strep 2 epitope tag; (2) a central
region containing a triple FLAG epitope and P2A-neomycin resistance cassette acquired via
restriction endonuclease digestion of pFETCH_Donor (Addgene: 63934); and (3) a 3′ prime
homology arm containing approximately 750 base pairs of the 3′ untranslated regions. Ho-
mology arms were ordered as gBlocks (Integrated DNA Technologies) and PCR-amplified.
The three fragments were assembled with a Gibson Assembly Kit (New England Biolabs).

Then, HCT116 cells were transfected with the HDR template and pCAG-SpCas9-GFP-
U6-gRNA (Addgene: 79144) expressing a gRNA targeted near the stop codon of PGC-1β.
After two days, cells were moved to larger dishes, neomycin-selected, and clones were
screened by PCR for correct genomic insertion.

DNA sequences are listed in Supplemental File S2.

2.4. Immunoprecipitation of PGC-1β

Sample Preparation: Twenty 15-cm cell culture dishes of HCT116 or T84 cells express-
ing epitope tagged PGC-1β with 75% confluence were washed with PBS and each dish
was lysed in 300 µL of RIPA lysis buffer (1% Triton X-100) with protease and phosphatase
inhibitors (Halt Cocktail). Cells were sonicated and cleared in a centrifuge at 4 ◦C for
20 min at 13,000 RPM in Thermo-Scientific Sorvall Lynx 6000 Centrifuge with F14 fixed
angle rotor. Protein concentration was determined by BCA and samples were normalized
to the same volume and concentration with additional RIPA buffer.
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FLAG Immunoprecipitation: 200 µL of 50:50 magnetic FLAG bead slurry (Millipore-
Simga, Burlington, MA, USA; M8823) were washed twice with Tris Buffer Saline (TBS) and
added to each sample and rotated overnight at 4 ◦C. The beads were collected on a magnet
and washed four times in 1 mL of TBS and eluted for three hours in 100 µL of 3X-FLAG
peptide (100 ng/µL) in water.

Strep2 Immunoprecipitation: 100 µL of a slurry of MagStrep “type3” XT beads (IBA bio-
sciences, 2-4090-010) were washed in TBS and added to each sample and rotated overnight
at 4◦. The beads were collected on a magnet and washed four times in 1 mL of Tris Buffer
Saline (TBS) and eluted for three hours in 100 µL of Buffer BXT (0.1 M Tris-Cl, 150 mM
NaCl, 1 mM EDTA, 50 mM biotin, pH 8).

2.5. Inducible PGC-1β Vector and Cell Line Generation

A full length human PGC-1β cDNA (Kind gift of Donald McDonnell, Duke) was PCR-
amplified, digested, and ligated into AAVS1_Puro_Tet3G_3xFLAG_Twin_Strep (Addgene:
92099), and verified with bidirectional Sanger sequencing. Site directed mutagenesis
was performed with the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent;
210513). Plasmids were integrated via dual transfection with pCAG-SpCas9-GFP-U6-gRNA
(Addgene: 79144) expressing a gRNA targeting the AAVS1 T2 site.

DNA sequences for mutagenesis reactions are listed in Supplemental File S3.

2.6. siRNA Transfections

The siRNA oligos (Dharmacon, Lafayette, CO, USA) targeting PGC-1β, ERRα, PCK2
or non-targeting controls were used for targeted depletion of the colorectal cancer cells. For
pooled transfections, two validated, individual ON-TARGET PLUS siRNAs were used at
a final RNAi concentration of 40 nM and were added to 5 µL of RNAiMAX (ThermoFisher,
Waltham, MA, USA, 13778150) and 500 µL Hank Buffer Salt Solution without sodium
bicarb. The mixture was added to 300,000 cells in 1.5–2 mL of media without antibiotics in
a 6-well plate. All transfections were conducted for 72-h before analysis.

RNA sequences for transfections are listed in Supplemental File S4.

