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Abstract

We extend the classical SIR epidemic spread model by introducing the “quarantined” com-

partment. We solve (numerically) the differential equations that govern the extended model

and quantify how quarantining “flattens the curve” for the proportion of infected population

over time. Furthermore, we explore the potential of using drones to deliver tests, enabling

mass-testing for the infection; we give a method to estimate the drone fleet needed to deliver

the tests in a metropolitan area. Application of our models to COVID-19 spread in Sweden

shows how the proposed methods could substantially decrease the peak number of infected

people, almost without increasing the duration of the epidemic.

Introduction

Importance of proactive COVID-19 screening, including symptomless people, has been

acknowledged [1–6]. However, mass-testing may be seriously impeded by population’s fear of

visiting testing facilities due to potentially high concentration of infection there; the fear is con-

firmed by health officials who advise against visiting hospitals “unless necessary” (examples of

such directives from authorities during COVID-19 pandemic abound): “Stay home” is the

overarching recommendation during pandemic virtually everywhere in the world. The good

news is that COVID-19 test does not have to be necessarily conducted at a designated facility

because (despite being somewhat unpleasant,) the test can be self-administered: a person may

collect the material him/herself or with the help of a family member. Still, having people go

somewhere to pick up and drop the tests would beat the purpose of the social distancing. A

possible solution is to use drones to distribute tests to the population as well as to collect the

tests back, bringing them to laboratories; the test results could then be communicated back to

people electronically, so that those with positive tests put themselves into quarantine. Here we

follow the infection dynamics by extending the SIR model [7] to include the compartment for

quarantined population and show how the testing intensity, increased with use of drones,

decreases the epidemic spread. Since pre-symptomatic infectiousness makes early surveillance

and control crucial (symptom-based actions are not as effective), our results may guide the

cooperation between health and transportation authorities towards optimal use of the available

resources (other transportation-related work in public health domain includes [8–10]).
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Methods

We consider a laboratory for COVID-19 tests processing, assigned to mass-test the population

living in a certain service area: for a city with a single hospital (as e.g., in Norrköping—our

running example) the area is the whole city, while more generally the region may be split

among several laboratories (including, possibly temporarily set up) by the authorities (in the

centralized model, considered here, it is the authorities who decide for each laboratory from

where to collect the tests). To define the locations for test delivery/collection, use the popula-

tion data with fine granularity, providing population count in every grid square (we used

the map giving the number of people living in each 100m x 100m square [11]). The drone fleet

is stationed at the hospital (the fleet may contain the hospital’s own vehicle plus possibly

machines subcontracted from drone service suppliers—we do not go into the economic details

here, envisioning that the costs saved for the economy thanks to the slower virus expansion

will outweigh the costs for renting drones services). The number N of drones in the fleet and

the capacity C (the number of tests that can be loaded onto one drone) are our variables (repre-

senting the resources)—we present the number of days D, needed to collect tests from the

whole city population, as the function of N and C (for visualization, in Fig 1 we present the a

separate N–D curve for each considered value of C).

In the output we seek a route for each drone (see Fig 2 for an example), with the indication

of how many people the drone serves in each square along its route (in some squares this num-

ber may be 0 meaning that the drone just passes over the square); the total number of people

served by the route between successive returns to the hospital should not exceed the drone

capacity C. Note that a square may be served by several drones; e.g., if the number of people

living in a square is 2C or more, the square will have to be visited at least two times (or possibly

more, if one of the times the drone is not used in the square to its full capacity). We suggest

that in practice the drone repeats the route twice: first to distribute the tests and then to collect

them—the interval between the distribution and collection does not influence our results since

we compute a single route for every drone and duplicate it, thus simply doubling the length of

the routes and consequently the number of drones needed to maintain certain testing fre-

quency (if the interval is long, people may store their specimen in the fridge [12]). The time a

Fig 1. The number of days D needed to collect tests from the whole city population as the function of the number

N of used drones (of different capacities).

https://doi.org/10.1371/journal.pone.0235307.g001
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drone spends in each square it serves (i.e., in each square where its route serves>0 people) is

set to 15 min: this includes the time to possibly distribute the tests to (or collect the tests from)

several cottages in the square; it also includes the time to change drone batteries at the base

(hospital, lab) when needed.

