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ABSTRACT: The selection of suitable rice varieties is the key to
achieve high and stable yields, and the correct identification of rice
varieties is the prerequisite for seed selection. In this paper, with
Kenjing No.5, No.6, and No.9 as the subjects, the effectiveness of
near-infrared spectroscopy (NIRS) combined with soft independ-
ent modeling of class analogy (SIMCA) in the rapid identification
of rice varieties was explored. The modeling sets of Kenjing No.5,
No.6, and No.9 samples were respectively used to establish a
SIMCA classification model based on principal component analysis
(PCA). The accuracies of the model in classifying the rice samples
in the modeling set were 100, 100, and 97.5%, respectively. Then,
the established SIMCA model was used to identify the rice samples
in the test set. According to the experimental findings, the SIMCA
analytical method achieved 100% prediction accuracy for the Kenjing No.5, Kenjing No.6, and Hongyu 001−1 samples. For the
Kenjing No.9 sample, the accuracy rate was 90% with a 10% sample of Kenjing No.9 misidentified as Kenjing No.6. Therefore, the
analytical method of NIRS combined with SIMCA could effectively identify the rice varieties, providing a new approach for the
correct selection of planting varieties.

1. INTRODUCTION
Rice is one of the grain crops that human beings live on. In
China alone, there have been more than 50,000 varieties of
rice, a number that keeps rising with the progress in research
on new hybrid rice varieties.1 As the selection of suitable rice
varieties is one of the keys that determine the economic
benefits and breeding of rice, the rapid identification of rice
varieties turns out to be an essential topic in today’s
agricultural production, crop breeding, and seed testing.2

Primarily affected by the climate and geographical circum-
stances, the rice varieties do not vary greatly within the same
region and cannot be identified simply through the rice seed’s
appearance and morphology, resulting in tremendous financial
costs. At present, the commonly used identification methods
for the rice varieties around the world include morphology,
fluorescence scanning identification,3 chemical identification,4

and electrophoresis identification. Among them, the morpho-
logical approach has limited application and low accuracy.
Although the remaining three feature higher accuracy, they are
highly demanding on the operator’s specific skills and take a lot
of time for processing. As a result, none of these methods apply
to bulk analysis and nondestructive online detection of the
samples.5 The four rice varieties chosen in this study (Kenjing
No.5, Kenjing No.6, Kenjing No.9, and Hongyu 001−1) are
commonly cultivated in Heilongjiang Province, China, and
each variety is suited for growing in a distinct cumulative

temperature zone. Because there are minimal changes in
appearance between the four kinds, it is impossible to tell them
apart with the naked eye. As a result, a quick, nondestructive,
and low-cost approach for classifying rice types is required.
In recent years, near-infrared spectroscopy (NIRS) has been

widely applied in many industries including agriculture,6

food,7,8 pharmaceuticals,9,10 and industry.11,12 SIMCA (Soft
Independent Modeling of Class Analog) is a traditional pattern
recognition model that primarily uses the class distance
between PCA models of various classes to ascribe the class
of samples. The SIMCA model is able to give good results in
the case of whether the sample belongs to a certain class or
not.13,14 In recent years, NIR spectroscopy combined with
SIMCA has been widely used in sample classification.14

Suhandy15 used a near-infrared spectral analysis technique
combined with the SIMCA model to classify six specialty
coffees from Indonesia based on variety and geographical
origin. PCA was employed for unsupervised exploratory
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analysis16 and soft independent modeling of class analogy
(SIMCA) for supervised classification. The results demon-
strated that the SIMCA model correctly classified most of the
tested sample sets into the corresponding categories.
Khodabakhshian17 used an analytical method relying on
near-infrared spectroscopy (NIR) in combination with
SIMCA model to classify the two main impurities in turmeric
powder (Sudan red and metanil yellow) and established
SIMCA model. The correct classification rates of samples in
training set and test set were 96.7 and 93.4, respectively. It is
proved that the SIMCA model is effective to classify the data
acquired by near-infrared spectroscopy. Shirzadifar et al.18 used
NIR spectroscopy combined with the SIMCA model to classify
three common weeds with 100% identification accuracy. The
results showed that the NIR spectroscopy combined with the
SIMCA model had a good discriminatory ability for the three
common weeds. The above study demonstrates the feasibility
of the NIR spectroscopic analysis technique combined with the
SIMCA approach in sample classification.
Currently, rice varieties are mainly identified by manual or

gas chromatography19 analytical techniques, both of which
have issues with difficult operation, arduous processing, and
poor detection accuracy. As a quick, environmentally friendly,
and nondestructive analytical technique, NIR spectroscopy
analytical technique can quickly and easily gather vital data on
experimental samples that contain hydrogen, such as trans-
mittance, absorbance, reflectance, and chemical bond strength.
This information is crucial for the identification of rice varieties
using NIR. Therefore, an analytical technique based on NIRS
that does not require pretreatment was proposed in
combination with the SIMCA model as a reliable analytical
method20 to identify the rice varieties more rapidly.

