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Abstract

This paper reviewed the deep learning‐based studies for medical imaging synthesis

and its clinical application. Specifically, we summarized the recent developments of

deep learning‐based methods in inter‐ and intra‐modality image synthesis by listing

and highlighting the proposed methods, study designs, and reported performances

with related clinical applications on representative studies. The challenges among

the reviewed studies were then summarized with discussion.
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1 | INTRODUCTION

Image synthesis across and within medical imaging modalities is an

active area of research with broad applications in radiology and radi-

ation oncology. Its primary purpose is to facilitate the clinical work-

flow by bypassing or replacing an imaging procedure when

acquisition is infeasible due to constraints on time, labor, or expense;

when exposure to ionizing radiation is contraindicated; or when

image registration introduces unacceptable uncertainty between

images of different modalities. These benefits have sparked growing

interest in a number of exciting clinical applications, such as mag-

netic resonance imaging (MRI)‐only radiation therapy treatment plan-

ning and positron emission tomography (PET)/MRI scanning.

Image synthesis and its potential applications have been investi-

gated for decades. Conventional methods usually rely on models

with explicit human‐defined rules for the conversion of images from

one modality to another and require case‐by‐case parameter tuning

for optimal performance. These models are also application specific,

depending upon the unique characteristics of the involved imaging

modalities, resulting in a multitude of application‐specific complex

methodologies. It is difficult to build such models when the two

imaging modalities considered provide distinct information, such as

anatomical imaging and functional imaging. This, at least in part, is

why the majority of these studies are limited to computed tomogra-

phy (CT synthesis from MRI).1

Owing to the rapid progress in the fields of machine learning and

computer vision over the last two decades, image synthesis across

other imaging modalities such as PET and cone‐beam CT (CBCT) is

now viable and a growing number of applications are benefitting

from recent advancements in image synthesis techniques.2–4 Deep

learning, as a broad subdiscipline within machine learning and artifi-

cial intelligence, has dominated this field for the past several years.

Deep learning utilizes neural networks with many layers containing

large numbers of neurons to extract useful features from images.

Various networks and architectures have been proposed for better

performance on different tasks. Deep learning‐based image synthesis

methods usually share a common framework that uses a data‐driven
approach for image intensity mapping. The workflow typically con-

sists of a training stage for the network to learn the mapping

between the input and its target, and a prediction stage to synthe-

size the target from an input. Compared with conventional model‐
based methods, deep learning‐based methods are more generalizable

since the same network and architecture for a pair of image modali-

ties can be generalized to different pairs of image modalities with

minimal adjustment. This allows rapid translation to a variety of

imaging modalities whose synthesis is clinically useful. Although

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,

provided the original work is properly cited.

© 2020 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

Received: 13 May 2020 | Revised: 12 November 2020 | Accepted: 21 November 2020

DOI: 10.1002/acm2.13121

J Appl Clin Med Phys 2021; 22:1:11–36 wileyonlinelibrary.com/journal/jacmp | 11

mailto:
http://creativecommons.org/licenses/by/4.0/
http://www.wileyonlinelibrary.com/journal/JACMP


network training requires significant effort in data collection and

curation, prediction usually takes only a few seconds. Due to these

advantages, deep learning‐based methods have attracted great

research and clinical interest in medical imaging and radiation ther-

apy.

In this paper, we systematically review emerging deep learning‐
based methods and applications for medical image synthesis. Specifi-

cally, we categorize the recent literature based on their deep learn-

ing methods and highlighted their contributions. Clinical applications

are surveyed with identification of pertinent limitations and chal-

lenges. Finally, recent trends and future directions are summarized.

2 | LITERATURE SEARCH

We defined the scope of this review study to include both inter‐
and intra‐modality image synthesis using deep learning methods.

Inter‐modality applications included studies of image synthesis

between two different imaging modalities, whereas intra‐modality

applications included studies that transform images between two dif-

ferent protocols of the same imaging modality, such as between MRI

sequences, or the restoration of images from a low‐quality protocol

to a high‐quality protocol. Studies with a sole aim of image quality

improvement, such as image denoising and artifact correction, were

not included in this study. Conference abstracts and proceedings

were not considered due to the lack of strict peer review in study

design and reported results.

Peer‐reviewed journal publications were searched on PubMed

using the criteria in title or abstract as of February 2020: (“pseudo”

OR “synth*” OR “reconstruct*” OR “transform” OR “restor*” OR

“correct*” OR “generat*”) AND “deep” AND “learning” AND (“CT”

OR “MR” OR “MRI” OR “PET” OR “SPECT” OR “Ultrasound”). The

search yielded 681 records. We manually screened each record,

removing those ineligible by the previously defined criteria. The

remaining 70 articles were included in this review. We also per-

formed a citation search on the identified literature and an additional

41 articles were included. Therefore, 111 articles were included in

this review. Compared with current review papers on this topic,5 this

review is more comprehensive, covering more articles using a sys-

tematic approach. Figure 1 shows the number of reviewed articles

by year of publication. The earliest was published in 2017 with an

increment of approximately 25 per year, the number of publications

on this topic has increased linearly. The number of articles published

on this topic in the first 2 months of 2020 has surpassed the total

number in 2017.

3 | DEEP LEARNING METHODS

The methodological frameworks of the reviewed studies can be

grouped into three categories: Auto‐encoder (AE), U‐net, and genera-

tive adversarial network (GAN). These three groups of methods are

not completely different from each other, but represent stepwise

increases in architecture complexity. An AE is a basic network and

can act as a basic component in advanced architectures such as U‐
net and GANs. For example in U‐net, composed of an encoder that

downsamples images to feature maps and a decoder that up‐samples

the feature maps before finally mapping to targets, the encoder or

decoder is usually a fully convolutional AE. Similarly, GANs are com-

monly viewed as a two‐player zero‐sum game between two neural

network architectures: GANs are composed of a generator, which

can be an AE or a U‐net, and a discriminator, which is usually an AE.

Therefore a hierarchy of complexity can be constructed ranging from

the simplest AE to the most complex GAN, with U‐net residing

somewhere in between.

Figure 2 indicates that U‐net and GAN studies, which are close

in total numbers, comprise the mainstream, accounting for about

90% of the considered articles. Figure 1 also demonstrates that the

studies using U‐net and GAN have been increasing since 2017, with

GAN utilization increasing at a faster rate than U‐net. While most of

the 111 considered studies employ these methods in supervised

learning context, three used an unsupervised strategy learning image

translation from unpaired datasets. A review of methods within AEs,

U‐net, and GANs is provided in this section.

3.A | Auto‐encoder

An Auto‐encoder (AE) is a class of deep neural networks that use

convolution kernels to explore spatially local image patterns. It con-

sists of an input, an output, and multiple hidden layers. The hidden

layers contain a series of convolutional layers that convolve the

input with trainable convolution kernels and pass the feature maps

to the next layer. In order to restrict the input of each convolutional

layer into a certain range, an activation layer is added between con-

volutional layers to map the output of previous layers to the input

of the next layers by a predefined function. The Rectified Linear Unit

(ReLU) layer which has zero‐valued output for all negative inputs

and preserves the input otherwise is the most commonly used acti-

vation layer due to its computational simplicity, representational

F I G . 1 . Number of peer‐reviewed articles in medical imaging
synthesis using deep learning with different neural networks. This
study only covers the first 2 months of 2020. The dashed line
predicting the total number of articles in 2020 is a linear
extrapolation based on previous years.
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sparsity, and linearity. To further standardize the input of each layer,

batch normalization is usually applied to the activations of a layer,

rescaling the input to have a standard distribution. This step has

been shown to reduce internal covariate shift of the training data-

sets for improved robustness and faster convergence. Dropout layers

are commonly used to reduce the chances of overfitting by inten-

tionally and randomly ignoring some number of layer outputs. In this

way, the prior layer is practically implemented with a different num-

ber of nodes and connectivity relative to its state before subjecting

it dropout. To save memory, the large size of images is typically

reduced by pooling and convolution layers to allow a larger number

of feature maps and, ultimately, deeper networks. The pooling layer

is usually added after the activation layer and involves a pooling

operation that uses a specified mathematical filter to downsample

the feature map. With multiple hidden convolutional layers, a hierar-

chy of increasingly complex features with high‐level abstraction is

extracted. The ultimate goal is to train the network to minimize the

output of an objective loss or cost function: a mathematical repre-

sentation of the goodness‐of‐fit of the model in matching its predic-

tions to ground truth where greater “loss” or “cost” is associated

with poorer fit. During the training process, iterative adjustments are

made on the weights and biases of the kernels of the convolutional

layers until the loss function is minimized. These weights and biases

are trainable parameters of the network. Gradient descent, wherein

the mathematical gradient (multi‐dimensional derivative) of the cost

function is utilized to minimize the function in a stepwise fashion

and update trainable parameters of networks. Several optimization

algorithms, such as stochastic gradient descent (SGD), the adaptive

gradient algorithm (AdaGrad), root mean square propagation

(RMSProp), and Adaptive Moment Estimation (Adam) have been

developed. A basic AE is composed of several connected convolu-

tional layers to map input to output; however, very few studies

employ AEs in this basic form. Instead, most of the reviewed studies

use variants of the basic AE architecture for better performance. For

example, the residual neural network (ResNet) was chosen in a few

studies due to its shortcut connections that skip one or more layers,

easing the training of the deep network without adding extra param-

eters or computational complexity.6–8 ResNet also allows feature

maps from the initial layers that usually contain fine details to be

easily propagated to the deeper layers. AEs and their variants are

commonly utilized as a basic component in advanced architectures

such as those that follow.

3.B | U‐net

In one of the first of several studies employing deep learning in

image synthesis, Han used AE in synthesizing CT from MR images

by adopting and modifying a U‐net architecture.9 The U‐net model

used in the study of Han has an encoding and a decoding part. In

this case, an encoder extracts hierarchical features from an MR

image input using convolutional, batch normalization, ReLU, and

pooling layers while a mirrored decoder replaces pooling layers

with deconvolution layers, transforms the features, and reconstructs

the predicted CT images from low‐ to high‐resolution levels. The

two parts are connected through shortcuts on multiple layers.

These shortcut connections are used to concatenate early layers to

late layers such that late layers can also learn simple features cap-

tured in early layers. In the study of Han, these shortcuts enable

high‐resolution features from the encoding part to be used as extra

inputs in the decoding part. Moreover, the original AE design

includes several fully connected “hidden layers,” so‐called because

these fully connected layers connect every neuron in the previous

layer to every neuron in the next and neither inputs nor outputs

of these layers are typically monitored during production. The fully

connected layers correspond to global image features that are criti-

cal for image classification tasks but not very relevant for dense

pixel‐wise prediction.9 Han’s model removed fully connected layers

such that the number of parameters was highly reduced. In their

study, the model was trained using pairs of MR and CT two‐dimen-

sional (2D) slices. During the training process, a loss function of

mean absolute error (MAE) between prediction and ground truth

was minimized. Use of an L1‐norm loss function such as MAE can

improve robustness to noise, artifacts, and misalignment among the

training images.

Most studies employing U‐net generally followed the above

architecture, with many variants and improvements proposed and

studied. For example, compared with the model of Han, Jang et al.

and Liu et al. applied a similar encoder and decoder model without

the skip connection.10,11 Instead of using CT images as ground truth

in their MR‐based CT study, they used discretized maps from CTs by

labeling three materials, transforming CT synthesis into a segmenta-

tion problem. Finally, a multi‐class soft‐max classifier giving the prob-

abilities of each material class within each voxel (e.g., 0.5 bone, 0.3

air, 0.1 soft tissue) was applied to the final layer of the decoder.