The route for each drone consists of several tours, where each tour is a closed loop that

starts and ends at the hospital and the number of people served on each tour is at most C (any

such tour may be executed by a drone without returning to the base as long as the battery

capacity is not a constraining factor: for a drone with our maximum considered capacity

C = 1000 this would hold in a reasonable city scenario because 1000 people may be typically

reached on a tour of length 10-20km, which is below the range of a non-toy drone; in a rural

scenario, however, where visiting 1000 people may require longer tours, the battery may

become the limiting factor and the maximum tour length constraint will have to be added

when computing the tours). Minimizing the total length of such tours, needed to cover all peo-

ple in the area, is known as the Capacitated Vehicle Routing Problem (C-VRP). We used Goo-

gle’s OR-Tools [16] to solve the C-VRP, i.e., to find the tours that collectively serve all people

in the area (for an indication of the solution quality, we remark that the OR-Tools output 1042

tours for capacity-100 drones, which is close to the minimum 102638/100� 1027 tours needed

to serve the total of 102638 people living in our city with capacity-100 drones). Computing the

tours for one value of the drone capacity C took *4800 sec on a computer with AMD CPU

with 6 cores (12 threads) and base clock 3.4GHz.

Finally, to minimize the length L of the longest drone route (which directly impacts the

makespan, i.e., the time to fly all routes and thus serve the entire population), we split the tours

into N sets (we did this for every value of N in a range), so that every set becomes a route for a

drone (the tours in the drone’s set are executed one-by-one in an arbitrary order). When split-

ting the tours, the objective is to minimize the length of the longest route (i.e., to minimize the

maximum total length of the tours in a route)—it is the longest route that is the “bottleneck” of

our solution, defining the longest time that a person has to wait for the drone. This is exactly

the Minimum Makespan Scheduling problem aka Load Balancing (because it balances the

“load” of every drone) aka Multiprocessor Scheduling (the drones can be viewed as processors

which have to collectively process the set of tasks—fly all given tours). We formulated the

Fig 2. Drone routes. Left: An example route of a drone with capacity 100; one of the tours in the route is shown black. Pink asterisk

is the hospital. Right: A zoom in on the black tour: the orange circles depict the tests delivery/pickup locations; circle size is

proportional to the number of tests delivered/picked-up at the location (99 tests are delivered on this tour). The underlying heatmap

is the population density. The background map was rendered on the authors’ machines from OpenStreetMap data [13] with

OpenStreetMap Carto style [14] using the code available from [15].

https://doi.org/10.1371/journal.pone.0235307.g002
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problem as an Integer Program (IP) and solved it using Gurobi solver [17] (separately for each

value of N).

Specifically, in the IP the binary decision variable xdt was equal to 1 if the route for drone d
included the tour t. The IP minimized the length L of the longest route (i.e., the objective func-

tion was L) subject to the constraints ∑d xdt = 1 for every tour t (meaning that every tour must

be included in exactly one route) and the constraints ∑l lt xdt� L for every drone where lt is the

length of the tour t (meaning that L is the length of the longest route, i.e., the length of any

route does not exceed L). The full IP model is thus as follows:

min L

subject to :

X

d

xdt ¼ 1 8t

X

l

ltxdt � L 8d

We solved the above IP using Gurobi optimization software installed on Tetralith cluster

[18] of Intel HNS2600BPB nodes with 32 CPU cores, provided by the Swedish National Infra-

structure for Computing (SNIC). Computations took from *0.01 sec (for N = 2, C = 1000) to

*460 sec (for N = 54, C = 1000) with the absolute IP optimality gap parameter set to 500 (i.e.,

the solver terminates when the solution objective is guaranteed to be within 500 seconds from

the optimal).