2. MATERIALS AND METHODS
2.1. Materials and Equipment. All 200 samples from the

four rice types, including Kenjing No.5, Kenjing No.6, Kenjing
No.9, and Hongyu 001−1, which were harvested in the
autumn of 2016 at the experimental base of Heilongjiang Bayi
Agricultural University (Location: 46.59°N, 125.16E), were
used in this study. Following sampling, it was discovered that
there were 60, 60, 60, and 20 of each of the four types,
respectively. The rice was planted on May 15, 2016, and
harvested on October 30, 2016. The WQF-600N-type Fourier
transform NIR spectrometer (Beijing Rayleigh Analytical
Instrument Co. Ltd, China) was adopted, with a wave range
of 10,000−3300 cm−1, a resolution of 8 cm−1, and a scanning

number of 16 times. The Unscrambler X 10.3 (CAMO
Software AS, NORWAY) was employed for spectrum analysis.
2.2. NIR Measurement and Sample Set Division. The

rice samples of three varieties were put alongside with the NIR
spectrometer in the same indoor environment for 24 hours, to
ensure consistent environmental conditions for both the rice
and the instrument. After preheating the spectrometer for 10
min, the instrument’s background was first collected. Then, the
sample was spread on the bottom of the glass containers to
collect the spectral data. Each sample was scanned 16 times to
obtain the mean value. Spectral data were collected by
measurement of diffuse reflectance from the homogenized
sample in the NIR region within 10,000−4000 cm−1. Figure 1a
shows the NIR spectra of the four rice varieties, and Figure 1b
indicates the average spectral curves of the four rice varieties.
From the figure, it can be seen that the trends of the changes in
the spectral reflectance of the rice seed samples of different
varieties are the same, but the reflectance differs, with the
lower reflectance of the rice seeds of the Hongyu 001−1
variety and the higher reflectance of the rice seeds of the
Kenjing No.9 variety. There are three distinct characteristic
peaks at 8950, 8150, and 6920 cm−1 in rice seeds. The
absorption peak at 8950 cm−1 is mainly generated by the C−H
bond second harmonic generation and O−H bond second
harmonic generation. The absorption peak at 8150 cm−1 is
mainly the second-order frequency doubling of the C−H bond.
The absorption peak at 6920 cm−1 is mainly the first-order
frequency doubling absorption peak of O−H bond stretching
vibration.21Figure 1a demonstrates that the spectra of Hongyu
001−1 sample differ significantly from those of the other three
varieties due to the high level of noise in the region 7700−
8200 cm−1. This is a result of the diversity, which includes
variations in sample appearance and chemical makeup.
In this study, two-thirds of the samples were randomly

selected from the sample sets of Kenjing No.5, No.6, and No.9
(i.e., 40 samples randomly selected for each variety) to
establish the modeling set and 60 samples for test (about 120
samples altogether). As the test set, we used the remaining
third of the sample sets Kenjing No.5, Kenjing No.6, Kenjing
No.9, and Hongyu 001−1 (about 120 samples altogether). As
the test set, we used the remaining third of the sample sets
Kenjing No.5, Kenjing No.6, Kenjing No.9, and Hongyu 001−
1(each group has 20 samples, for a total of 80 samples.).
2.3. Soft Independent Modeling of Class Analogue.

