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Abstract 

Background  The use of machine learning has the potential to estimate the probability of a second classification 
event more accurately than traditional statistical methods, and few previous studies on predicting new fractures 
after osteoporotic vertebral compression fractures (OVCFs) have focussed on this point. The aim of this study was to 
explore whether several different machine learning models could produce better predictions than logistic regression 
models and to select an optimal model.

Methods  A retrospective analysis of 529 patients who underwent percutaneous kyphoplasty (PKP) for OVCFs at our 
institution between June 2017 and June 2020 was performed. The patient data were used to create machine learn-
ing (including decision trees (DT), random forests (RF), support vector machines (SVM), gradient boosting machines 
(GBM), neural networks (NNET), and regularized discriminant analysis (RDA)) and logistic regression models (LR) to 
estimate the probability of new fractures occurring after surgery. The dataset was divided into a training set (75%) 
and a test set (25%), and machine learning models were built in the training set after ten cross-validations, after which 
each model was evaluated in the test set, and model performance was assessed by comparing the area under the 
curve (AUC) of each model.

Results  Among the six machine learning algorithms, except that the AUC of DT [0.775 (95% CI 0.728–0.822)] was 
lower than that of LR [0.831 (95% CI 0.783–0.878)], RA [0.953 (95% CI 0.927–0.980)], GBM [0.941 (95% CI 0.911–0.971)], 
SVM [0.869 (95% CI 0.827–0.910), NNET [0.869 (95% CI 0.826–0.912)], and RDA [0.890 (95% CI 0.851–0.929)] were all 
better than LR.

Conclusions  For prediction of the probability of new fracture after PKP, machine learning algorithms outperformed 
logistic regression, with random forest having the strongest predictive power.

Highlights 

1.	 Machine learning significantly outperformed logistic regression models in predicting new fractures after osteo-
porotic vertebral compression fractures.
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2.	 The random forest model performs best among these machine learning models.
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Introduction
One of the serious consequences of osteoporosis is osteo-
porotic vertebral compression fracture (OVCF), which 
affects more than 700,000 Americans every year [1]. By 
2025, > 3 million osteoporotic fractures and $25 billion 
in related health care costs will occur in the USA [2]. 
OVCFs cause persistent back pain, kyphosis, and lim-
ited motion [3]. In 1999, Mark Reiley improved percu-
taneous vertebroplasty (PVP) and created percutaneous 
kyphoplasty (PKP) [4], which restores vertebral height 
and reduces pain by injecting cement into the fractured 
vertebral body in a minimally invasive way; thus, it has 
become the preferred treatment for OVCFs because of its 
ability to provide rapid relief and shorten recovery time 
[5].

Despite these advantages, there are many complica-
tions after PKP, among which new vertebral compression 
fracture (NVCF) is one of the most common complica-
tions, with an incidence of up to 50% [6, 7]. There are 
various statistical methods for estimating the probability 
of occurrence of binary events such as NVCF, the most 
commonly used being logistic regression (LR). With the 
rapid development in the field of artificial intelligence, 
machine learning (ML) is increasingly used in the medi-
cal field [8, 9], in particular, when using large datasets for 
prediction [10, 11]. However, it is unclear whether ML 
methods can provide better predictive power than tradi-
tional logistic regression algorithms. The purpose of this 
study was to investigate whether there is any difference 
in the probabilistic predictive ability of machine learning 
and logistic regression methods for predicting new frac-
tures after OVCF surgery. We used six different machine 
learning methods to analyse our data: random forest 
(RF), gradient boosting machine (GBM), decision tree 
(DT), support vector machine (SVM), neural networks 
(NNET), and regularized discriminant analysis (RDA). 
The algorithm with the highest AUC was selected as the 
optimal algorithm.

Materials and methods
Inclusion and exclusion criteria
The data of 529 patients with OVCFs who were treated 
with PKP and completed at least 2  years of follow-up 
after attending our hospital from January 2017 to June 
2020 were analysed. The inclusion criteria were as fol-
lows: (1) age ≥ 60  years; (2) high signal in T2 and low 
signal on T1 of the fractured vertebrae confirmed by 
preoperative magnetic resonance imaging; (3) bone min-
eral density T value ≤ − 2.5 measured by dual-energy 
X-ray; (4) follow-up time ≥ 2  year; (5) complete preop-
erative and postoperative clinical and imaging data of 
the patients; and (6) all patients completed the follow-up. 