2.7. RNA Sequencing and Analysis

RNA sequencing (RNA-seq) analysis was conducted by the UNMC Genomics Core.
Cells were harvested using 0.5 mL TRIzol (ThermoFisher Scientific) and stored at−80 ◦C un-
til RNA extraction was performed. RNA was extracted using RNeasy spin columns (Qiagen,
Hilden, Germany) per manufacturer’s protocol. Final RNA was eluted with nuclease-free
water and quantified using the NanoDrop 2000 (ThermoFisher Scientific). Three biological
replicates of non-targeting control, PGC-1β, or ERRα knockdown were completed using
two separate siRNA oligos for each condition. Unstranded (poly A only) RNA sequencing
libraries and 500 ng of total RNA for each of the samples were prepared per manufacturer’s
suggested protocol using the TrueSeq mRNA Protocol Kit (Illumina, San Diego, CA, USA).
Purified libraries were pooled at a 0.9 pM concentration and sequenced on an Illumina
NextSeq550 instrument and 75 bp paired end sequencing was performed. Libraries were
normalized and equal volumes were pooled in preparation for sequence analysis. Raw
sequence data has been deposited as GSE147905 in the National Center for Biotechnology In-
formation Gene Expression Omnibus. Sequence reads were preprocessed using XPRESSpipe
(v0.4.1) [5], with adapter sequences AGATCGGAAGAGCACACGTCTGAACTCCAGTCA
and AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT. Reads were processed using
H. sapiens GRCh38.13 Ensembl release 99. Differential expression analysis was performed
using XPRESSpipe wrapper for DESeq2 (v1.22.1) [6]. Differentially expressed genes were
further visualized using XPRESSplot. Isoform abundance analysis was performed using
XPRESSpipe wrapper for Cufflinks (v2.1.1) [7] and IGV (v2.4.19) [8]. Scripts used to perform
these analyses can be found at https://github.com/j-berg/frodyma_2020 (accessed on 31
March 2020).

https://github.com/j-berg/frodyma_2020
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2.8. Western Blot Analyses

Whole cell lysate extracts were prepared in radioimmunoprecipitation assay (RIPA)
buffer that was comprised of 50 mM Tris-HCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1%
sodium dodecyl sulfate, 150 mM NaCl, 2 mM EDTA, 2 mM EGTA, and addition of a pro-
tease and phosphatase inhibitor cocktail (Halt, ThermoFisher Scientific). A BCA protein
assay (Promega) was used to determine protein concentration. An 8% Acrylamide SDS-
PAGE was used to separate out the protein and nitrocellulose membranes were blocked in
Odyssey TBS blocking buffer (LI-COR Biosciences) for at least 30 min at room temperature.
The primary antibody was allowed to hybridize at least overnight at 4 ◦C. The PCK2 (8565)
antibody was obtained from Cell Signaling Technologies and used at a concentration of
1:2000. The PGC-1β (NBP1-28722) antibody was purchased from NovusBio and used at
a concentration of 1:1000. The ERRα (ab76228) antibody was purchased from Abcam and
used at a concentration of 1:1000. The FLAG epitope (F1804) antibody was purchased from
Millipore-Sigma and used at a concentration of 1:5000. The Strep2 epitope (Ab02208-1.1)
antibody was purchased from Absolute Antibody and used at a concentration of 1:2000.
The β-actin (sc-47778) and α-tubulin (sc-5286) antibodies were purchased from Santa
Cruz Biotechnology and used at a concentration of 1:2000. The anti-ALFA recombinant
nanobody-rabbit Fc fusion (N1583) was obtained for NanoTag Biotechnologies and used
at a concentration of 1:2000. IRDye 800CW and 680RD secondary antibodies (LI-COR
Biosciences, Lincoln, NE, USA) were diluted 1:10,000 in 0.1% TBS-Tween and imaged on
an Odyssey Scanner (LI-COR Biosciences).

Original images for Western Blot figures are provided in Supplemental File S5.

2.9. L-Glutamine Utilization Assays

The Seahorse XFe96 Metabolic Flux Analyzer (Agilent) was used to measure Oxygen
Consumption Rate (OCR) in the presence of only 2 mM L-glutamine as a substrate. The day
before the experiment, the FluxPak plates were hydrated in water and incubated at 37 ◦C
with ambient CO2. The afternoon before the assay, 40,000 cells were plated in each well of a 96
well assay plate in 12 replicates in regular media. On the day of the experiment, the media
was removed and the cells were washed twice with 1 mL of PBS and then covered in 180 µL of
XF DMEM medium pH 7.4, (Agilent 103575-100) with 2 mM glutamine (Agilent 103579-100).
The cells were incubated in this media at 37 ◦C with ambient CO2 for 1 h prior to beginning
the experiment. The water was removed from the FluxPak and calibration media was added
and incubated at 37 ◦C with the ambient atmosphere for an hour prior to the experiment.
Basal OCR was measured four times for three minutes with mixing between measurements
to ensure stability and the last measurement was used for statistical evaluation.