SIMCA classification, also known as similarity and analogy
model, is a supervised pattern recognition model based on a
known class model.22 Basically, it processes to create a PCA
model for each class in the modeling set, thereby reducing the

Figure 1. Near-infrared spectrum curve (a) and average spectrum curve (b) of different rice varieties.
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dimensions of the data. The aim of PCA is to obtain the score
matrix T and loading matrix P of each rice variety in a known
class. After that, the distance between the unknown sample and
each centroid class in the model is calculated, and the distance
identification method is used to identify the class of unknown
samples. In chemometrics, the distance between samples is
usually used to represent the difference between samples. The
basic idea of discriminant analysis is to compare the class
distances from a sample to centroid each class, and the class
with the shortest distance is exactly the samples.23 The
calculation commonly uses two kinds of distances: Euclidean
distance and mahalanobis distance.24 The Euclidean distance is
employed in distance identification by SIMCA classification.25

The calculation can be divided into two steps.21,26

2.4.1. Step One. Principal component analysis was
conducted on the training set, and various SIMCA principal
component analysis models were established (Formula 1)

X T P Ek k k
t

k= + (1)

where Xk is the spectral matrix (n × m), n is the number of all
samples of category k, m is the number of wavelength variables,
Tk is the scoring matrix (n × f), f is the best principal
component, Pk is the load matrix (m × f), and Ek is the spectral
residual matrix (n × m).
2.5.1. Step Two. For the test sample set (new samples of

unknown types), a left cross-test method is used to validate the
SIMCA model established by the training set. Calculate the
orthogonal distance (OD (Formula 2)) from the new sample
ynew to the center of the class model (class k model). The
model with the lowest OD value is the model that ynew belongs
to. To achieve the classification of new samples

y yOD new= || || (2)

where ŷ denotes the projection of ynew onto the PCA model.

y x y xPP ( )new= + (3)

where x̅ denotes the mean spectrum of the modeling sample
set.

3. RESULTS AND DISCUSSION
3.1. PCA Analysis. Before modeling, PCA was carried out

on 120 samples (40 samples for each variety) of modeling set,
and the score plot of the modeling sample set is shown in
Figure 2. The first three principal components explain 97% of
the variance in the original data. In the score plots of PC1 and
PC2, some sample points are overlapped (Figure 2), but in the
score plots of PC2 and PC3, the sample points show a clear
trend of clustering (Figure 2). Therefore, the modeling set can
be used to establish a classification model for rice varieties on
the basis of SIMCA. There is a significant difference between
the three varieties. In particular, Kenjing No.5(A) is relatively
far from the other two, while Kenjing No.6(B) and No.9(C)
are close to each other.
PCA models were established for the three varieties in the

modeling set individually respectively. Each of these PCA
models contained the corresponding variety’s feature informa-
tion, and there was no outlier among the samples, with a good
degree of fitting. SIMCA prediction model was established on
the basis of choosing 3 as the optimal number of components
for the three models. The distances between the three known
sample sets of the prediction model are shown in Table 1. As

suggested by the table, all of the distances between different
sample sets were greater than 3, which could also be reflected
in Figure 2. In particular, the model distance between Kenjing
No.6 and No.9 was the smallest, i.e., 4.55 (larger than 3).
Therefore, there were significant differences between each two
models, that is, they could be easily distinguished from each
other.
3.2. Supervised Classification of SIMCA. SIMCA

classification is a binary classification model, which only
results in yes or no. In other words, a sample either belongs to
a class or not. Since three different varieties were used in this

Figure 2. PCA score plots of modeling sample sets.

Table 1. Distances between Models

sample Kenjing No.5 Kenjing No.6 Kenjing No.9

Kenjing No.5(A) 1 19.42 13.23
Kenjing No.6(B) 19.42 1 4.55
Kenjing No.9(C) 13.23 4.55 1
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study, the class of each sample should be separately identified.
In this study, through identification of the modeling sample
set, the accuracy of SIMCA classification model was validated.
Figure 3 shows the identified results of three varieties in the
modeling set by the SIMCA classification model. In the figure,
the horizontal axis represents the leverage value of the sample,
that is, the distance from the sample to the model center. It
shows the difference between the sample and other sample
points in the class, without considering the degree of
description for the sample by the class model. The vertical
axis represents the distance from the sample to the model,
which is calculated using the square root of the sample
residuals. The smaller the value, the more accurate the
model.21 As suggested by Figure 3a,b, SIMCA could provide a
good identification result. At a significance level of α = 10%, all
modeling sample sets of Kenjing No.5(A) and No.6(B) were
correctly identified, and all samples fell within the quadrilateral
area defined by the two mutually perpendicular lines and the
axes. Figure 3c shows the SIMCA identification result of
Kenjing No.9(C). One of the samples had a great leverage
value that was far beyond the quadrilateral area. However,
since the sample was far from the other two models, it was not
classified into the other varieties. Instead, the sample was
identified as not belonging to any variety.
All modeling sample sets were used to validate the accuracy