To convert the longest route length L into the time needed to fly all the routes (the make-

span), we assumed that the drones operate 12 hours per day and fly with the speed of 60km/h.

We do not investigate other values of these two parameters because the time of serving the

routes scales linearly with them: e.g., if the drones fly 24/7 (the authority shall decide whether

it is wise to disturb people’s sleep and distribute the tests also overnight in order to increase

the testing intensity) or with twice the speed, the service time simply halves, etc. We remark

that, on the contrary, the dependence on the drone capacity C is not straightforward at all:

changing C changes already the tours (in a way which is hard to predict a priori—the tours are

output by the advanced Google OR-Tools optimization software), which of course influences

the routes and their lengths. We therefore run our experiments separately for several values of

C (for each C, we solve the Minimum Makespan Scheduling problem for each value of N).

Refer to Fig 1 for the results showing the relation between N and the service time D.

Our code is available at https://github.com/undefiened/corona_drones for any community

to make their own estimates like ours. The needed data is the laboratories locations (for the

case of multiple laboratories, also the service area of each laboratory), the population density

map and the drone capacity. Our GeoGebra applets for the SIQR model (described below) are

accessible online at http://tiny.cc/SIQR (the generic SIQR model) and http://tiny.cc/SIQR_

Swe (with Sweden’s data plotted).

Results

Recent advances in the drone (unmanned aerial vehicles, or UAV) technology allow one to

perform unmanned delivery-to-the-door of various goods [19]. Drones succeed with blood

transportation [20–24] (and even organ transportation is being explored [25]), implying that

transporting by drones the less sensitive [12] COVID-19 test samples (e.g, upper respiratory

specimens in nasopharyngeal and oropharyngeal swab or lower respiratory specimens like
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sputum) may also be technically feasible [26] (related studies went so far as to explore testing

for avian influenza A (H7N9) virus directly on the drone [27]). This opens the potential to use

drones for mass-testing the population for COVID-19, most importantly—including asymp-

tomatic people: it has been reported that symptomless people can be infectious as well [1–3, 5]

(in fact, since symptomatic people were advised to isolate very early, it may be the case that the

pandemic occurred mostly due to asymptomatic transmission [4]). In particular, if the infected

but asymptomatic people become infectious after D = 4 days from being infected [2], then

(assuming the tests can determine that a person is infectious starting from day 0 of the infec-

tion) quarantining everyone within 4 days of the infection could stop asymptomatic COVID-

19 spread altogether (assuming responsible behavior of self-quarantining from the asymptom-

atic people who received positive test results). We estimate that for a medium-size city with

*100000 inhabitants (Norrköping, Sweden—our guinea pig), 36 Switzerland Matternet [28]

drones (each carrying 100 tests) suffice to visit everyone (distributing, collecting and returning

the tests to the lab) once every 4 days—see Fig 1 which shows our results for drones of various

capacity and for varying number of drones. (See Methods section for details of obtaining the

presented results.)

To put our estimates into practical perspective, we connect to existing drone models. The

weight of a single test (20g) is calculated as the sum of the viral transport medium weight (3g

[29]), the plastic tube with the cup and the swab (7g = weight of a 10mL syringe [30]), an A4

list of instructions (5g) and packaging (5g). Since a single test would fit into *11cm x 2cm x

2cm box, 100 tests would occupy 4-5L of cargo. This is at the upper limit of the volume for

some of the drone models (e.g., the one from Amazon Prime [31]), implying that cargo volume

may be a capacity-limiting factor. As far as the payload weight goes, the market essentially

offers either vehicles with few kilograms of payload (such as Amazon Prime drones [31], or

medical delivery drones from UPS [32] or Switzerland Matternet [28]) or large machines lift-

ing hundreds of kilograms (such as Boeing Cargo air vehicle [33] or ACC air drone [34]).

Thus in terms of weight, different drones may carry anywhere between *50 to *5000 tests;

for conservative estimates, we experimented with the capacity ranging from 20 to 1000. (The

different drone models also have slightly different maximum speeds, but they differ by at most

a factor of 2, and 60km/h is a reasonable speed for all the drones—our estimates scale linearly

with the speed, so it is straightforward to adjust our results for other flying speeds.)