2.10. Intracellular Metabolite Analysis

HCT116 cells were transfected in five biological replicates, as previously described.
72-h after transfection, the cells were harvested and counted. After washing in saline
solution, the cell pellet was resuspended into 1 mL of ice-cold 2:2:1 MeOH: ACN: H2O
(v/v/v) containing 10 µM stable isotope-labeled canonical amino acid mix (Cambridge
Isotope Laboratories, Inc., Tewksbury, MA, USA) as internal standards. The cells were
subsequently lysed in a reciprocal shaker with 0.1 mm glass beads and the samples were
centrifuged for 15 min at 13,000 rpm at 4 ◦C. The supernatant was removed and evaporated
to dryness in the SpeedVac. The samples were reconstituted in 100 µL of resuspension
buffer containing 20% ACN and 10 mM ammonium acetate, before LC-MS/MS analysis.

Chromatographic separation and mass Spectrometry detection were performed using
a Shimadzu Nexera ultra-high-performance liquid chromatography (UHPLC) and triple-
quadrupole-ion trap hybrid Mass spectrometer (QTRAP 6500 from Sciex, Framingham, MA,
USA), equipped with an ESI source. The chromatographic separation of metabolites was
achieved on a XSelect (150 × 2.0 mm id; particle size 1.7 µm) analytical column maintained
at 40 ◦C. The optimum mobile phase consisted of 10 mM tributylamine with 5 mM acetic
acid in LC-MS grade water containing 2% isopropanol as buffer A and isopropanol as
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solvent B. The gradient elution is performed as: time zero to five min, 0% solvent B; next
4 min, 2% solvent B; 0.5 min, 6% solvent B; 2 min, 6% solvent B; for next 0.5 min, solvent B
was increased to 11% and maintained for 1.5 min; at 35 min, solvent B was increased to 28%
for next 2 min and then to 53% in 1 min and maintained for next 6.5 min. Solvent B was
reduced to 0% and maintained to equilibrate column till the next injection. The flow rate was
0.4 mL/min, and the total run time was 33 min, and the autosampler temperature was 10 ◦C.
The data acquisition was under the control of MultiQuant software (Sciex, USA). The mass
spectrometer was operated in positive as well as negative ion mode using polarity switching.
Ions were acquired in multiple reaction monitoring (MRM) mode. MRM details for the
selected metabolites were as follows: Oxaloacetate, 131.0/87.0; Phosphoenolpyruvate,
167.0/79.0; Citrate/Isocitrate pool, 191.0/111.0; Fumarate, 115.0/71.0; Succinate, 117.0/99.0.
The retention time of each metabolite was confirmed by the 13C-labelled yeast metabolite
extract, which was used as the qualitative standard (Cambridge Isotope Laboratories, Inc.).
Optimized spray voltage was at 5.5 kV for positive and 4.2 kV for negative mode, ESI
source temperature was at 400 ◦C, nitrogen was used as curtain gas, gas 1 and gas 2 at
pressure 30, 40 and 40 arbitrary units, respectively. Declustering potential in positive and
negative modes was optimized at 65 and −65 volts.

2.11. PCK2-ALFA Plasmid for Stable Expression

A full length PCK2 cDNA was obtained through Addgene (plasmid: 23715) and was
PCR amplified with a 3′ primer containing a single ALFA tag. The resulting PCR product
was digested and ligated into pcDNA-hEF-1α-neomycin resistance. The final product was
verified with Sanger sequencing from both directions and incorporated into cells using PEI
transfection and selection with G418 (InvivoGen, San Diego, CA, USA, ant-gn-5).

2.12. Confocal Microscopy

Approximately 200,000 cells with PCK2-ALFA expression were plated in 6-well plates
containing 2 glass cover slips (12 mm; Deckglaser) in DMEM medium with 10% FBS. The
following day, they were stained with 100 nM MitoTracker Deep Red (Invitrogen, Waltham,
MA, USA) for 30 min before washing and formalin fixation. Cells were then stained with
a 1:3000 dilution of FluoTag®-X2 anti-ALFA conjugated to Atto-488 (NanoTag Biotechnolo-
gies, Göttingen, Germany; N1502-At488) per the manufacturer’s directions. Cells were
mounted to glass slides using Fluoromeount G DAPI (SouthernBiotech, Birmingham, AL,
USA; 0100-20) and imaged on a Zeiss 800 CLSM with Airyscan at the UNMC Advanced
Microscopy Core Facility.