Another notable feature presented in Jang et al.11 is inclusion of a

fully connected conditional random field, which considers neighbor-

ing voxels when generating label predictions, providing complemen-

tary information in addition to the base classifier, which only

F I G . 2 . Pie chart of numbers of articles in different categories of
neural networks.
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considers single voxel each time. In this application, the conditional

random field provided 3D context to 2D image slices, building pair-

wise potentials between all pairs of voxels using the output of the

model and the original 3D volume when predicting the label for each

voxel. A landmark advance in U‐net architecture came when Dong

et al. discovered that the information carried in the long skip con-

nection of U‐net from the encoding path is characterized by its high

frequency, often including irrelevant components from noisy input

images. In order to address this issue, they used a self‐attention
strategy that uses the feature maps extracted from coarse‐scale early

in the encoder module to identify the most relevant emerging fea-

tures, assign them attention scores and use these to eliminate noise

prior to concatenation.12 In an alternative strategy, Hwang et al. only

employed the skip connection in deeper layers.13

The choice of building blocks within the encoding and decoding

modules has also been investigated. Fu et al. made a few improve-

ments based on the architecture of Han. For example, batch normal-

ization layers, wherein normalization is applied across image subsets

of the original sample to speed convergence, were replaced with

instance normalization layers, wherein normalization occurs instead

at the level of image channels, for further performance improve-

ments when training with a small batch size. The unpooling layers in

the decoder, which up‐sample and therefore reverse pooling layers

in the encoder and produce sparse feature maps, were also replaced

with deconvolutional layers that produce dense feature maps and

the skip connections were replaced with residual shortcuts, inspired

by ResNet, to further save computational memory.14 Neppl et al.

also replaced the ReLU layer with a generalized parametric ReLU

(PReLU) to adaptively adjust the activation function.15 Torrado‐Car-
vajal et al. added a dropout layer before the first transposed convo-

lution in the decoder to avoid overfitting.16

Various loss functions have been investigated in the reviewed

studies. In addition to the most commonly used L1‐norm and L2‐
norms that enforce voxel‐wise similarity, other functions that

describe different image properties are usually combined into the

total loss function. For example, Leynes et al. used a total loss func-

tion which was a sum of MAE loss, gradient difference loss, and

Laplacian difference loss, the last two of which help improve image

sharpness.17 Similarly, Chen et al. combines the MAE loss with struc-

ture dissimilarity loss to encourage whole‐structure‐wise similarity.18

L2‐regularization has also been incorporated into the loss function in

a few studies to avoid overfitting.19,20 Kazemifar et al. used mutual

information, which has been widely implemented in loss functions

applied to the task of image registration, in their loss function and

demonstrated its advantages over MAE loss in better compensating

the misalignment between CT and MR images. Largent et al. intro-

duced a perceptual loss, which can mimic human visual perception

using similar features rather than only intensities, into their U‐net.
The perceptual loss was proposed in three different implementations

with increasing complexity: on a single convolutional layer, on multi-

ple layers with uniform weights, and on multiple layers with different

weights that give more importance to the layers yielding the lower

MAE.21

3.C | Generative adversarial networks

A generative adversarial network (GAN) is composed of a generative

network and a discriminative network that are trained simultane-

ously. The generative network is trained to generate synthetic

images, and the discriminative network is trained to classify an input

image as real or synthetic. The training goal of a GAN then is to let

the generative network produce synthetic images that are as realistic

as possible to fool the discriminator while the discriminative network

attempts to distinguish the synthetic from real images. Network

training occurs when the adversarial generative and discriminative

networks compete against each other until equilibrium is reached.

When deployed in production, the trained generative network is

applied on new incoming image.

Similar to AEs, GANs were also used in one of the earliest publi-

cations in medical image synthesis using deep learning. Nie et al.

used a fully convolutional AE (AE without fully connected layers) for

the generative network and a standard AE for the discriminative,

respectively.22 A binary cross‐entropy loss function was employed

for both networks with an important distinction: the discriminative

network’s loss is formulated to minimize the difference between

assigned labels and ground truth in the usual fashion while the gen-

erative network’s loss is instead formulated to maximize the error of

the discriminative network by minimizing the difference between the

labels assigned by the discriminative network and an incorrect label.

Since the network in this study was trained in a patch‐to‐patch man-

ner that may limit the context information available in the training

samples, an auto‐context model that integrates low‐level and context

information from low‐level appearance features was employed to

refine the results.

Many variants of the GAN have been designed and investigated.

Emami et al. adopted conditional GAN (cGAN) in CT synthesis from

MR.7 Unlike standard unconditional GAN, both the generative and

discriminative networks of cGAN observe the input images (e.g., the

MR images in CT synthesis from MR). It can be formulated by condi-

tioning the loss function of the discriminator on the input images

and has been proved to be more suitable for image‐to‐image transla-

tion tasks.23 Liang et al. implemented CycleGAN in their CBCT‐based
synthetic CT study.24 The CycleGAN includes two generators: a

CBCT/CT generator and a CT/CBCT generator, as well as two dis-

criminators: a real CT/synthetic CT discriminator and a real CBCT/

synthetic CBCT discriminator. In the first cycle, the input CBCT is

fed into the CBCT/CT generator to synthesize a CT, then the syn-

thetic CT is fed into the CT/CBCT generator to regenerate a cycle

CBCT, which is ideally identical to the input CBCT. The cycle CBCT

is compared to the original input CBCT to generate CBCT cycle con-

sistency loss. Meanwhile, the real CT‐synthetic CT discriminator dis-

tinguishes between the real CT and the synthetic CT to generate CT

adversarial loss, similar to a standard GAN. To encourage one‐to‐one
mapping between CT and CBCT, a second cycle transformation from

CT to CBCT is performed. The second cycle is same as the first,

except the roles of CBCT and CT are swapped, that is, the real CT is

fed into the same CT‐CBCT generator to synthesize CBCT, and then

14 | WANG ET AL.



the synthetic CBCT is fed into the same CBCT‐CT generator to gen-

erate cycle CT. The cycle CT is compared to the real CT to generate

CT cycle consistency loss. The real CBCT–synthetic CBCT discrimi-

nator distinguishes between the CBCT and the synthetic CBCT to

generate CBCT adversarial loss, similar to a standard GAN. Unlike

GAN, the CycleGAN couples an inverse mapping network by intro-

ducing a cycle consistency loss which enhances the network perfor-

mance, especially when paired CT/CBCT training image sets are

absent. As a result, CycleGAN can tolerate a certain level of

misalignment in the paired training dataset. This property of Cycle-

GAN is attractive to inter‐modality synthesis because misalignment

in the training datasets is often inevitable due to the difficulty of

obtaining exact matching image pairs. In many studies, training

images are still paired by registration to preserve quantitative pixel

values and reduce baseline geometric mismatch, allowing the net-

work to focus on mapping details and accelerate training.25

Varying structures of feature extraction blocks have proven use-

ful for different applications. A group of studies showed that AEs

with residual blocks can achieve promising results in image‐trans-
forming tasks where source and target images are largely similar,

such as between CT and CBCT, non‐attenuation‐corrected (NAC)

PET and attenuation‐corrected (AC) PET, and low‐counting PET and

full‐counting PET. Since these pairs of images are similar in appear-

ance but are quantitatively different, residual blocks, composed of a

residual connection in combination with multiple hidden layers, were

integrated into the network to learn the differences between the

pairs. An input bypasses these hidden layers via the residual connec-

tion, thus the hidden layers enforces minimization of a residual

image between the source and ground truth target images, thereby

minimizing noise and artifacts.25–29 In contrast, dense blocks con-

catenate outputs from previous layers rather than using feed‐for-
ward summation as in a standard AE block, capturing multi‐
frequency (high and low frequency) information to better represent

the mapping from the source image modality to the target image

modality. Dense blocks are therefore commonly used in inter‐modal-

ity image synthesis such as MR‐to‐CT and PET‐to‐CT.12,30–34

Within GANs, the AEs and its variants are commonly used for

both generative and discriminative networks. Emami et al. used

ResNet for its generative network.7 They removed the fully con-

nected layers and added two transposed convolutional layers after

residue blocks as deconvolution. Kim et al. combined the U‐net
architecture and the residual training scheme in their generative

network.35 Olberg et al. proposed a deep spatial pyramid convolu-

tional framework that includes an atrous spatial pyramid pooling

(ASPP) module in a U‐net architecture. The module performs

atrous convolution at multiple rates in parallel such that multi‐
scale features can be exploited to characterize a single pixel.36

The encoder is then able to capture rich multi‐scale contextual

information, which aids image translation. Compared to the gener-

ator, the discriminator is typically implemented in a simpler form.

A common example consists of a few downsampling convolutional

layers followed by a sigmoid activation layer to binarize the out-

put, as proposed by Liu et al.33

Generative adversarial networks and its variants incorporate

adversarial loss functions in addition to the image quality and accu-

racy loss functions contained within U‐net. The adversarial term,

unlike the reconstruction term that represents image intensity accu-

racy, reflects the correct or incorrect decision that the discriminator

makes on real or synthetic images. In addition to the binary cross‐
entropy loss mentioned above or a similar sigmoid cross‐entropy
loss, the negative log‐likelihood functions outlined in the original

computer vision publication describing GANs are also widely used.

However, the training process may suffer from divergence caused by

vanishing gradients and mode collapse when the discriminator is

trained to be optimal for a fixed generator.37 To address this prob-

lem, Emami et al. proposed to use least‐square loss, which has been

shown to be more stable during training and generates higher quality

results.7 The Wasserstein distance loss function is an alternative

with even smoother gradient flow and faster convergence.37 It has

also been shown that, in GANs, simply providing the true or false

labels output by the discriminator may not be sufficient for the gen-

erator to improve, but instead may result in numerical instability dur-

ing training secondary to vanishing or exploding gradients. Ouyang

et al. employed a feature‐matching technique by specifying a new

objective function such that the generator encourages the synthe-

sized images to match the expected value of features on the inter-

mediate layers of the discriminator instead of directly maximizing the

final output of the discriminator.38

3.D | Other

In addition to the above architectures, other designs have also been

proposed to adapt to specific applications in the reviewed studies.

For example, Zhang et al. proposed a dual‐domain AE framework

that uses two parallel AEs operating in the spatial and frequency

domains which interact with each other by Fourier transform to gen-

erate synthetic 7T MRI from 3T MRI.39 The additional integration of

the frequency domain proved to be superior to using the spatial

domain alone in synthetic accuracy. In the study of ultralow‐dose
amyloid PET reconstruction by Ouyang et al., a pretrained classifier

that predicts amyloid status (positive or negative) is incorporated

into a GAN‐based network. The pretrained amyloid status classifier

acts as a feature extractor, providing feature maps in the calculation

of perceptual loss in the GAN.

Using images from multiple modalities as inputs to deep learning

networks has been shown to be effective in providing more useful

features for learning and testing in several studies. These multi‐
modality images are usually treated as inputs with multiple channels

in the first layer, each of which has a spatial invariant kernel applied

for convolution on the entire image. Wang et al. claimed that the

contributions of different modalities could vary at different locations,

thus they added a locality adaptive fusion network that takes two

modalities (a low‐counting PET and a T1‐weighted MRI) as input to

generate a fused image by learning different convolutional kernels at

different image locations. The fused image is then fed into the gen-

erative network in a GAN architecture.40 In contrast to common
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multichannel inputs in a single path, Tie et al. used three MR images

with varying contrast as multichannel inputs in a multipath architec-

ture which has three training paths in the encoder, with each chan-

nel possessing its own feature network.8 The separate image feature

extractions on different MR images are able to avoid the loss of

unique features that may be merged in a lower level.

4 | APPLICATION AREAS

The reviewed articles were categorized into two groups based on

their objectives: inter‐modality (56%) and intra‐modality (44%) syn-

thesis. Within each group, subgroups are described that specify the

involved imaging modalities and their clinical applications.

4.A | Inter‐modality

The group of inter‐modality synthetic techniques includes studies of

image synthesis from one image modality to another, such as from

MR to CT, from CT to MR, from PET to CT, etc. We also consider

the transformation between CT and CBCT to be inter‐modality

because they are acquired from different machines with different

hardware and are reconstructed with different principles and algo-

rithms. Studies in this group were further divided into four sub-

groups: (a) MR‐to‐CT, (b) CT/CBCT‐to‐MR, (c) CBCT‐to‐CT, and (d)

PET‐to‐CT. As shown in Fig. 3, MR‐to‐CT synthesis along with its

applications in radiation therapy, PET and image registration,

accounts for about half of the considered inter‐modality studies and

two‐thirds of the studies considered overall.