The exclusion criteria were as follows: (1) symptomatic 
low back pain from other causes (disc herniation, slipped 
vertebrae, lumbar isthmus fracture, fall from height, 
etc.); (2) infectious diseases; (3) malignant tumours of 
the spine; (4) paralysis or loss of voluntary mobility; (5) 
unwillingness to complete follow-up; and (6) pathologi-
cal fractures, posterior column fractures, and neurologi-
cal symptoms. In addition, even if new vertebral fractures 
occurred multiple times during postoperative follow-up, 
only the first occurrence was included in the analysis.

Observation factors
Preoperatively, according to the morphology of the frac-
tured vertebrae based on imaging data, fractures involv-
ing the anterior column causing compression of the 
anterior column were classified as wedge-shaped frac-
tures. When they were fractures that involved the mid-
dle column caused compression of the middle column, 
while the compression of the anterior and posterior col-
umn were not obvious, they were classified as biconcave 
fractures. When the anterior, middle, and posterior col-
umns were all compressed, this type of fracture was clas-
sified as compression fracture. Fractures occurring in the 
T11-L2 vertebral body were defined as thoracolumbar 
fractures. The vertebral height recovery rate was calcu-
lated as (postoperative vertebral height − preoperative 
vertebral height)/normal vertebral height * 100%, where 
normal vertebral height was defined as (upper vertebral 
height + lower vertebral height)/2.

Postoperative frontal and lateral spine radiographs 
were taken in all patients to measure the segmental 
kyphosis of the operated segment. The segmental kypho-
sis angle was defined as the angle between the lower 
endplate of the upper vertebral body of the fractured ver-
tebra and the upper endplate of the lower vertebral body.

Unilateral or bilateral distribution was defined accord-
ing to whether the cement crosses the midline in the 
postoperative orthopantomogram of the spine; if the 
bilateral cement masses are discontinuous, the distribu-
tion is bilaterally separated. If vice versa, the distribution 
is bilaterally fused.

Statistical methods
Continuous variables are expressed as the 
mean ± standard deviation ( x±s), and categorical vari-
ables are expressed as ratios [n (%)]. The data were 
randomly divided into a training set (75%) and a valida-
tion set (25%). Logistic regression was applied to ana-
lyse the independent risk factors for new postoperative 
fractures in PKP and to calculate the odds ratio (OR) 
and 95% confidence interval (95% CI). OR > 1 indicated 
that the variable was a positive risk factor for outcome, 
while OR < 1 indicated that the variable was a negative 



Page 4 of 12Ma et al. Journal of Orthopaedic Surgery and Research           (2023) 18:62 

risk factor for outcome. P < 0.05 was considered statisti-
cally significant. Statistical analysis and modelling were 
performed using SPSS software (Version 20.0, IBM 
Corporation, Chicago, USA) and R Studio software 
(Version 25.0, R Foundation for Statistics Computing, 
Vienna, Austria). Various packages were used to train 
the models and plot the corresponding graphs, and 

the caret package was applied to train and validate the 
machine learning models.

As a complement to the logistic regression, six 
machine learning models are fitted: decision tree 
(DT), random forest (RF), gradient boosting machine 
(GBM), support vector machine (SVM), neural net-
work (NNET) and regularized discriminant analysis 
(RDA). Random forest and gradient boosting machine 