2.13. Statistical Analysis

p values were calculated using Prism Software (GraphPad, v8.4.2, La Jolla, CA, USA).
A p value of less than 0.05 was considered statistically significant. The statistical significance
of these results was evaluated using one way ANOVA with multiple comparisons to
knockdown in each cell line. The cell metabolic capacity assays were statistically evaluated
using an unpaired, two-sided t-test to compare the effects of PCK2 depletion to control
cells. Data are shown as mean +/– standard deviation (SD) unless otherwise noted.

3. Results
3.1. Endogenous PGC-1β Interacts with ERRα, Promotes ERRα Expression, and
Anchorage-Independent Growth

We have previously shown that shRNA-mediated depletion of PGC-1β caused ERRα
protein levels to decrease in human CRC cell line, HCT116 [3]. Here, we determined how
robust this observation is by using lentiviral-mediated delivery of shRNAs to decrease
PGC-1β expression in a panel of human CRC cell lines and immunoblotted for PGC-1β,
ERRα, and measured anchorage-independent growth by colony formation in soft agar.
Depletion of PGC-1β caused a decrease in ERRα protein levels and anchorage independent
growth in a panel of K-Ras mutant CRC cell lines (Figure 1A,B).
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1 
 

 

  Figure 1. Endogenous PGC-1β interacts with ERRα, promotes ERRα expression, and increases
anchorage-independent growth. (A) Lentiviral mediated transduction was used to express shRNAs
for either a non-targeting control or two independent sequences targeting PGC-1β. The cells were
lysed after 72 h and immunoblotted for PkfisGC-1β, ERRα, and loading control β-actin. (B) Colony
formation in soft agar was measured after two weeks in cells infected with the same shRNAs from
panel A. (C) Illustrative representation of the strategy used to knock in twin Strep2 and triple FLAG
epitope tags onto the C-terminus of endogenous PGC-1β using CRIRSP-Cas9 mediated genome
cutting with homology directed repair and neomycin selection. (D) Agarose gel showing PCR
verification of correct genomic insertion of the epitope tags from part C in four clones of HCT116 cells.
(E) HCT116 cells with epitope tagged endogenous PGC-1β were immunoprecipitated for either the
FLAG or the Strep2 epitope and eluted with either the 3X-FLAG peptide or 50 mM biotin. Eluates were
immunoblotted for PGC-1β and ERRα. # = p-value less than 0.001 when compared to the non-targeting
control using one way ANOVA with multiple comparisons. S-T IP = Strep-Tactin immunoprecipitation.

PGC-1 proteins are known to bind transcription factors, but the physical interaction
between the PGC-1β and ERRα has not been explored in detail. To investigate the physical
interaction between PGC-1β and ERRα, we generated a vector for epitope-tagging of
endogenous PGC-1β using homology directed repair (HDR). Using CRISPR-Cas9, we
generated a double stranded break adjacent to the stop codon of PGC-1β and used our
plasmid as a template for HDR to eliminate the stop codon and incorporate twin Strep2
triple FLAG epitopes and a neomycin resistance cassette (Figure 1C). After neomycin
selection, clones were screened by PCR to confirm the correct genomic insertion (Figure 1D).
Endogenous PGC-1β was immunoprecipitated by its FLAG epitopes and eluted with the
3X-FLAG peptide or immunoprecipitated by the Strep2 epitopes and eluted with biotin.
Immunoblotting of the eluates showed both PGC-1β and ERRα, confirming their interaction
(Figure 1E). These findings suggest PGC-1β binds ERRα to promote ERRα protein levels.

3.2. PGC-1β Requires Its LRELL Motif at Amino Acids 343–347 to Interact with ERRα

PGC-1 family proteins have been shown to use LxxLL amino acid motifs to bind
transcription factors [9–13]. To determine the motif(s) required by PGC-1β to bind ERRα,
we developed cell lines with inducible expression of N-terminus twin Strep2 triple FLAG
epitope-tagged PGC-1β under doxycycline inducible expression from the AAVS1 safe
harbor locus and found the increased levels of PGC-1β also causes a modest induction
of ERRα protein levels (Figure 2A). We then made a series of PGC-1β mutant proteins
to assess the role of each LxxLL motif in binding ERRα. To be in accordance with the
previous labeling from the literature [14] we maintained the same labeling system: Motif 1
LLAEL (amino acids 92–96), Motif 2 LKQLL (amino acids 156–160), Motif 3 LRELL (amino
acids 343–347), and Motif 4 LLSHL (amino acids 664–668). Technically, motifs 1 and 4 are
reversed but we wanted to directly assess their role in ERRα binding since there is literature
evidence to suggest these motifs may be functional in other PGC-1 family members [15].
Motifs were inactivated by mutating all leucines to alanines (LxxLL→ AxxAA or LLxxL