4.A.1 | MR‐to‐CT

Image synthesis from MR to CT is one of the first applications to uti-

lize deep learning for medical image synthesis and remains the most

commonly published topic in this field. The main clinical motivation

of MR‐based CT synthesis is to replace CT with MR acquisition.41

The image quality and appearance of the synthetic CT in current

studies is still considerably different from real CT, which prevents its

direct diagnostic usage. However, many studies have demonstrated

its utility in the nondiagnostic setting, such as treatment planning for

radiation therapy and PET attenuation correction.

In the current radiation therapy workflow, both MR and CT

imaging are frequently performed on many patients for the purpose

of treatment planning (i.e., simulation). MR images feature excellent

soft tissue contrast that is useful for delineation of gross tumor as

well as organs at risk (OARs)42 while CT images provide electron

density maps for dose calculation and reference images for pretreat-

ment positioning. The contours from MR images are propagated to

CT images by image registration for treatment planning. However,

using both imaging modalities not only leads to additional time and

cost for the patient, but also introduces systematic positioning errors

during the CT‐MRI image fusion process.43–45 Moreover, CT also

subjects patients to exposure to a non‐negligible dose of ionizing

radiation,46 especially in those requiring resimulation. Thus, it is

highly desirable to bypass CT scans in favor of an MRI‐based treat-

ment planning workflow. Emerging MR‐linear accelerator (MR‐linac)
technology also motivates the exclusive use of MRI in radiother-

apy.47,48 Without accurate image synthesis, MR imaging cannot

replace CT imaging in radiotherapy because the signal recorded in

MR images derives from the hydrogen nucleus and thus cannot pro-

vide material attenuation coefficients for electron density calibration

and subsequent dose calculation.

Replacing CT with MRI is also preferable in current PET imaging

applications, although CT is widely combined with PET in order to

perform both imaging examinations simultaneously during a single

encounter. The CT images acquired are then used to derive the

511 keV linear attenuation coefficient map to model photon attenu-

ation by a piecewise linear scaling algorithm.49,50 The linear attenua-

tion coefficient map is then used to correct for the loss of

annihilation photons by attenuation processes in the object on the

PET images to achieve a satisfactory image quality. Magnetic reso-

nance has been proposed to be incorporated with PET as a promis-

ing alternative to existing PET/CT systems for its advantages of

superior soft tissue contrast and radiation dose sparing; however, a

challenge similar to that encountered in applications in radiation

therapy remains: MR images cannot be directly used to derive the

F I G . 3 . Pie chart of numbers of articles in different categories of applications. MR‐to‐CT: RT, MR‐to‐CT: PET, and MR‐to‐CT: Registration
represent MR to CT image synthesis used in radiotherapy, PET, and image registration, respectively. PET: AC and PET: Low‐count represent
PET image synthesis used in attenuation correction and low‐count to full‐count, respectively.
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511 keV attenuation coefficients used in the attenuation correction

process. Therefore, MR‐to‐CT image synthesis could be useful to

develop a PET/MR system capable of providing the necessary data

for photon attenuation correction.51

The absence of a one‐to‐one relationship between MR voxel

intensity and CT HU values leads to a large difference in image

appearance and contrast, which results in failure of intensity‐based
calibration methods. For example, bone is bright and air is dark on

CT imaging while both are dark on MRI. Conventional methods pro-

posed in the literature either segment MR images into several

classes of materials (e.g., air, soft tissue, bone), then assign corre-

sponding CT HU values,52–57 or register MR images to an atlas with

known CT HU values.58–60 These methods rely heavily on the per-

formance of segmentation and registration, which introduces signifi-

cant error due to the ambiguous boundary between, for instance,

bone and air and large inter‐patient variation.
Tables 1 and 2 list the studies synthesizing CT from MR images

for radiation therapy and PET attenuation correction, respectively.

For CT synthesis applications in radiation therapy, the MAE is the

most common and well‐defined metric by which nearly every study

reported the image quality of its synthetic CT. For synthetic CT in

PET attenuation correction, synthetic CT quality is more commonly

evaluated indirectly by assessing the quality of PET attenuation cor-

rection than by direct evaluation of the synthetic CT itself. For stud-

ies presenting several variants of methods, we listed that with the

best MAE for radiation therapy and the best PET quality for PET

attenuation correction.

Synthetic CT image accuracy

In most of the studies, the MAE of the synthetic CT within the

patient's body ranges from 40 to 70 HU, with some of the reported

results approaching uncertainties observed in standard CT simula-

tion. For example, the MAE of soft tissue reported in several stud-

ies7,14,21,61–64 is <40 HU. In contrast, due to their indistinguishable

contrast on MR images, the MAE of bone or air is more than

100 HU. Another common source of error is misalignment between

CT and MR images in the patient datasets. The misalignment that

happens on the bone not only causes intensity mapping error during

training, but also leads to overestimation of error in evaluation since

the error from misalignment registers as synthetic error. Two studies

also reported much higher MAE for rectum (~70 HU) than other soft

tissue,21,65 which may also be attributed to mismatch on CT and

MRI due to variable filling. Moreover, considering that the number

of bone pixels is far fewer than those of soft tissue, the training pro-

cess tends to map pixels to low HU region in the prediction stage.

Potential solutions may include assigning higher loss weights on

bone or adding bone‐only images for training.14

Compared with conventional methods, learning‐based methods

demonstrate superior performance in synthetic CT accuracy in multi-

ple studies, indicating an advantage of the data‐driven approach over

model‐based methods.9,22,62,65 For example, synthetic CT generated

by atlas‐based methods was shown to be more noisy and prone to

registration error, leading to significantly greater MAE than learning‐

based methods. However, atlas‐based methods were shown to be

more robust to image quality variation in some cases.65 One of the

limitations of learning‐based methods is that performance can be

unpredictable when applied to datasets that are very different from

the training sets. These differences may be attributed to unusual or

abnormal anatomy or images with degraded quality due to severe

artifacts and noise. Atlas‐based methods, in contrast, generate a

weighted average of templates from prior knowledge, and are thus

less likely to fail on unexpected or unusual cases.

The results reported among these studies cannot be compared

directly to determine a single best methodology for all applications

because they utilize diverse datasets as well as training and testing

strategies. However, some studies compared proposed methods with

competing methods using the same datasets, which may reveal their

relative advantages and limitations. For example, a GAN‐based
method was shown to better preserve detail, be more similar to real

CT with less noise compared to a AE‐based method on a cohort of

15 brain cancer patients.7 Specifically, GAN‐based synthetic CT was

more accurate at the bone/air interface and in determining fine

structures, with around 10 HU less error by MAE. Largent et al.

compared U‐net and GAN with different loss functions on 39

patients with prostate cancer: U‐net with L2‐norm loss, U‐net with

single‐scale perceptual loss, GAN with L2 loss, GAN with single‐scale
perceptual loss, GAN with multi‐scale perceptual loss, and GAN with

weighted multi‐scale perceptual loss.21 Quantitative results showed

that the U‐net methods had significantly higher MAE than their GAN

counterparts. The perceptual loss in U‐net and GAN did not help

decrease MAE, nor provide any benefits for dose calculation accu-

racy. Lei et al. compared CycleGAN and GAN‐based methods on

patients with brain and prostate cancer.31 Significant improvement in

MAE was observed in the CycleGAN results, with better visual

results on fine structural detail and contrast. CycleGAN results,

which were less sensitive to local mismatch in the training CT/MR

pairs, have less blurry bone boundaries than GAN results. Similar

comparison results were also reported by Liu et al., where CycleGAN

and GAN were compared on liver stereotactic body radiation ther-

apy (SBRT) cases.32 However, dosimetry comparison showed minimal

difference, attributed to volumetric‐modulated arc therapy (VMAT)

plans which are insensitive to HU inaccuracy.

Among the reviewed studies, several different MR sequences

have been adopted for synthetic CT generation. The specific

sequence used in each study usually depends upon availability. The

optimal sequence yielding the best performance has not, to our

knowledge, been studied. T1‐weighted and T2‐weighted sequences

are the two most common general diagnostic MR sequences. Due to

their wide availability, models can be trained from a relatively large

number of datasets with CT and accompanying co‐registered T1‐ or
T2‐weighted MR images. T2 images may be preferable to T1 due to

their intrinsically superior geometric accuracy within regions of great

anatomic variability, such as the nasal cavity, and have less chemical

shift artifacts at fat and tissue boundaries. However, air and bone

have little contrast in either T1‐ or T2‐weighted MR images, which

may impede the extraction of their corresponding features in
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TAB L E 1 Summary of studies on MR‐based synthetic CT for radiation therapy.

Network MR parameters
Site and # of patients in training/test-
ing

Key findings
in image
quality Key findings in dosimetry

Author,
year

U‐net 1.5T T1w without contrast Brain: 18, sixfold cross validation MAE (HU):

84.8 ± 17.3

N/Aa Han,

20179

GAN N/A Brain: 16

Pelvis: 22

MAE (HU):

92.5 ± 13.9

N/A Nie et al.,

201822

AE T1w Brain: 16, leave‐one‐out
Pelvis: 22, leave‐one‐out

MAE (HU):

85.4 ± 9.24

(brain)

42.4 ± 5.1

(Pelvis)

N/A Xiang

et al.,

2018143

AE 1.5T T1w Brain: 52, twofold cross validation MAE (HU):

67 ± 11

Dose difference < 1% Dinkla

et al.,

201864

U‐net 3T T2w Pelvis: 39, fourfold cross validation MAE (HU):

32.7 ± 7.9

Dose difference < 1% Arabi

et al.,

201865

U‐net 3T T2w Pelvis: 36 training/15 testing MAE (HU):

29.96 ± 4.87

Dose difference of max dose

in PTV < 1.01%

Chen

et al.,

201862

GAN 1T post‐Gadolinium T1w Brain: 15, fivefold cross validation MAE (HU):

89.3 ± 10.3

N/A Emami

et al.,

20187

GAN Dixon in‐phase, fat and water Pelvis: 91 (59 prostate + 18

rectal + 14 cervical cancer), 32

(prostate) training/59 (rest) testing

MAE (HU):

65 ± 10

(Prostate)

56 ± 5

(Rectum)

59 ± 6

(Cervix)

Dose difference < 1.6% Maspero

et al.,

2018144

U‐net 3T in‐phase Dixon T2w Head and neck: 22 training/12 testing MAE (HU):

75 ± 9

Mead dose difference

−0.03%±0.05% overall,

‐0.07%±0.22% in > 90% of

prescription dose volume

Dinkla

et al.,

201961

U‐net 1.5T T1w without contrast Pelvis: 20, fivefold cross validation MAE (HU):

40.5 ± 5.4

(2D)

37.6 ± 5.1

(3D)

N/A Fu et al.,

201914

U‐net 3T in‐phase Dixon T1w Brain: 47 training/13 testing MAE (HU):

17.6 ± 3.4

Mean target dose difference

2.3 ± 0.1%

Gupta

et al.,

201 63

GAN 1.5T post‐Gadolinium T1w Brain: 77, 70% training/12% validation/
18% testing

MAE (HU):

47.2 ± 11.0

Mean DVH metrics

difference < 1%

Kazemifar

et al.,

201973

GAN 3T T2w Pelvis: 39, training/testing: 25/14, 25/
14, 25/11

MAE (HU):

34.1 ± 7.5

PTV V95% difference < 0.6% Largent

et al.,

201921

CycleGAN Brain: T1w

Pelvis: T2w

Brain: 24, leave‐one‐out cross
validation

Pelvis: 20, leave‐one‐out cross
validation

MAE (HU):

55.7 ± 9.4

(Brain)

50.8 ± 15.5

(Pelvis)

N/A Lei et al.,

201931

U‐net 1.5T T1w Brain: 30 training/10 testing MAE (HU):

75 ± 23

PTV V95% difference

0.27% ± 0.79%

Liu et al.,

2019145

(Continues)
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learning‐based methods. The two‐point Dixon sequence can separate

water and fat, which is suitable for segmentation and has already

been applied in commercial PET/MR applications with combination

of volume‐interpolated breath‐hold examination (VIBE) for Dixon‐
based soft tissue and air segmentation for PET attenuation correc-

tion as a clinical standard.66,67 Its drawback, too, is again the poor

contrast of bone, which results in the misclassification of bone as

fat. In order to enhance bone contrast and facilitate feature extrac-

tion in learning‐based methods, ultrashort echo time (UTE)–and/or
zero echo time (ZTE) MR sequences have been recently used to

generate positive image contrast from bone.10 Ladefoged et al. and

Blanc‐Durand et al. demonstrated the feasibility of UTE and ZTE MR

sequences using U‐net in PET/MR attenuation correction, repec-

tively.68,69 However, neither compared UTE/ZTE to conventional MR

sequences under the same deep learning network. Thus, the advan-

tage of this specialized sequence has not been validated. Moreover,

compared with conventional T1‐/T2‐weighted MR images, the UTE/

ZTE MR images have little diagnostic value on soft tissue and have a

long acquisition time, which may reduce their clinical utility in poorly

tolerated long‐duration examinations such as whole‐body PET/MR.