Fig. 1  Classification algorithm. Logistic regression was used to calculate the probability of a binary ending event, fitting an S-shaped probability 
curve. Support vector machine is a binary classification model based on the principle of finding the hyperplane in a three-dimensional scatter 
plot that divides the dataset into two categories for smaller datasets. Neural networks are complex interconnected regression layers, such as 
biological neural networks in the human brain. Neural networks benefit from a large amount of data. Decision trees (e.g. random forests and 
gradient boosting machines, where random forests are algorithms that integrate multiple decision trees; gradient boosters are algorithms that 
iterate through multiple decision trees to improve predictive power) use a flowchart-like structure for decision-making that is easy to understand 
and visualize. The data points are split into similar categories (each "branch in the tree", so-called splitting points) at a given time. Regularized 
discriminant analysis can reduce the dimensionality of a binary ending dataset with many features and avoid overfitting to achieve sample 
balancing
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are based on decision tree, and decision tree as a weak 
prediction model is usually implemented by optimiz-
ing the objective or voting. However, due to the limited 
capability of the algorithm, the prediction results are 
usually affected by the training set used to construct 
the model. Although the problem of overfitting the 
model to the training dataset can be solved by pruning, 
the prediction capability is relatively weak for a single 
tree model. Random forest avoids the phenomenon of 
data overfitting and can balance the error for unbal-
anced datasets. The algorithm is highly resistant to dis-
turbances, and the model does not fail even when there 
are many missing samples. The principle of the gradi-
ent boosting machine is to use an additive model with 
a forward distribution algorithm and, based on this, a 
boosting method with a decision tree as the basis func-
tion, which is simply an additive model of many deci-
sion tree models. A support vector machine is built 

as a hyperplane with two hyperplanes parallel to each 
other on either side of the hyperplane that separates 
the data, thus dividing the patients into groups with the 
same outcome. The greater the distance or gap between 
the parallel hyperplanes, the smaller the total error of 
the classifier. Neural networks are derived by inputting 
multiple nonlinear models and a weighted interconnec-
tion between different models (the weighting process is 
performed in the hidden layer), resulting in an output 
model. Regularized discriminant analysis is an effec-
tive algorithm for datasets with many features to avoid 
underfitting and overfitting of the model and to equal-
ize the sample (Fig. 1).

The area under the curve (AUC) of the receiver oper-
ating characteristic curve (ROC) was used as the main 
indicator to evaluate the predictive ability of the model, 
ranging from 0 to 1, with higher values indicating better 

Table 1  Baseline characteristics [n (%), x±s]

Characteristics

Patients number 529

Age 71.185 ± 10.012

Gender (Male/Female) 135 (25.5)/394 (74.5)

BMI (kg/m2) 23.394 ± 3.299

BMD − 2.811 ± 0.270

Hypertension 200 (37.8)/329 (62.2)

Diabetes 45 (8.5)/484 (91.5)

Heart disease 28 (5.3)/501 (94.7)

Respiratory system disease 7 (1.3)/522 (98.7)

Cerebrovascular disease 21 (4.0)/508 (96.0)

Injury time(days) 26.718 ± 67.426

Time from admission to surgery (days) 3.010 ± 2.552

Number of fractured vertebral 1.327 ± 0.693

Fracture vertebral location

 Thoracic/thoracolumbar/lumbar 72 (13.6)/347 (65.6)/110 (20.8)

Approach

 Unilateral/bilateral 147 (27.8)/382 (72.2)

Fracture history(Y/N) 90 (17.0)/439 (83.0)

New fracture(Y/N) 56 (10.6)/473 (89.4)

Paravertebral leakage 74 (14)/455 (86)

Intervertebral leakage 63 (11.9)/466 (88.1)

Spinal leakage 12 (2.3)/517 (97.7)

Postoperative Cobb 12.508 ± 8.293

Cement distribution

 Unilateral/bilateral fusion/ bilateral separation 119 (22.5)/285 (53.9)/125 (23.6)

Cement-endplate contact (Y/N) 417 (78.8)/417 (21.2)

Fracture type

 Wedge/biconcave/compression 208 (39.3)/264 (49.9)/57 (10.8)

Anti-osteoporosis(Y/N) 429 (81.1)/429 (18.9)

Vertebral height recovery rate 14.393 ± 13.441
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predictive performance. The performance of the model 
was tested using tenfold cross-validation.