Cancers 2022, 14, 4879 7 of 15

→ AAxxA). Using this strategy, we created one quadruple PGC-1β mutant where all four
motifs were inactivated (zero LxxLL motifs) and four triple mutants where only one LxxLL
motif was left non-mutated (Only LxxLL motif #1, Only LxxLL motif #2, Only LxxLL
motif #3, and Only LxxLL motif #4). The five mutant and wild type PGC-1β cDNAs were
integrated into the AAVS1 safe harbor locus of HCT116 cells and the expressed proteins
were immunoprecipitated using the FLAG or Strep2 epitopes in separate experiments. The
eluates were immunoblotted for PGC-1β and ERRα and showed that the mutant PGC-1β
that was functional at only the LxxLL motif #3 (LRELL) immunoprecipitated the same
amount of ERRα as wild type PGC-1β (Figure 2B). To test the role of the LRELL motif, we
made two additional mutants that had all three leucines mutated to alanines (LRELL→
AREAA mutant) or the RE mutated to alanines (LRELL→ LAALL mutant). The PGC-1β
AREAA mutant cDNA was integrated into both HCT116 and T84 cells and tested against
wild type PGC-1β. Loss of the leucines in motif #3 eliminated ERRα binding in both
cell lines (Figure 2C). To test the role of amino acids RE in motif #3 on ERRα binding we
generated a PGC-1β LAALL mutant cDNA that was integrated into HCT116 cells and
tested against wild type PGC-1β. Mutation of amino acids RE showed only a partial loss
of ERRα binding (Figure 2D). Lastly, we tested if the PGC-1β mutant that cannot bind
ERRα could induce ERRα expression and found that the PGC-1β AREAA mutant was
unable to induce ERRα expression compared to wild type PGC-1β (Figure 2E). Overall,
these findings suggest that all five amino acids of the PGC-1β LRELL motif are required
for optimal ERRα protein binding, which caused increased levels of ERRα protein. 

2 

 
  Figure 2. PGC-1β requires the LRELL motif at amino acids 343–347 to interact with ERRα.

(A) HCT116 cells were cut at the AAVS1 safe harbor locus with CRISPR-Cas9 and homology-directed
repair and puromycin selection were used to integrate an inducible full length PGC-1β cDNA with
triple FLAG and twin Strep2 epitope tags on the N-terminus. Immunoblots for PGC-1β, Strep2, and
FLAG confirm tagged protein induction, which causes increased ERRα expression. (B) HCT116 cells
with either an empty vector, wild type dual epitope tagged PGC-1β, or five different PGC-1β mutants
were immunoprecipitated for either the FLAG epitope or the Strep2 epitope and eluted with a triple
FLAG peptide or 50 mM biotin, respectively. Eluates were subjected to immunoblot for PGC-1β
and ERRα. (C) HCT116 and T84 cells with either an empty vector, wild type dual epitope tagged
PGC-1β, or PGC-1β mutated at the LRELL motif to AREAA were immunoprecipitated as before and
immunoblotted for PGC-1β and ERRα. (D) HCT116 cells with either an empty vector, wild type dual
epitope tagged PGC-1β, or PGC-1β mutated at the LRELL motif to LAALL were immunoprecipitated
as before and immunoblotted for PGC-1β and ERRα. (E) HCT116 cells expressing either wild type or
the AREAA mutant PGC-1β from the AAVS1 safe harbor locus were treated with doxycycline for
24 h and lysed for Western blot to assess ERRα induction.
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3.3. PGC-1β and ERRα Promote PCK2 Expression

The genes regulated by PGC-1β and ERRα have only been examined in detail in breast
cancer and normal liver tissue [16–18], but not in CRC. To determine which genes were
regulated by PGC-1β and ERRα in CRC, we validated two siRNAs that targeted either
protein (Figure 3A) and that loss of PGC-1β caused decreased levels of ERRα, but decreased
levels of ERRα did not alter PGC-1β expression. To determine the genes regulated by
PGC-1β and ERRα, we transfected HCT116 cells with siRNAs targeting either PGC-1β,
ERRα, or non-targeting controls and collected total RNA after 72 h for RNA sequencing
(Supplemental File S6). First, depletion of endogenous PGC-1β led to a dramatic decrease
in ERRα mRNA, consistent with the model in the literature that binding of PGC-1 proteins
to ERRα increases ERRα transcriptional activity by decreases inhibitory phosphorylation
and that ERRα can bind to its own promoter to increase ERRα mRNA and protein levels
(Figures 2E and 3B) [18–21]. Secondly, mitochondrial Phosphoenolpyruvate Carboxykinase
2 (PCK2) decreased the most after depletion of both PGC-1β and ERRα (Figure 3B,C). PCK2
is localized to the mitochondria and catalyzes the irreversible conversion of oxaloacetate
(OAA) to phosphoenolpyruvate (PEP). Lastly, several other genes that regulate amino acid
metabolism decreased after depletion of both PGC-1β and ERRα, suggesting that these
two proteins cooperate to promote amino acid incorporation and metabolism to increase
survival of colorectal cancer cells. 