TABLE 1 (Continued)

Network MR parameters
Site and # of patients in training/test-
ing

Key findings
in image
quality Key findings in dosimetry

Author,
year

CycleGAN 3T/1.5T T1w Liver: 21, leave‐one‐out cross validation MAE (HU): 72.87 ± 18.16 Mean DVH

metrics

difference < 1% for both

photon and proton plans
Liu et al., 201932 and 34

CycleGAN 1.5T T2w Pelvis: 17, leave‐one‐out cross
validation

MAE (HU): 51.32 ± 16.91 Mean DVH

metrics

difference < 1% (Proton plan) Liu et al., 201934

U‐net 1.5T T1w Brain: 57 training/28 validation/4
testing

MAE (HU):

(82, 147)b
Gamma passing rate: >95%
at (1%, 1 mm) for photon

plan,

>90% at (2%, 2 mm) for

proton plan

Neppl

et al.,

201915

GAN 0.35T T1w Breast: 48 training/12 testing MAE (HU):

16.1 ± 3.5

PTV D95 difference < 1% Olberg

et al.,

201936

CycleGAN 1.5T T1w Brain: 50 MAE (HU):

54.55 ± 6.81

PTV D95 difference < 0.5%

(proton plan)

Shafai‐
Erfani

et al.,

201975

U‐net 1.5T T2w Head and neck: 23 training/10 testing MAE (HU):

131 ± 24

N/A Wang

et al.,

2019146

U‐net 3T T1w Dixon Pelvis: 27, threefold cross validation MAE (HU):

(33, 40)

N/A Florkow

et al.,

202071

GAN T1w + T2w+ FLAIR Brain: 15 MAE (HU):

108.1 ± 24.0

DVH metrics

difference < 1%

Koike

et al.,

2020147

GAN T1w + T2w+ Contrast‐
enhanced T1w + Contrast‐
enhanced T1w Dixon water

Head and neck: 30 training/15 testing MAE (HU): 69.98 ± 12.02 Mean

average

dose

difference < 1% Qi et al., 202070

GAN 1.5T Pre contrast T1w + post

contrast T1w + T2w

Head and neck: 32, eightfold cross

validation

MAE (HU):

75.7 ± 14.6

N/A Tie et al.,

20208

GAN 1.5T and 3T T2w from three

scanners

Pelvis: 11 training from two scanner/8
testing from one scanner

MAE (HU):

48.5 ± 6

Maximum dose difference in

target = 1.3%

Brou Boni

et al.,

2020142

aN/A: not available, that is, not explicitly indicated in the publication.
bNumbers in parentheses indicate minimum and maximum values.
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Other studies attempted to use multiple MR images with varying

contrast as training input in order to provide additional features to

the network, intended to enhance overall predictive power and

resulting synthetic CT accuracy. Qi et al. proposed a four‐channel
input composed of T1, T2, contrast‐enhanced T1, and contrast‐en-
hanced T1 Dixon water images. Compared with the results from

fewer channels, the four‐channel results demonstrated lower MAE.70

Florkow et al. investigated single and multichannel input using mag-

nitude MR images and Dixon‐reconstructed water, fat, in‐phase and

opposed‐phase images obtained from a single T1 multi‐echo gradi-

ent‐echo acquisition.71 They found multichannel input is able to

improve synthetic CT generation over single‐channel input. Among

the multichannel input configurations tested, the Dixon sequence

input outperformed all others. Tie et al. used T2 and pre‐ and post-

contrast T1 MR images in a multichannel, multipath architecture,

demonstrating an additional improvement over multichannel single‐
path and single‐channel results.8 An attractive combination is UTE/

ZTE and Dixon, which provide contrast of bone against air and fat

against soft tissue, respectively.17,72 Leynes et al. showed that the

synthetic CT using ZTE and Dixon MR has less error than that using

Dixon alone.17 Although the resulting image quality improvement

has been validated, the necessity of performing additional MR

sequences for the purpose of synthetic CT generation requires fur-

ther study in specific applications to justify the additional associated

costs and acquisition time.

In the reviewed studies, CT and MR images in the training data-

sets were acquired separately on different machines. Thus, image

registration is required between the CT and MR images to create

CT‐MR pairs for training. The registration error is minimal at the

level of the brain, but may be significant within the pelvis, due to

variable bladder and rectum filling, and the abdomen, due to the

variation introduced by respiratory motion and peristalsis. U‐net and
GAN‐based methods are susceptible to registration error if using a

pixel‐to‐pixel loss, which is exacerbated by these types of physiologic

motion. Kazemifar et al. proposed a possible solution that uses

mutual information as the loss function in the GAN generator to

bypass the registration step during training.73 As CycleGAN was

originally developed for unpaired image‐to‐image translation, Cycle-

GAN‐based methods feature greater robustness to registration error

due to the role of the cycle consistency loss in enforcing structural

consistency between the original and cycle‐generated images (e.g.,

enforcing a cycle MRI generated from synthetic CT to be similar to

the original MRI).12,25,27,74

MR‐only radiation therapy

For studies with applications in radiation therapy, many evaluated

the dosimetric accuracy of synthetic CT by calculating radiation

treatment dose from the original treatment plan and comparing

against ground truth CT simulation imaging. It has been shown that

the dose difference is approximately 1%, which is small compared to

typical total dose delivery uncertainties over an entire treatment

course (5%). Compared to image accuracy, the improvement in dosi-

metric accuracy provided by deep learning‐based methods in radia-

tion therapy is relatively small and may lack clinical relevance.62,65 A

TAB L E 2 Summary of studies on MR‐based synthetic CT for PET attenuation correction.

Network
MR
parameters

Site and # of patients in train-
ing/testing

Key findings in syn-
thetic CT quality Key findings in PET quality Author, year

U‐net Dixon and

ZTE

Brain: 14, leave‐two‐out MAE (%):

12.62 ± 1.46

Absolute bias < 3% among 8 VOIs Gong et al.,

201872

U‐net
(Encoder‐
decoder)

3T UTE Brain: 30 pretraining/6 training/8
testing

N/Aa Bias (%): −0.8 ± 0.8 to 1.1 ± 1.3 among

23 VOIs

Jang et al.,

201811

U‐net 3T Dixon

and ZTE

Pelvis:26, 10 training/16 testing Mean error (HU):

−12 ± 78

RMSE (%): 2.68 among 30 bone lesions,

4.07 among 60 soft‐tissue lesions

Leynes et al.,

201817

U‐net
(Encoder‐
decoder)

1.5T T1w Brain: 30 training/10 testing N/A Bias (%): −3.2 ± 1.3 to 0.4 ± 0.8 Liu et al.,

201810

U‐net 1.5T T1w Brain: 44 training/11 validation/
11 testing

Global Bias (%):

−1.06 ± 0.81

Global Bias(%): −0.49 ± 1.7 for 11C‐
WAY‐100635
−1.52 ± 0.73 for 11C‐DASB

Spuhler et al.,

201920

U‐net Dixon‐
VIBE

Pelvis: 28 pairs from 19

patients, fourfold cross

validation

MAE (%):

2.36 ± 3.15

Bias (%): 0.27 ± 2.59 for fat

−0.03 ± 2.98 for soft tissue

−0.95 ± 5.09 for bone

Torrado‐Carvajal
et al., 201916

U‐net ZTE Brain: 23 training/47 testing N/A Bias (%): −1.8 ± 1.9 to 1.7 ± 2.6 among

70 VOIs

Blanc‐Durand

et al., 201968

U‐net UTE Brain: 79 (pediatric), fourfold

cross validation

N/A Bias (%): −0.2 to 0.5 in 95% CI Ladefoged et al.,

201869

GAN 3T T1w Brain: 40, twofold cross

validation

MAE (HU):

302 ± 79 (bone)

Absolute bias < 4% among 63 VOIs Arabi et al.,

201979

aN/A: not available, that is, not explicitly indicated in the publication.
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potential reason is that dose calculation on photon plans is quite for-

giving to image inaccuracy, especially within homogeneous regions

such as brain. For VMAT, the contribution to dosimetric error from

random image inaccuracy also tends to cancel out within an arc.

However, the small dosimetric improvement observed may be impor-

tant in stereotactic radiosurgery (SRS) and SBRT, where small vol-

umes are treated to very high dose. In such cases, significant

dosimetric error may arise from otherwise negligible errors in CT

synthesis in the region surrounding the target volume.3

Studies have also evaluated synthetic CT in the context of pro-

ton therapy for prostate, liver, and brain cancer.33,34,75 Unlike pho-

ton beams, which exhibit a broad dose distribution, proton beams

deposit dose with very high‐dose gradient (sharp Bragg peak) at the

distal end of the beam. By superimposing proton beams from several

angles, this dose distribution characteristic can be exploited to pro-

vide highly conformal dose to the target. Any HU inaccuracy along

the beam path on the planning CT would lead to shift of the highly

conformal high‐dose area, which may cause the tumor to be sub-

stantially underdosed or the OARs to be overdosed.76 As shown in

the Liu et al.,34 most of the dose difference resulting from the use

of synthetic CT arises at the distal end of the proton beam. As

reported by Liu et al.,33,34 the largest and mean absolute range dif-

ference is 0.56 and 0.19 cm among their 21 liver cancer patients,

and 0.75 and 0.23 cm among 17 prostate cancer patients, respec-

tively.

In addition to dosimetric accuracy for treatment planning,

another important consideration in the evaluation of synthetic CT

imaging is geometric fidelity for treatment setup. Unfortunately,

studies on synthetic CT positioning accuracy are sparse. Fu et al.

conducted patient alignment testing by rigidly aligning synthetic CT

and real CT to the CBCT acquired during delivery of the first frac-

tion of a fractionated radiotherapy treatment course.14 The transla-

tion vector distance and absolute Euler angle difference between the

two alignments were found to be less than 0.6 mm and 0.5° on

average, respectively. Gupta et al. conducted a similar study and

found the translation difference was less than 0.7 mm in one direc-

tion.63 Aside from alignment with CBCT, the alignment between the

digitally reconstructed radiograph (DRR) derived from the synthetic

CT and onboard kilovolt (kV) imaging of the patient is also of clinical

interest. However, no study on DRR alignment accuracy is found in

the literature reviewed. Note that the geometric accuracy of syn-

thetic CT is not only affected by the synthetic methods employed,

but also by the geometric distortion on MR images caused by mag-

netic field inhomogeneity in addition to subject‐induced susceptibil-

ity and chemical shift. Methods to mitigate MR distortion are also

important in improving synthetic CT accuracy in patient positioning.

PET attenuation correction

For the studies of PET attenuation correction, the bias on PET quan-

tification caused by synthetic CT error has been evaluated. Although

it is difficult to specify an error tolerance beyond which clinical deci-

sion‐making is impacted, the general consensus is that quantitative

errors of 10% or less typically do not affect decisions in diagnostic

imaging.77 Based on the average relative bias represented by these

studies, almost all of the proposed methods in the studies met this

criterion. However, it should be noted that, due to variation among

study objects, the bias in some volumes‐of‐interest (VOIs) may

exceed 10% for some patients,17,68 suggesting that attention should

be given to the standard deviation of the bias as well as its mean

when interpreting results, since the proposed methods may have

poor local performance that would affect some patients. Alternative

results reporting listing or plotting all data points, or at least their

range, would ultimately be more informative than giving a mean and

standard deviation in demonstrating the performance of the pro-

posed methods.