SIQR: An extension of the SIR model

For the impact of our results on epidemic spread theory, we introduce an extension of the SIR

model for epidemic development [7, 35]. The vanilla SIR model’s transitions between its 3

compartments (or, states) S, I, R (Susceptible, Infected, Recovered resp.) are governed by the

following differential equations

dS=dt ¼ � aSI

dI=dt ¼ aSI � bI

dR=dt ¼ bI

where S, I, R stand for the number of susceptible, infected, recovered people resp. as functions

of the time t (the notation is slightly abused by identifying the numbers with the compartment

names), and a, b are the parameters signifying the rates of the transfer between the states. The

parameters are estimated from the clinical data; e.g., b = 1/T where T is the average duration of

the disease in a patient.
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For a theoretical application of our estimates, we restate our vision that each drone will fly

its route continuously: that is, even though we are solving a “single-shot” service problem

which minimizes the time needed to serve every inhabitant only once, we envision that people

will be tested periodically, with the interval D between the tests (the recurring testing is needed

to catch those who were infected after the previous test). We introduce the “Quarantined”

compartment (Q) into the SIR model and assume that I now represents infected but not quar-

antined people (i.e., those spreading the disease); we dub the extended model SIQR. (We

remark that our model is different from other extensions of SIR such as SEIR [36–38] intro-

ducing Exposed people or models with vaccination [39] which either decrease S with pro-

active vaccination or move people directly from S to R using the reactive vaccination during

the epidemics.) Transitions to Q happen only from I, and the rate of the transition is 1/D (this

is where our estimates of D are used); transitions from Q happen only to R with the rate b (the

same as from I to R—we assume that the removal of an infected patient does not depend on

whether the patient is quarantined or not). Thus the state transitions in SIQR model are gov-

erned by

dS=dt ¼ � aSI

dI=dt ¼ aSI � ðbþ cÞI

dQ=dt ¼ cI � bQ

dR=dt ¼ bðI þ QÞ

where Q is the number of people on quarantine and c = 1/D.

Since the parameters of SIR (and hence SIQR) vary widely depending on the country, anti-

epidemic measures, quality of the available data and other factors, we do not confine ourselves

to specific values for the parameters. Instead, we present SIQR curves for a whole range of the

parameters. Specifically, we started from the open-source GeoGebra applet [40] which com-

putes SIR curves S, I, R for any values of the parameters a and b set by the user; the parameters

are set simply by moving a and b sliders, so the curves change interactively as the parameters

are modified (the applet assumes that the total population size is 1, i.e., it shows the fractions of

population in the S, I and R compartments). We changed the sliders to represent the recovery

time and the effective reproduction number R0 (the number of people infected by one infected

person): a and b are then calculated as b = 1/T, a = R0, b = R0/T; we choose T and R0 as the

user-input parameters because they are the ones estimates for which are easier to find reported

(sources with various estimates bound, but we do not restrict ourselves to any particular one

since we give the full flexibility with the parameters choice). To extend SIR to our SIQR, we

add the slider for the inter-testing interval D, calculate c = 1/D and change the SIR differential

equations to the SIQR equations above. We also depict the curve CI showing the total (cumula-

tive) number of people infected; that is, CI(t) is the number of people that have been infected

by the time t (since the transition to infected happens only from the susceptible, CI is simply

the total population minus S). Fig 3 shows screenshots of our SIQR applet—it can be seen how

the curve flattens with D = 8 (the applet is interactive, and we invite the reader to play online

with our sliders for the different parameters at http://tiny.cc/SIQR).

Fig 4 shows real data (pink crosses) for confirmed COVID-19 cases in Sweden starting

from 100 cases on March 06 2020 [42] (see [43, 44] for detailed COVID-19 history and projec-

tion for ICU beds demand in Sweden resp.). The basic SIR model (Q = 0) fits the data with a

modest (for the novel coronavirus) value of R0 = 2.27, which is reasonable given the general

hygiene and cultural distancing in Sweden. Because not all the population was tested, we do
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Fig 3. Snapshots of our online applet showing the curves for quite high R0 = 5.7 [41]. Left: SIR curves (Q = 0, obtained by setting D to infinity).