3 

 
  Figure 3. PGC-1β and ERRα promote PCK2 expression. (A) HCT116 cells were transfected with

siRNAs targeting either PGC-1β or ERRα or a non-targeting control. After 72 h, cells were lysed and
immunoblotted to confirm the depletion of the target proteins. (B,C) Volcano plots of RNAsequncing
data from total RNA analysis 72 h after knockdown of PGC-1β or ERRα compared to a non-targeting
control. (D) Colorectal cancer cell lines were transfected with siRNAs targeting either PGC-1β or
ERRα and after 72 h were immunoblotted for PCK2. (E) Colorectal cancer cell lines were transduced
with lentiviruses expressing shRNAs targeting ERRα or a non-targeting control and after 96 h were
lysed and immunoblotted for PCK2 and ERRα.

To confirm that the mRNA changes seen after depletion of PGC-1β and ERRα lead to
changes in PCK2 protein expression we performed transient knockdown of either protein
in two CRCcell lines and observed decreased levels of PCK2 by Western blot (Figure 3D).
Lastly, we used lentiviral mediated delivery of shRNA targeting ERRα to reduce ERRα
expression in three CRC cell lines and observed decreased levels of PCK2 by Western blot
(Figure 3E). These findings suggest the transcriptional control of PCK2 levels by PGC-1β
and ERRα is a mechanism to control amino acid metabolism in CRC.
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3.4. PCK2 Promotes Anchorage-Independent Growth and Glutamine Utilization

PCK2 mRNA has been shown to be upregulated by mutant K-Ras [22], but its func-
tional role has not been explored in CRC. We have previously shown that PGC-1β expres-
sion is dependent on mutant K-Ras signaling [3], suggesting that transcriptional control of
PCK2 by PGC-1β is part of oncogenic K-Ras mediated metabolic reprogramming. To assess
the role of PCK2 in CRC survival we used lentiviral-mediated delivery of shRNAs targeting
PCK2 to deplete PCK2 protein (Figure 4A) and performed anchorage-independent growth
studies. We found that depletion of PCK2 caused a significant decrease in soft agar colony
formation in a panel of K-Ras mutated CRC cell lines (Figure 4B,C). 

4 

 
  Figure 4. PCK2 promotes anchorage independent growth and glutamine utilization. (A) Colorectal

cancer cell lines were transduced with lentivirus producing shRNAs targeting PCK2 and subjected to
immunoblot after 72 h to confirm knockdown. (B) Representative photomicrographs of colonies in
soft agar two weeks after shRNA mediated depletion of PCK2 in four CRC cell lines (C) Quantification
of colonies from panel B. (D) Intracellular metabolites were measured by LC-MS/MS 72 h after siRNA-
mediated depletion of PCK2. (E) Oxygen consumption rates were measured using a Seahorse XFe96
analyzer in colorectal cancer cell lines 72 h after shRNA-mediated knockdown of PCK2 using only
L-glutamine as a substrate. * = p-value less than 0.05; ** = p-value less than 0.01, *** = p-value less
than 0.001. # = p-value less than 0.001 when compared to the non-targeting control using one way
ANOVA with multiple comparisons.

To determine how depletion of PCK2 alters metabolism, we transiently depleted PCK2
in HCT116 cells and measured intracellular metabolites using liquid chromatography and
tandem mass spectrometry (Figure 4D). PCK2 is responsible for the irreversible conver-
sion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) within the mitochondria. As
expected, depletion of PCK2 caused a six-fold increase in total oxaloacetate (OAA) levels
and a 55% decrease in total phosphoenolpyruvate (PEP) levels. Unexpectedly, elevated
levels of OAA did not appear to be converted into citrate and isocitrate, as the pool of
citrate/isocitrate was lower in cells with PCK2 depletion. Depletion of PCK2 also caused
an accumulation of upstream TCA metabolites fumarate, succinate, glutamate, and glu-
tamine, suggesting that glutamine flux through the TCA cycle was diminished in the
absence of PCK2 activity. To assess L-glutamine utilization, we used shRNAs to deplete
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PCK2 in a panel of CRC cell lines and measured their oxygen consumption rate using
a Seahorse Metabolic Analyzer using only L-glutamine as a substrate. Depletion of PCK2
caused a significant decrease in L-glutamine oxidation in four K-Ras mutant CRC cell lines
(Figure 4E). Overall, these findings suggest that PCK2 can control glutamine flux through
the TCA cycle to promote CRC cell survival.