Results
Baseline data
The mean age of the 529 patients was 
71.185 ± 10.012  years, and a total of 56 (10.6%) had 
NVCF after surgery. The baseline data are shown in 
Table 1. BMI was included in this study as a better indica-
tor of obesity, and only BMI was included without con-
sidering height or weight. Based on the collected patient 
data, a heatmap was made to show the relationship 

Fig. 2  Heatmap. Each square indicates the correlation between the factors in that row and column, and the colour is used to indicate the 
amount of correlation. Factors near positive colours are high expressions and positive correlations, while factors near negative colours are low 
expressions and negative correlations. Abbreviation: hypert (hypertension); Heart.dis (heart diseases); resp.dis (respiratory diseases); cerebro.dis 
(cerebrovascular disease); ats.time (time from admission to surgery); fract.num (number of fractured vertebral); fract.loc (fracture vertebral location); 
para.leak (paravertebral leakage); inter.leak (intervertebral leakage); spinal.leak (spinal leakage); post.cobb (postoperation cobb); cement.dis (cement 
distribution); fract.typ (fracture type); anti.ost (anti-osteoporosis); VHRA (vertebral height recovery rate)

Table 2  Univariate and multivariate analysis

‘Lower’ and ‘upper’ represent the bounds of the 95% confidence interval

Variates Odd ratio Lower Upper P

Gender 2.621 1.030 6.673 0.043

Cerebrovascular disease 28.522 8.749 92.989 0.000

Injury time 0.985 0.969 1.001 0.065

Fracture history 12.298 6.250 24.199 0.000

Intervertebral leakage 2.501 1.029 6.082 0.043
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Fig. 3  Variable importance distribution in the random forest model. Time of injury, history of previous fracture, bone density, rate of vertebral 
height recovery, and age were ranked in order of importance for new fractures after surgery. Other factors in the random forest model were not 
important enough for the effect of new fractures after surgery

Table 3  Evaluation of prediction performance of each model

The Kappa values are based on the confusion matrix used for consistency testing, with results in the range of 0–0.2 for SLIGHT, 0.21–0.4 for FAIR, 0.41–0.60 for 
MODERATE, 0.61–0.80 for SUBSTANTIAL, and 0.81–1 for ALMOST PERFECT. Sensitivity is the percentage of true positive samples among actual positive samples, and 
specificity is the percentage of true negative samples among actual negative samples

Models AUC (95% CI) Kappa Sensitivity Specificity

Logistic regression 0.898 (0.860–0.936) 0.794 0.831 0.965

Random forest 0.940 (0.910–0.970) 0.880 0.966 0.913

Gradient boosting machine 0.910 (0.873–0.947) 0.820 0.898 0.922

Decision tree 0.842 (0.796–0.888) 0.683 0.779 0.904

Support vector machine 0.902 (0.864–0.940) 0.803 0.856 0.948

Neural network 0.923 (0.889–0.957) 0.846 0.907 0.939

Regularized discriminant analysis 0.915 (0.879–0.950) 0.828 0.881 0.947



Page 8 of 12Ma et al. Journal of Orthopaedic Surgery and Research           (2023) 18:62 

between the variables. The heatmap shows that cement 
intervertebral leakage and previous fracture history were 
most correlated with outcome (Fig. 2).

Multivariate logistic regression analysis
In the multivariate logistic regression analysis (Table 2), 
the results showed that sex [OR = 2.621, 95% CI (1.030–
6.673), P = 0.043], cerebrovascular disease [OR = 28.522, 
95% CI (8.749–92.989), P = 0.000], fracture history 
[OR = 12.298, 95% CI (6.250–24.199), P = 0.000], and 
intervertebral leakage of bone cement [OR = 2.501, 95% 
CI (1.029–6.082), P = 0.043] were independent predictors 
of NVCF.

Variable importance ranking
The random forest-based variables ranked in order of 
importance were time of injury, fracture history, BMD, 
vertebral height recovery rate, age, postoperative Cobb 
angle, BMI and female sex. Time from admission to 
surgery, hypertension, number of fractured vertebrae, 
cerebrovascular disease, cement bilateral fusion dis-
tribution, thoracolumbar segment fracture, cement 
bilateral fusion distribution, bilateral approach, anti-
osteoporosis treatment, cement-endplate contact, dia-
betes, wedge fracture, paravertebral leakage, cement 
bilateral separation distribution, cement intervertebral 
leakage, compression fracture, lumbar fracture, heart 
disease, cement spinal leakage, and respiratory disease 
performed poorly and in descending order (Fig. 3).