Right: SIQR with the testing interval D = 8 (see Fig 1 for the number of different-capacity drones needed to reach D = 8).

https://doi.org/10.1371/journal.pone.0235307.g003

Fig 4. COVID-19 cases growth (starting from 100 cases) in Sweden [42] shown with pink crosses. Top: SIR model (S and R not shown). Bottom:

Mass-testing even as rarely as every D = 30 days flattens the curve.

https://doi.org/10.1371/journal.pone.0235307.g004
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not know the true number of infected people. Instead of trying to estimate this true number

(which would introduce yet another parameter), we fit our pink curve into the confirmed

cases; in this sense R0 represents here the number of new confirmed cases per one confirmed

case. Our SIQR model suggests that regular mass-testing with the interval D = 30 (which

roughly amounts to randomly testing *3.3% of the population every day) would flatten the

curve quite significantly. We again invite the reader to play with our interactive GeoGebra

applet http://tiny.cc/SIQR_Swe to see the effects of the testing frequency, as well as the changes

in the parameters R0 and T.

Discussion

Our work may help the authorities to quantify the lessons learned during the COVID-19 pan-

demic and utilize them during future epidemics (more generally, our methods may be applied

to any kind of mass delivery and collection: e.g., the drones may distribute immunity tests to

release people from quarantine). Indeed, one stumbling block to drones ubiquity is the gener-

ally absent regulation (in particular, in regions with less strict or absent (anti-)drone laws,

UAVs are already widely used for medical applications including infectious disease surveil-

lance and epidemiology [45–48]). With a proactive thinking, the authorities could design sets

of regulations with different levels of strictness: in situations like epidemics, more lenient regu-

lations could take force and let the drone operations rise to higher levels than during nominal

course of events—the switch may be justified not only by the extreme social value of the drones

use (as shown here), but also by the fact that during the (even partial) quarantine there are

fewer people on the streets, which lowers the ground risk of drone operations (one of the con-

cerns for the regulators [49–54]).

We emphasize that our model of mass-testing can be applied at any geographic scale. In

particular, while the epidemic is confined to a limited area, it may be reasonable to concentrate

on mass-testing only the potentially affected region. As far as our theoretical results (SIQR) are

concerned, incorporating people on quarantine into epidemic spread modeling may not only

provide more accurate prediction of the disease spread, but also help understand the economic

consequences of the quarantine (see [55] for discussion of COVID-19 economic impact).

Conclusions

We introduced an extension of the SIR model for epidemic spread. Our SIQR model adds to

SIR the compartment Q representing quarantined population. Sending people into quarantine

is a well known anti-epidemic measure, and SIQR model allows one to quantify its effects. We

also studied the use of drones for regular mass-testing of the population, and presented algo-

rithms for estimating how many vehicles are needed to deliver tests in a metropolitan area.

Future research should explore economic considerations underlying the use of drones for

mass testing. Answering questions like how much could such a service cost and who will pay

for it are crucial for a potential real-world implementation. Among the supporting services,

the most important one is the provision of energy supply for the drones via charging stations

or battery replacement docks.

One technical limitation of our research is the assumption that all vehicles have the same

capacity. In reality, it is more likely that many different drone models will be used for the mass

testing. In addition to the UAVs possibly owned by the hospital, the drones may be leased

from local businesses, introducing even a higher variety into the fleet. The algorithms in this

paper work with uniform drone capacity only, and extending them to varying capacities is an

open problem.
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Another open research direction is assigning the population to the test facilities. Our meth-

ods work for a single facility, and it would be interesting to address the question of optimal

splitting of the area among the test centers. Last but not least, many other facility location

problems open up: where would it best to place a new test processing laboratory, how many

labs are needed for a given area, etc.
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