3.5. ERRα Depletion Causes Loss of Anchorage-Independent Growth and Glutamine Utilization
That Is Not Rescued by Over-Expression of PCK2

To assess if PCK2 can rescue the loss of ERRα activity, we developed a novel plasmid
for stable PCK2 expression. PCK2 is anchored to the mitochondrial membrane at its
N-terminus so we added an ALFA epitope tag [23] to the C-terminus and expressed it via
a human EF-1α promoter in two CRC cell lines using neomycin selection (Figure 5A). We
confirmed that the PCK2-ALFA protein was successfully localized to the mitochondria
by performing direct immunofluorescence for the ALFA epitope using an ALFA epitope
recognizing nanobody conjugated to Atto-488 and compared it to MitoTracker Far Red
staining (Figure 5B). 

5 

 
Figure 5. ERRα depletion causes loss of anchorage-independent growth and glutamine utilization
and that is not rescued by elevated PCK2 levels. (A) Immunoblot of colorectal cancer cell lines
showing stable expression of PCK2 with a C-terminus ALFA epitope tag after neomycin selection.
(B) Confocal photomicrographs showing the overlap of PCK2 with mitochondrial dye. (C) Repre-
sentative photomicrographs of colonies in soft agar two weeks after shRNA mediated depletion
of ERRα in two CRC cell lines with plasmid derived PCK2 expression or empty vector control
(D) Quantification of colonies from panel C. (E) Oxygen consumption rates were measured using
a Seahorse XFe96 analyzer in CRC cell lines from panels C and D using only L-glutamine as a sub-
strate. # = p-value less than 0.001 when compared to the non-targeting control using one way ANOVA
with multiple comparisons.

To determine if over-expression of PCK2 could rescue the loss of ERRα, we used
lentiviral mediated delivery of shRNAs targeting ERRα in two cell lines stably express-
ing PCK2-ALFA or an empty vector and performed anchorage-independent growth and
L-glutamine utilization assays. Loss of ERRα caused a significant loss of colony forma-
tion and L-glutamine metabolism that was not rescued by the over-expression of PCK2
(Figure 5C–E). These findings suggest that transcriptional control of PCK2 expression is
one mechanism used PGC-1β and ERRα to promote glutamine metabolism and CRC
cell survival, but that other PGC-1β and ERRα target genes are also important to CRC
metabolism and survival.
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4. Discussion

Here, we show that PGC-1β and ERRα physically interact and promote genes that
increase amino acid metabolism. PGC-1β has been shown to regulate several metabolic
processes in other model systems [2,19,24–26], but the regulation of PCK2 and amino
acid metabolism is a novel observation in CRC that differs from previous studies. Our
study is the first to examine the role of PCK2 in CRC metabolism and survival and our
observations suggest that PCK2 maximizes flux through the TCA cycle by converting OAA
to PEP to promote cell survival. Our finding that elevated levels of OAA after siRNA-
mediated depletion of PCK2 were not converted to citrate and isocitrate suggests that
there are insufficient levels of either citrate synthetase or its other substrate Acetyl-CoA.
Using Western blot, we were able to easily detect citrate synthetase in all CRC cell lines
tested. We did not measure levels of Acetyl-CoA in the mitochondria. These data are
consistent with reports that the mitochondrial pyruvate complex is down-regulated in
colorectal cancer [27,28], which would limit the import of pyruvate into the mitochondria
for conversion into Acetyl-CoA. These findings suggest intramitochondrial levels of Acetyl-
CoA are insufficient to convert excess OAA to citrate and that conversion of OAA to PEP,
presumably for mitochondrial export, is the most efficient method for utilizing L-glutamine
by the TCA cycle in CRC.