Performance of machine learning algorithms
To compare the prediction performance of different 
algorithms, our study used the AUC from a tenfold 
cross-validation and validated it on a test set as the 
main index to evaluate the model performance. Among 
the six machine learning models, only the decision 
tree [0.842 (0.796–0.888)] had a lower AUC value than 
logistic regression [0.898 (0.860–0.936)], and the ran-
dom forest model predicted NVCF best with an AUC 
of 0.948 (95% CI 0.920–0.977). The results are shown in 
Table 3.

Discussion
PKP has led to symptom reduction, functional recov-
ery and improved quality of life in OVCF patients. 
However, there are still postoperative complications 
that cannot be ignored, and NVCF is one of the most 
common complications. It is increasingly important to 
better anticipate and reduce the occurrence of com-
plications in advance. Therefore, accurate predictive 

models are needed to help clinicians and patients share 
decisions and understand the risk of postoperative 
complications. With advances in the field of artificial 
intelligence, machine learning is often able to perform 
better than traditional linear models [12, 13].

Machine learning uses computer algorithms to learn 
complex relationships or patterns between data from 
large amounts of data, recognizes the data by training 
existing algorithms to perform many operations, and 
iteratively changes the algorithms to achieve optimal 
performance, resulting in models that relate multiple 
feature variables to the target variable [14]. Specifically, 
supervised machine learning identifies relationships 
between input and output data (i.e. the computer learns 
from patient data) to produce outcome predictions based 
on the input data [15]. Clinicians can use this AI-based 
strategy to help them choose more rational treatment 
options. ML has the advantage of being highly capable, 
objective and reproducible when dealing with large data-
sets with reliable results [16]. It also has the potential 
to improve the accuracy of early diagnosis, determine 
disease progression, and improve the ability to predict 
patient outcomes, such as the risk of complications [17]. 
These advantages can facilitate the sharing of information 
for decision-making between clinicians and patients and 
keep track of disease progression [18]. Machine learning 
improves the efficacy of predicting clinical outcome met-
rics by constructing different algorithms for evaluation 
and comparison. Machine learning algorithms include 
support vector machines, random forests, gradient 
boosting machines, neural networks, and deep learning, 
in addition to traditional logistic regression and decision 
trees, which have been extended on this basis [19]. With 
the availability of computers and large clinical datasets, 
machine learning as a form of artificial intelligence has 
started to be used in clinical settings to assist in medical 
decision-making.

PKP has become a common treatment for OVCFs, 
but the incidence of postoperative NVCFs can be as 
high as 50% [20]. In a random forest-based ranking of 
the importance of variables, patients with a shorter time 
to fracture were at greater risk of postoperative NVCF 
(Fig.  3), and patients with a longer time to injury had a 
greater increase in bone formation markers than bone 
resorption markers [21]. Progressive degeneration may 
increase the lumbar BMD over time compared with 
lower lumbar BMD values and a longer duration of back 
pain in patients hospitalized for surgery within a short 
period of time after symptom onset. Fresher fractures 
may cause oedema or haematoma around and within 
the fractured vertebra and may lead to prolonged back 
pain and poor functional recovery. A review [22] showed 
that for patients with OVCF within 6 weeks, PKP did not 
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demonstrate a significant benefit compared to placebo. A 
meta-analysis by Buchbinder et al. [23] reported no sig-
nificant differences in pain, disability, quality of life, or 
outcomes with PKP compared to sham surgery. There-
fore, from a clinical perspective, the treatment goals for 
patients with fresh fractures should focus on strategies 
that first improve functional recovery, relieve back pain, 
and increase lumbar spine BMD values.