Since bone has the highest capacity for attenuation due to its

high density and atomic number,78 its accuracy on synthetic CT

plays a vital role in the final accuracy of attenuation‐corrected PET.

Compared to applications in radiation therapy, bias and geometric

accuracy of bone on synthetic CT is more often evaluated for PET

attenuation correction. Several studies have shown that improved

bone accuracy in CT synthesis yields more globally accurate

PET.16,68,72,79 The more accurate synthetic CT images generated by

learning‐based methods therefore lead to more accurate PET attenu-

ation correct. Such improvements were found to be significant in the

reviewed studies. It has been shown that PET attenuation correction

by conventional CT synthesis methods have about 5% bias on aver-

age among selected VOIs while for learning‐based methods the bias

was reduced to around 2%.10,11,16,17,72

MR‐CT image registration

In addition to radiation treatment planning and PET attenuation cor-

rection, MR‐based CT synthesis has also proven promising in facilita-

tion of inter‐modality image registration. Direct registration between

CT and MR images is very challenging due to disparate image con-

trast and is even less reliable in deformable registration wherein sig-

nificant geometric distortion is allowed. McKenzie et al. proposed a

CycleGAN‐based method to synthetize CT images and used the syn-

thetic CT to replace MRI in MR‐CT registration in the head and

neck, reducing an inter‐modality registration problem to an intra‐
modality one.80 As summarized in Table 3, they found that, using

the same deformable registration algorithm, the average landmark

error decreased from 9.8 ± 3.1 mm in direct MR‐CT registration to

6.0 ± 2.1 mm using synthetic CT as a bridge. Similar results were

also reported in the inverse CT‐MR registration task.

4.A.2 | CT/CBCT‐to‐MRI

Due to superior soft tissue contrast produced by MRI, it is attractive

to generate synthetic MRI from CT or CBCT in applications that are

sensitive to soft tissue contrast, such as segmentation.81 Synthesiz-

ing MR from CT/CBCT may at first seem more challenging than syn-

thesizing CT from MR, in part because MR contains greater contrast

and detail that must be recovered but are not shown on CT; how-

ever, deep learning methods have proven quite competent in map-

ping high nonlinearity, making the proposed application possible.
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Studies reviewed synthesizing MR from CT/CBCT‐adopted similar

networks to those employed in MR‐to‐CT synthesis and are listed in

Table 4. In most of these, the generated synthetic MR served as a

bridge to be used in indirect applications, so the image intensity

accuracy of the synthetic MR was not reported. In studies that did

report synthetic MR accuracy, MAE is less meaningful than other

image similarity metrics such as peak signal‐to‐noise ratio (PSNR)

since the MR image intensity is relative.

Jiang et al. proposed to use synthetic MR to augment the train-

ing data for MR tumor segmentation in lung cancer.82 Here, only 81

MR image sets were available with tumor contours delineated by

experts, a small sample size for training a segmentation model. In

order to enlarge the training dataset, they employed a GAN‐based
model to generate synthetic MRI from 377 CT image sets with

tumor labeled using other groups of unpaired MR image sets. The

377 synthetic MR image sets with tumor labels were then incorpo-

rated into segmentation model training. The addition of synthetic

MR in the training set improved segmentation performance, increas-

ing the Dice similarity coefficient (DSC) from 0.50 ± 0.26 to

0.75 ± 0.12. They also showed that, among the synthetic MRIs gen-

erated by different methods, the ones more nearly resembling real

MR offered better segmentation results. Of note, in the training

stage of this model, the ground truth contours for the synthetic

MRIs were not delineated on MR, but on CT. Thus, in the testing

stage, the output contours were also expected to be CT based. Since

the delineation of tumor relies heavily on image contrast, the

contour for a single object may vary between CT and MRI. In some

cases (prostate cancer, etc.), MR‐based contours are considered the

gold standard due to MRIs superior soft tissue contrast relative to

CT. Therefore, using CT‐based contours as ground truth in training

for MR synthesis may not only confuse the network, but also squan-

der the superior soft tissue contrast provided by MRI.

In the studies of Dong et al. and Lei et al., synthetic MRIs were

used instead as a bridge to facilitate segmentation on CT/CBCT

images.30,83,84 The segmentation targets in their study include pros-

tate, which exhibits low contrast in CT/CBCT but is revealed in high

contrast in MRI and tends to be over‐contoured with larger variation

on CT/CBCT images when compared with MRI alone or in combina-

tion with CT.85,86 The synthetic MRIs generated by CT were then

aimed at providing superior soft tissue contrast for prostate segmen-

tation. In their studies, paired CT and MRI image sets were used and

the prostate contours used as ground truth for MR synthesis were

delineated on MR alone or in combination with CT. Compared to

ground truth MR‐guided physician contours, synthetic MR‐based
prostate segmentation yielded a DSC of 0.87 ± 0.04 compared to

0.82 ± 0.09 with CT alone, a statistically significant improvement.

4.A.3 | CBCT‐to‐CT

Cone‐beam CT and CT image reconstruction are subject to the com-

mon physics principles of x‐ray attenuation and back projection;

however, they differ in the details of their implementation of

TAB L E 3 Summary of studies on MR‐based synthetic CT for registration.

Network
MR param-
eters

Site and # of patients in training/
testing

Key findings in synthetic
CT quality

Key findings in registration
accuracy Author, year

CycleGAN 0.35T Head and neck: 25, fivefold cross

validation

N/Aa landmark error (mm): 6.0 ± 2.1

(MR‐to‐CT)
6.6 ± 2.0 (CT‐to‐MR)

McKenzie et al.,

201980

aN/A: not available, that is, not explicitly indicated in the publication.

TAB L E 4 Summary of studies on CT/CBCT‐based synthetic MR.

Network
MR param-
eters

Site and # of patients in train-
ing/testing

Key findings in synthetic MR
quality Application Author, year

CycleGAN T2w Pelvis: 140, fivefold cross

validation

N/Aa Male pelvis multi‐organ segmentation

on CT

Dong et al.,

201930

GAN 3T T2w Lung: 42 MRIs and 377 CTs,

unpaired training

Kullback–Leibler divergence
in tumor: 0.069

Augment training data for lung tumor

segmentation on MR

Jiang et al.,

201982

CycleGAN 3T T2w Spine: 549 training/92 testing PSNR(dB): 64.553 ± 1.890 Diagnosis Jin et al.,

2019148

CycleGAN 3T T2w Brain: 192 training/10 testing PSNR(dB): 65.35 Diagnosis Jin et al.,

2019149

GAN 1.5T and

3T T2w

Spine: 280 pairs in training/15
testing

PSNR(dB): 64.9 ± 1.86 Diagnosis Lee et al.,

2020150

CycleGAN 1.5T T2w Pelvis: 49, leave‐one‐out N/A Prostate segmentation on CT Lei et al.,

202083

CycleGAN T2w Pelvis: 100, fivefold cross

validation

N/A Male pelvis multi‐organ segmentation

on CBCT

Lei et al.,

202084

aN/A: not available, that is, not explicitly indicated in the publication.
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acquisition and reconstruction as well as their clinical utility. There-

fore, they are considered as two distinct imaging modalities in this

review.

cOne‐beam CT has been widely utilized in image‐guided radiation

therapy (IGRT) to determine the degree of patient setup error and

inter‐fraction motion by comparing the displacement of anatomic

landmarks from the treatment planning CT images.87 With increasing

adoption of adaptive radiation therapy techniques, more demanding

applications of CBCT have been proposed, such as daily dose esti-

mation and auto‐contouring based on a deformable image registra-

tion (DIR) with CT imaging obtained at simulation.88,89

Unlike CT scanners using fan‐shaped x‐ray beams with multi‐slice
detectors, CBCT generates a cone‐shaped x‐ray beam incident on a

flat panel detector. The flat panel detector features a high spatial

resolution and wide coverage along the z‐axis, but also suffers from

increased scatter signal since the x‐ray scatter generated from the

entire body volume may reach the detector. The scatter signals

cause severe streaking and cupping artifacts on the CBCT images

and lead to significant quantitative CT errors. Such errors complicate

the calibration process of CBCT Hounsfield Unit (HU) to electron

density when images are used for dose calculation.90 The degraded

image contrast and suppression of bone can also cause large errors

in DIR for contour propagation from planning CT to CBCT.91 The

significantly degraded image quality of CBCT prevents its use in

advanced quantitative applications in radiation therapy.

Deep learning‐based methods, as listed in Table 5, have been

proposed to correct and restore CBCT HU values relative to CT by

exploiting advantages provided by image translation. CBCT images

are reconstructed from hundreds of 2D projections from different

angles. A few studies applied a neural network in the projection

domain, that is, the 2D projection images, in order to enhance the

quality of the projection images prior to volume reconstruction. The

quality‐improved projection images were then used to reconstruct

CBCT image volume. Others processed in the image domain, that is,

directly input the reconstructed CBCT image volumes and output

synthetic CT with improved image quality. Projection domain meth-

ods can be advantageous in a larger number of training 2D projec-

tion images (>300) than training image slices of image domain

methods (<100) for each scan. Moreover, the cupping and streaking

artifacts caused by scatter on CBCT images are less predictable than

those on projection images so that projection images are easier for

neural networks to learn. Per‐patient artifactual variation is likewise

greater in the image domain, so much so that image domain meth-

ods do not typically train models on non‐anthropomorphic phantoms

because the data gathered would be useless across patient image

sets. However, such variation in image features is not present in the

projection domain. As a result, Nomura et al. were able to demon-

strate that the features characterizing scatter distribution in anthro-

pomorphic phantom projections can be learned from non‐
anthropomorphic phantom projections,92 potentially because the

neural network successfully learned the inherent relationship

between the scatter distribution and objective thickness in the pro-

jection domain. The relationship between scatter artifact and

objective appearance is much more complex in the image domain

and cannot be easily learned.

In the reviewed studies, the ground truth considered while train-

ing on CBCT images/projections is typically the corresponding CT

images/projections captured from the same patient. However, mis-

match is commonly seen between CT and CBCT and registration is

often required to reduce artifact caused by geometric mismatch. Liu

et al. compared the performance of their method when using rigidly

and deformably registered CBCT‐CT training data in their pancreas

study.29 They found that synthetic CT generated from rigidly regis-

tered training data had slightly higher MAE (58.45 ± 13.88 HU) than

those generated from deformably registered data

(56.89 ± 13.84 HU, P > 0.05) in addition to less noise and better

organ boundaries. Kurz et al. showed that using unmatched CT and

CBCT as training data in a CycleGAN without a pixel‐wise loss func-

tion is feasible to generate synthetic CT with satisfactory quality.93

To bypass the registration step, Hansen et al. and Landry et al. pro-

posed to correct CBCTs by conventional methods first, then use the

corrected CBCTs as ground truth. Since the corrected CBCTs main-

tain the same geometry as the original CBCT, registration is not nec-

essary.94,95 However, the synthetic CT quality in this setting is

limited by conventional CBCT‐generating methods.