Our data show that PGC-1β uses all five amino acids of its LRELL motif to bind ERRα
protein, but no other LxxLL or LLxxL motif appears to bind ERRα, which suggests to us that
PGC-1β can only bind one ERRα molecule at a time. ERRα has been shown to directly bind
DNA at Estrogen-Related Receptor Response Elements (ERRE) (TNAAGGTCA) to increase
transcription [18,29]. However, ERRα has over 800,000 predicted binding sites in the human
genome, raising the possibility that additional transcription factors are required for gene
selection by PGC-1β. Additionally, mapping of the ERREs shows several near the PCK2
core promoter, but many are greater than several kilobases from the transcriptional start
site (TSS) suggesting again that additional factors are required to bring the PGC-1β/ERRα
complex to the TSS of target genes to increase transcription. Here, we have created several
novel PGC-1β mutant proteins that can be used to assess the role of each LxxLL and LLxxL
motif alone or in combination to determine their role in transcription factor binding and
to discover new components of PGC-1β signaling. Additionally, PGC-1 family proteins
have been shown to bind Host Cell Factor proteins through a DHDY motif [30], which
represents another potential mechanism that PGC-1β may use for gene selection. Host Cell
Factor 1 and 2 have been proposed to bridge transcriptional co-activators, such as PGC-1
family proteins, to DNA binding via transcription factor binding at their N-terminus Kelch
repeat domains, but this process has not been fully explored.

Our study has clinical implications for patients with K-Ras mutations. In patients with
liver metastases of CRC, K-Ras mutations have been shown to be a negative prognostic
marker of overall survival [31–34]. We have previously shown that PGC-1β expression
is dependent on mutant K-Ras [3,4] and that targeting the PGC-1β signaling pathway
would represent a novel target for precision medicine in tumors with K-Ras mutations.
Currently, there are no treatments that directly inhibit PGC-1β. Our data suggest that
targeting ERRα or PCK2 could act as a treatment strategy in K-Ras mutant tumors. Several
groups have developed inverse agonists that bind the ERRα ligand binding pocket and
force it into an inactive conformation [35–41]. Our data from (Figures 2E and 3B) show
that the binding of PGC-1β to ERRα dramatically increases ERRα activity and expression
and suggest that preventing the interaction between PGC-1β and ERRα would inhibit
ERRα signaling through an alternate mechanism to inhibitors of the ligand binding pocket.
Defining the domain on PGC-1β that is required to bind ERRα represents the first step
toward developing inhibitors that would block the PGC-1β/ERRα interaction. Similar
efforts are underway to identify selective inhibitors of PCK2, but current inhibitors also
target PCK1 with minimal selectivity between the two paralogs [42–45]. Inhibition of
either ERRα or PCK2 would represent a novel treatment strategy that should be tested in
pre-clinical models of CRC.
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Lastly, our study is limited in the following ways: (1) All the experiments were
performed in the human CRC cell lines with K-Ras mutations. Although K-Ras mutated
tumors represent approximately 40% of all CRC, additional testing is required to see if
our results translate to tumors with either wild type K-Ras, mutant BRAF, or HER-2/neu
over-expression. (2) We identified several genes regulated by both PGC-1β and ERRα, but
only focused on the role of PCK2 in glutamine metabolism. Over-expression of PCK2 was
unable to rescue the loss of ERRα, suggesting that additional PGC-1β/ERRα target genes
are required for K-Ras induced metabolic change. Further studies to define the role of
additional PGC-1β/ERRα target genes will further elucidate the scope of these metabolic
changes. (3) Our metabolite analysis of CRC cells with and without PCK2 was limited to
whole cell extracts and measured by LC-MS/MS. However, metabolite concentrations can
vary across different subcellular compartments. For example, the depletion of PCK2 caused
decreased levels of total levels of PEP, which consists of the PEP generated by PCK2 in
the mitochondria combined with PEP from other sources. Advancements in methodology
will be needed to more precisely define how metabolites change within the mitochondria
after the depletion of PCK2. (4) PGC-1α is the PGC-1β paralog with the most amino acid
similarity to PGC-1β and has been more intensively studied. The literature has shown that
PGC-1α and ERRα directly interact, and multiple reports have characterized the interacting
alpha helices by solving the crystal structure of this critical interaction [11–13]. Based on
the literature, we assume that PGC-1β and ERRα directly interact, but we did not directly
test this. (5) We did not directly map the binding of ERRα to the PCK2 gene as we felt
this would be best interpreted in the context of a more complex understanding of the
PGC-1β/Host Cell Factor proteins interaction.

5. Conclusions

Inhibiting amino acid metabolism in CRC with K-Ras mutations by targeting PGC-1β
signaling has the potential to provide cancer cell specific therapy without subjecting the
patient to the stresses of global metabolic restriction.
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