of the SIMCA classification model, with the statistical results
shown in Table 2. The accuracy of SIMCA model in
identifying Kenjing No.5, No.6, and No.9 was 100, 100, and
97.5% at the 10% significance level, respectively. It means that

the misjudgment rate for Kenjing No.9 was 2.5%. This was
because some samples were omitted, possibly due to the fact
that the modeling sample set contained insufficient informa-
tion and thus led to insignificant difference between the two
classes of samples.
3.3. SIMCA Model Predicting Verification Set Sam-

ples. SIMCA model was used to classify the 80 samples in the
test set. To validate the effectiveness of the model, among the
80 samples, there were another 20 samples that did not belong
to any of the existing classes in addition to the 60 calibration
samples of Kenjing No.5(A), No.6(B), and No.9(C) (20
samples of each). The variety of the added samples was
actually Hongyu 001−1(D), which was not previously involved
in SIMCA modeling, Figure 4 shows the prediction results of
the test set samples in four classes at the 10% significance level,
where the diamonds represent the Hongyu 001−1 samples.
As suggested by Figure 4a,b, all of the Kenjing No.5 and

No.6 among the test set samples were correctly classified.
However, in Figure 4b, two Kenjing No.9 samples were
mistakenly wrongly divided into Kenjing No.6, and the
varieties could not be completely separated. As suggested by
Figure 4a−c, all of the Hongyu 001−1 samples among the
unknown rice samples were not mistakenly classified into any

Figure 3. Identified results of three varieties in the modeling set.

Table 2. Accuracy of SIMCA Classification Model

modeling sample set
(n = 120)

Kenjing
No.5/%

Kenjing
No.6/%

Kenjing
No.9/%

identification accuracy
(α = 10%)

100 100 97.5
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known class, which in turn indicated the effectiveness of the
proposed model.
The accuracy of the SIMCA model in the prediction of

unknown samples is shown in Table 3. The prediction

accuracy of the SIMCA model for Kenjing No.5, No.6, and
No.9 was 100, 100, and 90% at the 10% significance level,
respectively. Namely, there was only a misjudgment rate of
10% for Kenjing No.9. Given that none of the Hongyu 001−1
samples that had been added in the test set as new unknown
variety was mistakenly identified as any one of the Kenjing
No.5, No.6, and No.9 varieties, it could be implied that the
misjudgment of Kenjing No.6 and No.9 was caused by the
insignificant difference in chemical properties between the two
varieties, which further proved the effectiveness of the
proposed method.
According to the above results, we can see that the SIMCA

model can be used to identify rice varieties. After the
misjudged samples were removed from the original SIMCA
model, the classification model was rebuilt, but the accuracy in
classifying unknown samples was not significantly improved.
The main reasons for this may be that the information covered

by the sample was insufficiently thorough, and Kenjing 9 seed
was cultivated on the basis of Kenjing 6 seed, with only minor
chemical property variations between the seeds.

4. CONCLUSIONS
The combination of NIRS and SIMCA could effectively
distinguish between the rice varieties with little difference in
appearance and components. Experimental results showed that
the accuracy of the SIMCA classification model in identifying
Kenjing No.5, No.6, and No.9 in the modeling sample set was
100, 100, and 97.5%, respectively. For the prediction of
unknown rice samples (including Kenjing No.5, No.6, No.9,
and Hongyu 001−1), the model’s accuracy for Kenjing No.5,
No.6, and No.9 was 100, 100, and 90%, respectively.
Specifically, all of the Hongyu 001−1 among the unknown
rice sample were not mistakenly identified as any one of
Kenjing No.5, No.6, and No.9 varieties. Finally, it was
speculated that the primary cause for misjudgment might be
that the samples did not contain sufficient information and that
the difference in chemical properties between Kenjing No.6
and No.9 was insignificant. By increasing the information
contained by each set of samples or by multiplying the number
of modeling sample sets, the PCA model of each variety could
be made more representative so as to improve the accuracy of
the SIMCA classification model. The findings showed that the
combination of NIRS and SIMCA could rapidly and reliably
identify the rice varieties, and thus the proposed analytical
method could be implemented in and guide the agricultural
production of rice.

Figure 4. Verifies the sample classification results.

Table 3. Accuracy of SIMCA Model in Prediction of the
Test Set Samples

test set sample (n = 60)
Kenjing

No.5(A)/%
Kenjing

No.6(B)/%
Kenjing

No.9(C)/%

Identification accuracy
(α = 10%)

100 100 90
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