In studies that compared the performance of deep learning methods

against conventional CBCT correction methods using the same datasets,

learning‐based methods feature better image quality.25,92,96–98 Adrian

et al. found their U‐net‐based method outperformed a deformable regis-

tration method and an analytical image‐based method with lower MAE

and spatial nonuniformity as well as superior accuracy in bone geome-

try.96 Harms et al. similarly observed less noise and improved subjective

similarity of their synthetic CT to real CT when compared to a conven-

tional image‐based correction method.25 Conventional correction meth-

ods are designed to enhance only a single specific aspect of image

quality. By contrast, learning‐based methods are capable of modifying

every aspect of image quality to mimic CT, such as noise level, which is

not usually considered in conventional methods. A few studies also com-

pared different networks on the same patient datasets, demonstrating

that CycleGAN outperforms both GAN and U‐net.24,29

Synthetic CTs demonstrate significant improvement over original

CBCTs in dosimetric accuracy, and approach planning CT for photon

dose calculation. Synthetic CT feasibility in VMAT planning has been

evaluated in various body sites by investigating select dose volume

histogram (DVH) metrics and dose and/or gamma difference. The fig-

ure in Liu et al. demonstrates that large local dosimetric error

occurred in regions with severe artifacts. Synthetic CT successfully

mitigated these artifacts and the caused dosimetric error.29 Com-

pared to photon planning, achieving acceptable dosimetric accuracy

with synthetic CT in proton planning is more challenging due to

range shift, which may be as great as 5 mm.93–95

4.A.4 | PET‐to‐CT

In a PET‐only scanner where neither CT nor MR is available, attenu-

ation correction is currently conducted by transmission scanning
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with an external positron source rotated around the patient to mea-

sure the attenuation of the body. It is therefore desirable to use

non‐attenuation‐corrected (NAC) PET to generate synthetic CT

images to provide anatomic information. Moreover, for PET/MR,

although MR provides anatomical images, the current atlas or regis-

tration‐based methods in MR‐based PET/MR attenuation correction

are subject to errors in bone on the derived attenuation map. Deriv-

ing the attenuation map from existing NAC PET is therefore an

attractive alternative.

Studies in this domain are listed in Table 6. Similar to other stud-

ies of synthetic image generation, the synthetic CT images were

generated from NAC PET images using a deep learning model

trained by pairs of NAC PET and CT images acquired from a PET/CT

scanner. Synthesizing CT from NAC PET images is intrinsically chal-

lenging since the NAC PET images have much lower spatial resolu-

tion than CT and provide little anatomic information. In the studies

of Hwang et al., time‐of‐flight information was used to generate a

maximum‐likelihood reconstruction using activity and attenuation

maps as input since they provide more anatomic information than

NAC PET.13,99 Despite these challenges, the reported average errors

are all within 10% consensus tolerance, competitive with results

obtained from MR‐based synthetic CT.

TAB L E 5 Summary of studies on CBCT‐based synthetic CT for radiation therapy.

Network

Projection or
image
domain Site and # of patients in training/testing

Key findings in
synthetic CBCT
quality Key findings in dosimetry

Author,
year

U‐net Projection Pelvis: 15 training/7 testing/8 evaluation MAE (HU): 46 Passing rate for 2% dose difference:

100% for photon plan, 15%–81% for

proton plan

Hansen

et al.,

201894

U‐net Image Pelvis: 20, fivefold cross validation PSNR (dB): 50.9 N/Aa Kida

et al.,

201897

AE Image Lung: 15 training/5 testing PSNR (dB):8.823 N/A Xie et al.,

201898

U‐net Image Head and neck: 30 training/7 validation/7
testing

Pelvis: 6 training/5 testing

MAE (HU): 18.98

(head and neck)

42.40 (pelvis)

N/A Chen

et al.,

201918

CycleGAN Image Brain: 24, leave‐one‐out
Pelvis: 20, leave‐one‐out

MAE (HU):

13.0 ± 2.2 (brain)

16.1 ± 4.5 (Pelvis)

N/A Harms

et al.,

201925

CycleGAN Image Pelvis: 18 training/7 validation/8 testing MAE (HU): 87 (79,

106)b
Passing rate for 2% dose difference:

100% for photon plan,

71%‐86% for proton plan

Kurz

et al.,

201993

U‐net Image Pelvis: 27 training/7 validation/8 testing MAE (HU): 58 (49,

69)

Passing rate for 2% dose difference:

>99.5% for photon plan,

>80% for proton plan

Landry

et al.,

201995

U‐net Image Head and neck: 50 training/10 validation/
10 testing

MAE (HU): (6, 27) Average DVH metrics difference:

0.2 ± 0.6%

Li et al.,

2019151

CycleGAN Image Head and neck: 81 training/9 validation/20
testing

MAE (HU):

29.85 ± 4.94

Gamma passing rate at (1%, 1mm):

96.26 ± 3.59%

Liang

et al.,

201924

U‐net Projection 1800 projections in training (simulation)/
200 validation (simulation)/360 testing

(phantom)

MAE (HU):

17.9 ± 5.7

N/A Nomura

et al.,

201992

U‐net Image Head and neck: 33, threefold cross

validation

MAE (HU):

36.3 ± 6.2

Gamma passing rate at (2%, 2mm):

93.75‐99.75% (proton)

Adrian

et al.,

202096

U‐net Image Head and neck: 40 training/15 testing MAE (HU): 49.28 N/A Yuan

et al.,

2020152

CycleGAN Image Pelvis: 16 training/4 testing Mean error (HU):

(2, 14)

N/A Kida

et al.,

2020153

CycleGAN Image Pancreas: 30. Leave‐one‐out MAE (HU):

56.89 ± 13.84

DVH metrics difference < 1 Gy Liu et al.,

202029

aN/A: not available, that is, not explicitly indicated in the publication.
bNumbers in parentheses indicate minimum and maximum values.
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Whole‐body PET is a critical tool in detecting distant metas-

tases in many malignancies. Most of the reviewed studies of image

synthesis in PET developed their proposed methods for brain appli-

cations. Although machine learning‐based methods are data driven

and not site specific, they may not be readily applicable to the

whole body due to the anatomic heterogeneity, activity variance

across different organs, and inter‐subject variability. Hwang et al.

and Dong et al. investigated learning‐based whole‐body PET atten-

uation correction using synthetic CT.12,99 Both reported average

bias within target lesions to be around 1%, which is promising for

clinical use. Dong et al. reported average bias within 5% in all

selected organs except lungs (>10%) in both studies. Poor perfor-

mance for lung was attributed to tissue inhomogeneity and insuffi-

cient representative training data. They also found that synthetic

CT demonstrated blurriness in lung, like respiratory motion artifacts

that were not shown on CT, indicating that synthetic CTs are more

matched to PET than CT and may be more suitable for attenuation

correction. Both studies utilized a PET‐only scanner and, so far,

there are no learning‐based methods developed for the PET/MR

whole‐body scanner. Compared with PET alone, the PET/MR pro-

vides additional anatomic structural information from MR, but the

integration of MR into PET attenuation correction introduces addi-

tional challenges in the whole‐body setting relative to brain due to

limited field of view (FOV), longer scan time introducing more

motion, and degraded image quality due to a larger inhomoge-

neous‐field region.

4.B | Intra‐modality

The group of intra‐modality investigations includes studies that

transform images between two different protocols within an imaging

modality, such as among different sequences of MRIs, or the restora-

tion of images from a low‐quality protocol to higher quality. Studies

solely aiming at image quality improvement such as image denoising

and artifact correction are not included in this study. Studies within

this group are further subdivided into CT, MR, and PET. As shown in

Fig. 3, the number of published studies addressing each of the three

imaging modalities is similar.

4.B.1 | CT

Computed tomography imaging delivers a non‐negligible dose of ion-

izing radiation during acquisition leading to a small, but real, increase

in risk of radiation‐induced cancer and genetic defects.100–102 During

diagnosis, treatment and surveillance of many malignancies, it is

common for patients to be subject to frequent CT imaging. In this

setting, accumulated imaging dose is of even greater concern, partic-

ularly for pediatric patients who are more sensitive to radiation and

have longer life expectancy than adults throughout which secondary

malignancies are more likely to develop.103

Computed tomography dose can be lowered by either reducing

x‐ray exposure (mAs)104–107 or the number of x‐ray projections.104–

107 However, if reconstructing an image with a conventional filtered‐
backprojection (FBP) algorithm, image quality would be degraded

with greater image noise and reduced signal‐to‐noise ratio for a low‐
exposure protocol, or with severe undersampling artifacts for a

reduced projection protocol. These low‐quality images would make

routine tasks requiring CT images difficult for clinicians. Hardware‐
based methods such as optimization of the data acquisition protocol

(automatic exposure control)108 and improvements in detector

designs109 have been shown to be effective in reducing imaging

dose to some extent while maintaining clinically acceptable image

quality. However, further dose reduction from these techniques is

limited by detector physical properties and is therefore very costly.

For decades, iterative CT image reconstruction algorithms have

been proposed to address the degraded image quality resulting

from insufficient data acquisition.110 These methods model the

physical process of CT scanning with prior knowledge and are

more robust to noise, requiring less radiation dose for the same

image quality relative to FBP.110–112 However, iterative reconstruc-

tion suffers from long computation time due to the large number

of iterations with repeated forward and back projection steps.

Moreover, in the forward projection step, it requires knowledge of

the energy spectrum which is difficult to measure directly.113–116

This is usually addressed by a monoenergetic forward projection

matrix, or by obtaining an indirect simulation/estimation of the

energy spectrum.106,107,112,117,118

TAB L E 6 Summary of studies on PET‐based synthetic CT for PET attenuation correction.

Network
Site and # of patients in training/test-
ing

Key findings in synthetic CT qual-
ity Key findings in PET quality Author, year

U‐net Brain: 40, fivefold cross validation N/Aa Average 5% error in activity

quantification

Hwang et al.,

201813

U‐net Brain: 100 training/28 testing MAE (HU): 111 ± 16 Bias: <2% among 28 VOIs Liu et al., 2018154

GAN Brain: 50 training/40 testing N/A Bias: <2.5% among 7 VOIs Armanious et al.,

2019155

U‐net Whole body: 60 training/20 validation/
20 testing

Relative error (%): 0.91 ± 3.55

(soft tissue)

0.43 ± 6.80 (bone)

Bias (%): 1.31 ± 3.55 in lesions Hwang et al.,

201999

CycleGAN Whole body: 80 training/39 testing MAE (HU): 108.9 ± 19.1 Bias (%): 1.07 ± 9.01 in lesions Dong et al., 201912

aN/A: not available, that is, not explicitly indicated in the publication.
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Image synthesis by deep learning is attractive for low‐dose CT

(LDCT) restoration due to its data‐driven approach to automatically

learning image features and model parameters. As listed in Table 7,

most of the methods in the reviewed literature implement direct

image translation from low‐dose to full‐dose CT while others restore

the sinogram using deep learning first, and then reconstruct images

from the restored sinogram by FBP. As shown by Dong et al., their

proposed projection‐based method outperformed an image‐based
method by better reducing downsampling artifacts with higher reso-

lution on object edges.119 A potential reason for this difference is

that for image‐based methods prediction error is directly observed

on the image while for projection‐based methods, the error pre-

dicted on the sinogram will be compensated for in the reconstruc-

tion process, where the final product is a weighted sum of all

sinograms. Projection‐based methods are therefore inherently more

robust to error. It is also possible to train a model to map directly

from the projection domain to the image domain, with the network

encoding a mapping between polar and Cartesian coordinates.120

Among image domain methods, Shan et al. used a progressive

scheme that iteratively denoised the input LDCT, yielding a

sequence of denoised images at different noise levels.121 Kang et al.

mapped their wavelet coefficient instead of directly mapping low‐
and full‐dose CT images. The benefit of wavelet transformation was

revealed in better structure recovery than that achieved with direct

image mapping.122

Compared with iterative reconstruction methods, learning‐based
methods require less time and no prior knowledge about the energy

spectrum. For example, as reported by Wang et al., it took about

1 min to generate an entire 3D volume from denoised LDCT images

on an average personal computer after their model was trained. In

contrast, with the same hardware, a compressed sensing‐based itera-

tive method takes 1 min in forward and back projecting on a single

slice in one iteration. Alternatively, if the forward and back project-

ing operation is precalculated and saved as a sparse matrix, the time

can be shortened to several seconds for each slice in each iteration,

but requires 6.8 GB in memory to store the matrix. Even so, to

reconstruct the entire volume requires several hours. Conventional

iterative reconstruction methods are therefore very resource inten-

sive, limiting their implementation on personal computers, especially

when slice thickness is small and FOV is large.28

Conventional iterative reconstruction methods were compared

with learning‐based methods in several studies. For example, total

variation (TV) regularization is commonly studied in state‐of‐the‐art
compressed sensing‐based iterative methods. A common finding is

that TV‐based methods tend to over‐smooth and present patchy tex-

tures while the results obtained by learning‐based methods have

finer structures preserved and more closely resemble a full‐dose CT

in image texture.28,120 Such improvement with learning‐based meth-

ods is also shown in quantitative metrics of PSNR, etc. Superior

recovery of image quality with preserved texture could be attributed

to the analytic optimization objectives in machine learning that

incentivize model predictions to match ground truth examples (here,

full‐dose CT images) in image quality and texture. Similarly, Shan

et al. demonstrated that their proposed learning‐based method per-

formed favorably or comparably to three commercially available iter-

ative algorithms in terms of noise suppression and structural fidelity

by double‐blinded reader study.