In this study, previous fracture history [OR = 12.298, 
95% CI (6.250–24.199), P = 0.000] was the most effective 
predictor of postoperative fracture risk. Many patients 
with clinically asymptomatic previous fractures are found 
to have a history of previous vertebral fractures on imag-
ing at the next visit to the hospital when the fracture 
arises, and therefore, patients do not recognize the dan-
ger of osteoporosis until symptoms develop. It has been 
reported [24] that individuals with a history of clinically 
diagnosed fractures or radiographic evidence of vertebral 
fracture patterns are at increased risk for hip, spine, and 
other fractures. It was also reported that approximately 
half of women with fracture patterns did not report 
having back pain, and approximately two-thirds had no 
previous clinical diagnosis of fracture. A study by Torg-
erson et al. [25] examined the association between mul-
tiple fractures and secondary fractures, with a 5.9-fold 
increased risk of secondary fractures in women with two 
or more fractures. This suggests that the risk of a new 
fracture following the presence of multiple prior frac-
tures is greatly increased. Therefore, patients with a his-
tory of fractures should undergo further evaluation for 
osteoporosis and fracture risk.

The degree of osteoporosis is a major risk factor for the 
development of postoperative NVCF, and bone mineral 
density, an index to assess the mineral content of bone, 
is commonly used to diagnose osteoporosis [26]. Ning 
et al. [27] found that by including 921 cases with low T 
values, bone trabeculae that were denser became sparse, 
leading to reduced bone support and toughness, an 
increased risk of fracture postoperatively and a greater 
risk of NVCF. It has been suggested that the progres-
sion of osteoporosis is associated with the development 
of postoperative NVCFs [28] and that anti-osteoporosis 
treatment may slow the progression of osteoporosis and 
prevent the development of NVCFs [27–29]. A 3-year 
follow-up study by Bawa et  al. [30] showed that effec-
tive anti-osteoporosis treatment significantly reduced the 
incidence of postoperative VCFs. Multifactorial analysis 
showed that ineffective anti-osteoporosis treatment was 
a significant risk factor for NVCFs after PKP surgery. 
Therefore, anti-osteoporosis therapy should be used as a 
routine treatment after PKP in patients with OVCFs to 
reduce the incidence of refracture.

Leakage of bone cement through the ruptured endplate 
into the intervertebral disc causes changes in the sur-
rounding vertebral body stresses and changes in the stiff-
ness of the injured vertebral body due to reinforcement 
of the injured vertebral body but has a limited effect on 
the adjacent vertebral body after cushioning by the disc. 
However, when bone cement leaks into the intervertebral 
disc, it can increase the stress on the endplate of the adja-
cent vertebral body, and this alteration may increase the 
risk of new vertebral fractures [31]. A study by Nieuwen-
huijse et al. [32] found a significant association between 
bone cement leakage into the disc and the occurrence of 
postoperative NVCF. Multifactorial analysis in this study 
showed that leakage of bone cement into the interverte-
bral disc [OR = 2.501, 95% CI (1.029–6.082), P = 0.043] 
was a risk factor positively associated with new fractures. 
In addition, the heat generated by the bone cement leak-
ing into the intervertebral disc may cause some damage 
to the disc, which may also be a major contributor to 
accelerated disc degeneration [33].

Oestrogen can directly affect bone metabolism by 
regulating cellular physiological functions. The decrease 
in oestrogen levels in postmenopausal women inevi-
tably leads to the weakening of its inhibitory effect on 
osteoclasts, an increase in the number of osteoclasts, a 
decrease in apoptosis, and the prolongation of lifespan, 
which enhances bone resorption and promotes the pro-
gression of osteoporosis. Although osteoblast-mediated 
bone formation was also increased, it was not sufficient 
to compensate for excessive bone resorption. Active and 
unbalanced bone remodelling leads to thinning or frac-
ture of trabecular bone, increased cortical bone porosity 
leads to decreased bone strength, and decreased oestro-
gen reduces bone sensitivity to mechanical stimulation, 
resulting in bone exhibiting pathological changes such as 
disuse bone loss. [34] A multicentre large-sample cohort 
study on the prevalence of osteoporosis in Chinese 
individuals by Zeng et  al. [35] found that the number 
of women suffering from osteoporosis is much greater 
than that of men. In the USA, approximately 1 in 2 white 
women or 1 in 5 men will experience an osteoporosis-
related fracture in their lifetime [36]. However, in a large 
cross-sectional study by Wang et al. 18, it was found that 
in China, 5.0% of men and 20.6% of women aged 40 or 
older had osteoporosis, and 10.5% of men and 9.7% of 
men aged 40 or older had vertebral fractures. The similar 
prevalence of vertebral fractures in men and women sug-
gests that we should also pay attention to the prevention 
and treatment of osteoporosis in men.