Most of the reviewed studies assume diagnostic applications of

their restored full‐dose CT images. Wang et al. evaluated their

method in the context of radiation therapy treatment planning28

because LDCT employed in the CT simulation process is attractive

for adaptive radiation therapy, wherein iterative rescanning and

replanning throughout the treatment course is common. In contrast

to diagnostic CT, which emphasizes high spatial resolution and low‐
contrast lesion detectability, planning CT requires accurate HU num-

bers and dose calculation accuracy. Their dosimetric study showed

that the average differences of DVH metrics between the synthetic

full‐dose CT and original full‐dose CT are less than 0.1 Gy (P > 0.05)

when prescribing to a dose of 21 Gy.

Many of the reviewed studies used the dataset from the AAPM

2016 Low‐Dose CT Grand Challenge.123 Although the training and

testing strategies may be different among these studies, the results

are comparable. However, due to the lack of clinical LDCT data, this

LDCT dataset, along with the datasets in most other studies, are

simulated from full‐dose CT by adding Poisson noise or downsam-

pling the sinogram. Exceptions include Yi et al., who used piglet sub-

jects and Shan et al., who used real patient LDCTs.121,124 Simulated

noise may not fully reflect the properties of true noise and potential

artifacts, thus it is of clinical interest to evaluate these methods

against physically measured LDCT datasets.

4.B.2 | MRI

Image synthesis has been investigated for various applications in

MRI,125 including translation between sequence types, converting

low‐magnetic‐field MRI to high‐magnetic‐field MRI, and restoring

undersampled acquisitions. Converting low‐magnetic‐field MRI to

high‐magnetic‐field MRI allows acquisition on broadly available low‐
magnetic‐field equipment while providing greater spatial resolution

and improved contrast, similar to what might be obtained from a

cutting‐edge scanner while translation between sequences and

restoration of undersampled acquisitions can both shorten acquisi-

tion times. Although these applications are motivated by distinct

clinical goals, they pose the same technical challenges during the

task of image synthesis: preserving contrast and resolution.

A large group of conventional methods exist that address these

problems. Compressed sensing (CS) methods assume that images

have a sparse representation in some transformation domain. For

example, in image synthesis between multi‐contrast MR images, an

image patch in the source contrast level is expressed as a sparse lin-

ear combination of patches in an atlas and the combination is then

applied to image patches in the target contrast. In recovering under-

sampled acquisitions, the problem is usually modeled as a recon-

struction problem with regularization terms that incorporate prior

knowledge about the sparsity of images. Optimization is usually

implemented as an iterative algorithm, which is time and resource
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intensive. Deep learning methods, in contrast, encourage the integra-

tion of neural networks into these strategies for their superior map-

ping capability of nonlinear relationships and significant savings in

compute time.

The related studies are listed in Table 8. Compared with applica-

tions in other modalities, more studies of MR inter‐modality synthe-

sis implement neural networks in combination with other techniques,

rather than adopting an end‐to‐end deep learning strategy. It is also

common to apply neural networks in the transformation domains.

Zhang et al. proposed a cascaded regression using two parallel and

interactive multi‐layer network streams in the spatial and frequency

domains. Compared with a single spatial domain, the dual domain

method presented better visual results and a significantly greater

structural similarity index measure (SSIM).39 Qu et al. designed a

wavelet‐based affine transformation layer to modulate feature maps

from the spatial and wavelet domains in the encoder, followed by an

image reconstruction in the decoder that synthesizes 7T images from

wavelet‐modulated spatial information. Without such a layer, the

framework was reduced to a simple encoder‐decoder network, which

was found to be less capable in recovering detail.126

Many of the reviewed studies also compared their proposed

strategies with CS‐based methods with comparable or better perfor-

mance on quantitative image quality metrics and much less compute

time. Predictions carried out in production for deep learning models

TAB L E 7 Summary of studies on synthetic full dose CT from low‐dose CT.

Network
Projection or
image domain

Site and # of patients in training/
testing

Low‐dose scheme and frac-
tion of full dose CT

Key findings in restored
full dose CT Author, year

U‐net Image Abdomen: 10 training/20 testing Low mAs: 1/4 of full dose PSNR (dB): about 36 Kang et al.,

2017122

U‐net Image Abdomen: 10, leave‐one‐out Low mAs: 1/4 of full dose PSNR (dB):

44.4187 ± 1.2118

Chen et al.,

2017156

U‐net Image Thorax and pelvis: 475 slices

training/25 slices testing

Sparse view: 1/20 of full

views

PSNR (dB): 28.83 Jin et al.,

2017120

GAN Image Cardiac: 28, twofold cross

validation

Low mAs: 20% dose Significantly reduced

noise

Wolterink

et al.,

2017157

AE (ResNet) Image Abdomen: 9 training/1 testing Low mAs: 1/4 of full dose PSNR (dB): 39.8329 Yang et al.,

2017158

AE (ResNet) Image Abdomen: 8 training/1 testing Low mAs: 1/4 of full dose PSNR (dB): 38.70 Kang et al.,

2018159

GAN Image Abdomen (piglet): 708 slices

training/142 slices testing

Low mAs: 5% of full mAs PSNR (dB): about 34 Yi and Babyn,

2018124

GAN Image Abdomen: 5 training/5 testing Low mAs: 1/4 of full dose PSNR(dB):

30.137 ± 1.938

Shan et al.,

2018160

GAN Image Abdomen: 10, leave‐one‐out Low mAs: 1/4 of full dose PSNR (dB): (25.372,

27.398)a
You et al.,

2018161

U‐net Image Abdomen: 8 training/1 validation/
1 testing

Sparse view: 1/12 of full

views

PSNR (dB): 40.4856 Han and Ye,

2018162

GAN Image Abdomen: 4000 slices training/
2000 testing

Low mAs: 1/4 of full dose Validated in double‐
blinded reader study

Yang et al.,

201837

U‐net
(Encoder‐
decoder)

Image Whole body: 300 slices training/
50 slices testing

Low mAs: fraction not

specified

PSNR (dB): 42.3257 Liu and Zhang,

2018 163

AE Image Chest: 3 training/3 testing Low mAs: 3% of full mAs PSNR (dB): about 22 Zhao et al.,

2019164

U‐net Projection Chest: 7 training/8 testing Sparse view: 1/4 of full views PSNR (dB): (42.73, 52.14) Lee et al.,

2019165

U‐net Image Abdomen and chest: 10 training/
60 testing

Low mAs: about 1/3 to 1/8
of full dose

Validated in double‐
blinded reader study

Shan et al.,

2019121

U‐net Projection Head: 200 slices training/100
slices testing

Sparse view: 1/12 of full

views

Limited angle: 1/4 of full

views

PSNR (dB): 37.21 for

sparse view

43.69 for limited angle

Dong et al.,

2019119

CycleGAN Image Head: 30, fivefold cross validation Low mAs: 0.5% of full mAs NMSE (%): 1.63 ± 0.62 Wang et al.,

201928

aNumbers in parentheses indicate minimum and maximum values.
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TAB L E 8 Summary of studies on synthetic MRI.

Network Applications
Site and # of patients in train-
ing/testing Key findings in results

Author,
year

GAN Synthesizing 7T MRI from 3T MRI Brain: 15, leave‐one‐out PSNR (dB): 27.6 ± 1.3 Nie et al.,

201822

AE Restoring undersampled acquisition Cardiac: 5 training/5 testing Restored images showed most of the

anatomical structures up to 11‐fold
undersampling

Schlemper

et al.,

2018127

GAN Low resolution to high resolution Brain: 196 training/48 testing SSIM: (0.76, 0.94)a at eightfold

undersampling

Kim et al.,

201835

U‐net Synthesizing full contrast‐enhanced
images from low contrast‐enhanced
images

Brain: 10 training/ 50 testing PSNR (dB): 28.07 ± 2.26 at tenfold lower Gong et al.,

2018166

U‐net T1w to T2w

T1w to FLAIR

PDw to T2w

Three different brain datasets:

22 training/3 validation/3
testing

42 training/6 validation/6 testing

22 training/3 validation/3 testing

Average PSNR (dB) among groups of

datasets: (25.78, 32.92) for synthetic T2w

(29.99, 30.32) for synthetic FLAIR

Chartsias

et al.,

2018167

GAN Restoring undersampled acquisition Brain and chest: for each site,

100 slices training/100 slices

testing

PSNR (dB) at 10% undersampling: about 32

for brain, 26.5 for chest

Quan et al.,

2018168

GAN Low resolution to high resolution 767 training/192 validation/30
testing

Average PSNR (dB): about (25, 30) Galbusera

et al.,

2018169T1w to T2w 767 training/192 validation/30
testing

T2w to T1w 767 training/192 validation/30
testing

T2w to STIR 284 training/71 validation/30
testing

T2w to TIRM 305 training/77 validation/30
testing

GAN T1w to T2w

T2w to T1w

Brain: 3 datasets, 48 training/5
validation/13 testing,

25 training/5 validation/10
testing,

24 training/2 validation/15
testing

Average PSNR (dB): (25.80 ± 1.87,

29.77 ± 1.57) among three datasets

Dar et al.,

2019170

GAN Restoring undersampled acquisition Abdomen: 336 training/10
testing

SSIM: 0.84 at fivefold undersampling Mardani

et al.,

2019171

U‐net Synthesizing DTI from fMRI Brain: 648 training/293 testing Mean correlation coefficient: 0.808 ± 0.054

among 38 VOIs

Son et al.,

201919

AE Synthesizing FLAIR from mpMRI Brain: 24, fivefold cross

validation

SSIM: 0.860 ± 0.031 Wei et al.,

2019172

GAN Synthesizing diffusion b0 maps from

T1w

Brain: 586 training/26 testing Distortion correction based on synthesized

b0 maps is feasible

Schilling

et al.,

2019133

AE

(ResNet)

Synthesizing arterial spin labeling

images from T1w

Brain: 355, fivefold cross

validation

Accuracy in CBF calculation and dementia

disease diagnosis is close to gold standard

Huang

et al.,

2019173

AE Synthesizing 7T MRI from 3T MRI Brain: 15, leave‐one‐out SSIM: 0.8438 Zhang

et al.,

201939

U‐net Restoring undersampled acquisition Knee: 90 training/10 validation/
10 testing

SSIM: 0.821 ± 0.023 at eightfold

undersampling

Liu et al.,

2019174

(Continues)
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are typically calculated on the order of milliseconds to seconds while

CS‐based methods process in minutes. Schlemper et al. found that at

low undersampling rate, learning‐based and CS‐based methods had

comparable performance while the advantages of learning‐based
methods become evident at more aggressive undersampling fac-

tors.127 Other suboptimal findings, including loss of detail and blocky

artifacts were also reported.

4.B.3 | PET

Image synthesis among different PET images has been proposed to

facilitate PET attenuation correction and low‐count PET reconstruc-

tion. For PET attenuation correction, unlike those summarized in

Section 4.A.4 where synthetic CT is generated from NAC PET for

attenuation correction during PET reconstruction, a few studies

listed in Table 9 investigated the feasibility of directly mapping NAC

PET to attenuation‐corrected PET by exploiting deep learning meth-

ods to bypass PET reconstruction. These studies reported compara-

ble results with synthetic CT‐based PET attenuation correction

(Section 4.A.4), although direct comparisons on single datasets were

not found. Dong et al. is credited with direct NAC PET‐AC PET map-

ping across the whole body for the first time.26 They also demon-

strate the reliability of their method by including sequential scans in

their testing datasets to evaluate the PET intensity changes with

time on their attenuation‐corrected PET as well as on ground truth

images. Similar to their study using synthetic CT, the greatest error

was observed in lung. Shiri et al. further assessed radiomic features

on their attenuation‐corrected PET results, and found only three of

83 regions demonstrated significant differences from ground truth

images.128

Low‐count PET has extensive applications in pediatric PET scan-

ning and radiotherapy response evaluation with the advantages of

better motion control and lower radiation dose. However, low‐count
statistics result in increased image noise, reduced contrast‐to‐noise
ratio, and significant bias in uptake measurement. The reconstruction

of a standard‐ or full‐count PET from low‐count PET cannot be

achieved by simple postprocessing operations such as denoising,

since the diminished radiation dose changes the underlying biological

and metabolic processes, leading not only to noise but also local

uptake values changes.129 Moreover, even given the same

radiotracer injection dose, the uptake distribution and signal level

can vary greatly among patients. The learning‐based low‐count PET

reconstruction methods summarized in Table 10 have been proposed

to take advantage of the powerful data‐driven feature extraction

capabilities of neural networks applied across two image datasets. A

few of the reviewed methods used both MR and low‐count PET as

input while most used low‐count PET alone. Most were implemented

on PET of the brain, with a few on lung and whole body. Compared

with evaluations of PET attenuation correction which focus on rela-

tive bias, the evaluations in the reviewed studies of low‐count PET

reconstruction exhibit a greater focus on image quality and the simi-

larity between the predicted result and its corresponding full‐count
ground truth counterpart.

Similar to LDCT restoration, most low‐count PET restoration

studies apply neural networks directly to the image domain, with a

few operating in the projection domain. In addition to the advan-

tages mentioned in Section 4.B.1, Sanaat et al. commented that pro-

jection‐based networks allow modification of the reconstruction

filter or postprocessing without retraining the model.130 They also

compared results using original images and projections as input and

found that projection‐based results better reflect uptake pattern and

TABLE 8 (Continued)

Network Applications
Site and # of patients in train-
ing/testing Key findings in results

Author,
year

U‐net
(encoder‐
decoder)

Synthesizing 7T MRI from 3T MRI Brain: 15, leave‐one‐out PSNR (dB): 28.27 Qu et al.,

2020126

U‐net Restoring undersampled acquisition Knee: 336 training/24 testing SSIM: 0.8603 at fourfold undersampling Wu et al.,

2020175

U‐net Synthesizing MR angiography from 3D‐
QALAS sequence

Brain: 11, fivefold cross

validation

PSNR (dB): 35.3 ± 0.5 Fujita et al.,

2020176

aNumbers in parentheses indicate minimum and maximum values.

TAB L E 9 Summary of studies on synthetic AC PET from NAC PET.

Network

Site and # of
patients in train-
ing/testing

Key findings in PET qual-
ity

Author,
year

U‐net Brain: 25

training/10
testing

Bias (%): 4.0 ± 15.4 Yang

et al.,

2019177

U‐net Brain: 91

training/18
testing

Bias (%): −0.10 ± 2.14

among 83 VOIs

Shiri

et al.,

2019128

CycleGAN Whole body: 25

training/
10 patients*3
sequential scan

testing

Bias (%): (−17.02,3.02)a

among 6 VOIs,

2.85 ± 5.21 in lesions

Dong

et al.,

201926

aNumbers in parentheses indicate minimum and maximum values.
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anatomy than image‐based results, with both subjective and objec-

tive studies validating the advantages of projection‐based results. A

drawback of projection‐based methods, however, is training time

that is sixfold greater than that required for image‐based methods.

Although these studies demonstrate the feasibility of mapping

low‐count PET to full‐count PET, a few investigated using PET and

MRI in combination as dual input channels to further improve results

when MR images are available. As expected, the additional anatomic

information provided by MRI improved the performance of the net-

work observed when trained on PET alone. Chen et al. showed that

their network is able to achieve 83% accuracy when using PET as

sole input vs 89% when using PET in combination with MR in a clin-

ical reading study of uptake status.131 A potential reason for this

improvement derives from the superior reflection of anatomic pat-

terns provided by PET and MR together. The contribution of MR

images was also validated in the study of Xiang et al. showing a sig-

nificant improved PSNR.132 They commented that structural infor-

mation from MRIs yields important cues for estimating the high‐
quality PET, even though structural MRI differs from PET signifi-

cantly in overall appearance.

5 | SUMMARY AND OUTLOOK

Recent years have witnessed the trend in deep learning being

increasingly used in the application of medical imaging. The latest

networks and techniques have been borrowed from the field of

computer vision and adapted to specific clinical tasks in radiology

and radiation oncology. As reviewed in this paper, learning‐based
image synthesis is an emerging and active field — all the reviewed

studies were published within the last 3 yr. With further develop-

ment in both artificial intelligence and computing hardware, more

learning‐based methods are expected to facilitate the clinical work-

flow with novel applications. Although the reviewed literature show

the success of deep learning‐based image synthesis in various appli-

cations, there remain some open questions to be answered in future

studies.

Due to limitations of GPU memory, some of the deep learning

approaches examined were trained on two‐dimensional (2D) slices.

Since the loss functions of 2D models do not account for continuity

in the third dimension, slice discontinuities can be observed. Some

studies trained models on three‐dimensional (3D) patches to exploit

3D spatial information with even less memory burden,31 while a

potential drawback is that the larger scale image features may be

hard to extract.61 Training on 3D image stacks is expected to

achieve a more homogeneous conversion result. Fu et al. compared

the performance of 2D and 3D models using the same U‐net imple-

mentation.14 They found 3D‐generated synthetic CT exhibited smal-

ler MAE and more accurate bone regions. However, to achieve

robust performance, 3D model needs more training data to learn

more parameters. A compromise is to use multiple adjacent slices

that allow the model to capture more 3D context, or to train

TAB L E 10 Summary of studies on synthetic full‐count PET from low‐count PET.

Network
PET or
PET + MR

Image or projec-
tion domain

Site and # of patients in training/
testing

Counting frac-
tion (low/full)

Key findings in restored
full‐counting PET Author, year

AE PET + MR Image Brain: 16, leave‐one‐out 1/4 PSNR (dB): 24.76 Xiang et al.,

2017132

GAN PET Image Brain: 16, leave‐one‐out 1/4 PSNR (dB): about 24 Wang et al.,

2018178

U‐net PET + MR Image Brain: 40, fivefold cross‐validation 1/100 PSNR (dB): about 38 Chen et al.,

2019131

AE PET Image Brain: 2 training/1 testing

Lung: 5 training/1 testing

Brain: 1/5
Lung: 1/10

N/A Gong et al.,

2019179

U‐net
(encoder‐
decoder)

PET Projection Whole body (simulation): 245

training/52 validation/53 testing

N/A PSNR (dB): 34.69 Haggstrom

et al.,

2019180

GAN PET + MR Image Brain: 16, leave‐one‐out ¼ PSNR (dB): 24.61 Wang et al.,

2019181

GAN PET Image Brain: 40, fourfold cross validation 1/100 PSNR (dB): about 30 Ouyang et al.,

201938

U‐net PET Image Lung: 10, fivefold cross validation 1/10 Bias: <15% Lu et al.,

2019182

GAN PET Image Whole body: 435 slices training/440
slices testing

1/10 PSNR (dB): 30.557 Kaplan and

Zhu, 2019183

CycleGAN PET Image Whole body: 25 training/10 testing 1/8 PSNR (dB): 41.5 ± 2.5 Lei et al.,

201927

U‐net PET Projection Brain: 100 training/20 validation/20
testing

1/20 PSNR (dB): 38.25 ± 0.66 Sanaat et al.,

2020130
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different networks for all three combinations of orthogonal 2D

planes to produce pseudo‐3D information.133

The reviewed studies illustrate the advantages of learning‐based
methods over conventional methods in performance as well as clini-

cal application. Learning‐based methods generally outperform con-

ventional methods in generating more realistic synthetic images with

higher similarity to real images and better quantitative metrics.

Depending on hardware, training a model in development usually

takes hours to days for learning‐based methods. However, once the

model is trained, it can be applied to new patients to generate syn-

thetic images in seconds to minutes. Conventional methods vary

widely in specific methodologies and implementations, resulting in a

wide range of run times. Iterative methods such as CS were shown

to be unfavorable due to significant costs in time and compute

power.

Unlike conventional methods, learning‐based methods require

large training datasets. The size of training sets has been shown to

affect the performance of machine learning in many challenging

computer vision problems as well as medical imaging tasks.134–137

Generally, a larger training set size with greater data variation can

reduce overfitting of the model and enable better performance.

Compared with studies in some medical imaging applications where

it is common to see thousands of patients enrolled, studies in medi-

cal image synthesis involve far fewer patients. As shown in Tables

1–10, a training size of dozens of patients is more common in these

studies while hundreds of patients per set are rare and can be con-

sidered as a relatively “large” study. Moreover, it is very common to

see the leave‐X‐out or N‐fold cross validation strategy used in evalu-

ating methods. The lack of an independent test set unseen by the

model may complicate the generalization of results for broad clinical

applications. The current small sample norm arises from circum-

stances which vary from application to application. In radiation

oncology, clinical patient volume is inherently lower than other spe-

cialties such as radiology, so that fewer eligible patients are available

for study. In addition to limitations in data collection, data cleaning

further eliminates a portion of data that are low in quality or repre-

sent outliers, such as image pairs with suboptimal registration. In

order to address the problem posed by limited training data, novel

techniques have been proposed, such as transfer learning,138 self‐su-
pervised/weakly supervised/unsupervised learning,139,140 and data

augmentation.141 These methods either diminish or completely elimi-

nate dependence on training data sample size; although they may

not be applicable to all medical image synthesis applications.

In the training stage, most of the reviewed studies require paired

datasets, that is, the source image and target image must exhibit

pixel‐to‐pixel correspondence. This requirement poses difficulties in

collecting sufficient eligible datasets and demands high accuracy in

image registration. Some networks such as CycleGAN can relax the

requirement for paired image datasets, which can be beneficial to

clinical applications enrolling large number of patients for training.

Although the advantages of learning‐based methods have been

demonstrated, it should be noted that their performance can be

unpredictable when input images during production differ

significantly from training images. In most of the reviewed studies,

unusual cases are excluded. However, unusual cases may be realisti-

cally observed in the clinical setting and, in these cases, the applica-

tion of learning‐based methods should be approached with diligence

and caution. For example, hip prostheses create severe artifacts on

both CT and MR images, thus, it is of clinical and practical interest

to understand the effect of their inclusion in training or testing data-

sets for learning‐based models, but this effect has not yet been stud-

ied. Similar unusual cases may also be encountered in other forms in

other imaging modalities and are worthy of investigation, such as

medical implants that introduce artifacts, obesity resulting in greater

image noise, and anatomic deformities or abnormalities.

Due to the limitation in the number of available datasets, most

studies used N‐fold cross validation or the leave‐N‐out strategy. The
small to intermediate number of patients in training and testing data-

sets is appropriate for feasibility studies, but is not sufficient for

evaluating clinical utility. Moreover, the representativeness of train-

ing/testing datasets relative to a particular clinic’s population requires

special attention in clinical study. Suboptimal demographic diversity

may reduce the robustness and generalizability of any model. Most

studies reviewed here trained models using data from a single insti-

tution with a single scanner. Model performance across hardware of

several models or manufacturers, wherein image characteristics can-

not be exactly matched, is an important consideration due to fre-

quent hardware replacement and upgrade in the modern clinical

setting. Boni et al. recently presented a proof‐of‐concept study that

predicted synthetic images of one clinical site using a model trained

on data from two other sites and demonstrated clinically acceptable

results.142 Further studies could include datasets from multiple cen-

ters and adopt a leave‐one‐center‐out training and/or test strategy in

order to validate the consistency and robustness of the network.

Before being deployed into clinical workflow, there are still sev-

eral challenges to be addressed. To account for potentially unpre-

dictable synthetic images that can result from noncompliance with

imaging protocols in training data or unexpected anatomic variation,

additional quality assurance (QA) steps would be essential in clinical

practice. QA procedures would aim to check the consistency of

model performance routinely or after upgrading by retraining the

network with additional patient datasets and verify synthetic image

quality on specific cases.
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