Multivariate analysis showed that the presence of 
cerebrovascular disease [OR = 28.522, 95% CI (8.749–
92.989), P = 0.000] was associated with a higher risk 
of postoperative NVCF. A study by Tanislav et  al. [37] 
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showed that the occurrence of stroke as well as tran-
sient cerebral ischaemia was positively associated with 
fracture. Various adverse outcomes, such as depres-
sion, pain and reduced quality of life following stroke 
occurrence, lead to a higher risk of falls and fractures 
[38]. A large cohort study by Wang et al. [39] found that 
patients had a risk of fracture of more than 8% 5 years 
after stroke occurrence and that stroke was signifi-
cantly associated with fracture risk. Stroke in certain 
vascular regions of the brainstem can lead to impaired 
body balance and increased risk of falls [40]. In addi-
tion, impairment of visual, motor, sensory or cognitive 
function after the onset of cerebrovascular disease may 
also lead to fall-related injuries [41]. Within 2  years 
after stroke, 60.7% of fallers experienced a second or 
multiple falls, and 23.4% of patients had a fracture [42]. 
In addition to falls, the accelerated decrease in bone 
mineral density after stroke may lead to fractures in 
stroke patients [43]. Poststroke muscle weakness leads 
to limited weight bearing and reduced activity of the 
limb, which results in reduced bone mass. In addi-
tion, malnutrition, reduced sun exposure, and vitamin 
D deficiency can exacerbate bone loss in stroke survi-
vors. Common stroke treatments, such as oral antico-
agulants, can also increase the risk of osteoporosis and 
fracture [44]. Therefore, effective measures should be 
taken for skeletal health screening and fracture preven-
tion in patients with cerebrovascular disease.

A comparison of multiple machine learning algorithms 
showed that random forests performed best in predict-
ing the risk of postoperative NVCF. Our study has several 
advantages. First, few studies have examined which of the 
logistic regression and machine learning algorithms is 
better in predicting the probability of NVCF after PKP. 
Furthermore, our model shows superior predictive abil-
ity compared to other models. However, this study also 
has some limitations. First, the nature of retrospective 
studies can lead to subjective and selection bias. Second, 
the sample size included in the single-centre study is still 
not large enough. Third, because most clinicians have a 
low level of understanding of techniques such as machine 
learning, this may limit the dissemination and applica-
tion of the study results. Finally, single-centre studies 
may limit the sample selection and its applicability to 
other regions, so we need further external validation with 
multicentre data. In this paper, we found that the ran-
dom forest algorithm has good performance in predict-
ing bone cement leakage after orthopaedic surgery, and 
at the same time, it has comparable accuracy and ease of 
use. In the future, we will collaborate with more countries 
and institutions to include patient samples from different 
countries, regions and medical centres to conduct multi-
centre, large-sample prospective studies to obtain more 

reliable results. We look forward to further improving 
the predictive power in future studies by applying more 
advanced and reliable computer technology.

Conclusion
We built six machine learning models, decision tree, 
random forest, gradient boosting machine, support 
vector machine, neural network, and regularized discri-
minant analysis, and compared them with the logistic 
regression model. Tenfold cross-validation was applied 
to each model, and the final comparison of the AUC 
values calculated by the confusion matrix revealed that 
all machine learning models, except decision trees, per-
formed more accurately than logistic regression. Thus, 
in general, machine learning performed better than 
logistic regression in predicting new fractures after 
OVCF, with random forest having the highest accuracy.
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