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Machine learning models for hydrogen 
bond donor and acceptor strengths using 
large and diverse training data generated 
by first‑principles interaction free energies
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Abstract 

We present machine learning (ML) models for hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) 
strengths. Quantum chemical (QC) free energies in solution for 1:1 hydrogen-bonded complex formation to the 
reference molecules 4-fluorophenol and acetone serve as our target values. Our acceptor and donor databases are 
the largest on record with 4426 and 1036 data points, respectively. After scanning over radial atomic descriptors and 
ML methods, our final trained HBA and HBD ML models achieve RMSEs of 3.8 kJ mol−1 (acceptors), and 2.3 kJ mol−1 
(donors) on experimental test sets, respectively. This performance is comparable with previous models that are 
trained on experimental hydrogen bonding free energies, indicating that molecular QC data can serve as substitute 
for experiment. The potential ramifications thereof could lead to a full replacement of wetlab chemistry for HBA/HBD 
strength determination by QC. As a possible chemical application of our ML models, we highlight our predicted HBA 
and HBD strengths as possible descriptors in two case studies on trends in intramolecular hydrogen bonding.
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Introduction
The hydrogen bond [1] (HB) is a key non-covalent 
interaction in biochemistry and medicinal chemistry 
[2–12]. It has been demonstrated that a single HB inter-
action can decide the potency of drug-like molecules for 
a target when all other interactions stay constant [13]. HB 
strength can be approximated by the experimental reac-
tion Gibbs free energy ( �G ) in the case of 1:1 complex 
formation when all other intermolecular interactions 
are small. Scales for hydrogen bond acceptor (HBA) and 
donor (HBD) strengths can be derived by using a com-
mon monofunctional reference donor/acceptor molecule.

Significant experimental work was already carried out 
in the 1960s, when HBA strengths were measured against 
4-fluorophenol by Taft and co-workers [14]. A HBD 
strength scale for solvents was established in 1976 by the 
same group [15]. Abraham and co-workers established 
experimental scales of HBA and HBD strengths against 
various reference molecules [16–20]. At around the same 
time, Raevsky et  al. developed HB scales using both 
enthalpies and free energies [21–23]. Their HYBOND 
database [24] is one of the largest HB databases to date. 
The Fourier Transform Infrared Spectroscopy (FTIR) 
based pKBHX database [25] comprised approximately 
1200 entries of experimentally measured HBA strengths. 
There, the majority of the values were based on 1:1 com-
plex formation. For HBD strengths, a similar measure, 
the pKAHY value was established [26], but for far fewer 
molecules, mainly alcohols [27].
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HBA/HBD strengths predicted by Quantitative Struc-
ture–Property Relation (QSPR) models have involved 
quantum-chemical (QC) descriptors, among them 
orbital energies and other output of QC calculations [28, 
29], the electrostatic potential [30–33], COSMO polari-
zation densities [34, 35], and optimized geometries of 
1:1 H-bonded complexes [36]. A recent approach by 
the group of Varnek involves training a support vec-
tor machine learning (ML) model on ISIDA fragment 
descriptors, which take into account both donor and 
acceptor sites [37, 38]. HBA/HBD strengths were also 
computed by supramolecular QC. Gas phase models of 
1:1 complexes yielded H-bonding energies that corre-
lated well with experiment [39–42] as did computations 
on HBD strengths in implicit solvent [43]. Recently, we 
presented our own approach using ML with atomic radial 
descriptors [44–46] and QC computations [47].

Exploring the chemical space using QC methods has 
very recently come into focus [48]. By generating data 
points in silico and training ML models on them, larger 
areas of chemical space can be covered in smaller time 
scales. Examples include bond dissociation energies [49, 
50], dipole moments [51], and partial charges [52, 53].

Our work ties in directly with this concept: We quan-
tum chemically compute Gibbs free energies of HB 
formation in CCl4, with the aim of fully substituting 
experiment. Our reference HBD is 4-fluorophenol and 
our reference HBA is acetone. Both were used extensively 
in experimental studies. Figure S1, found in Additional 
file 1 the illustrates the reaction types used in our study.

Methods
Data sets
Experimental data sets for quantum chemistry validation
The pKBHX database [25] contains experimental free ener-
gies for hydrogen bond acceptor molecules. It uses the 
4-fluorophenol scale. The data set was obtained from the 
authors and 425 monofunctional compounds serve as 
experimental validation set. These compounds comprise 
oxygen, nitrogen, and unpolar (alkenes, halides, etc.) HBA 
moieties to cover as broad a chemical space as possible.

For the experimental donor strengths, we used a data 
set obtained from Varnek [38], which we call the Stras-
bourg database below and extracted all 58 data points 
containing acetone as the reference acceptor in the sol-
vent CCl4 from the training set.

Generation of hydrogen bonding fragments for the quantum 
chemical databases
Molecular fragments containing HBA/HBD moieties 
were generated using the following strategy, as depicted 
in Fig. 1. 

1.	 Define donor and acceptor atoms: 

a.	 Define HBA sites: Every oxygen, every nitrogen 
except if bound to oxygen.

b.	 Define HBD functions: R–OH (alcohols), R-NH2 
(primary amines), R1–NH–R2 (secondary 
amines, heterocycles), R–SH (thiols), R–C≡C–H 
(alkynes).

2.	 Iterate over all HBA sites. Get the substructure up to 
the 4th shell of topologically connected atoms. Three 
cases are defined: 

a.	 Chain fragment: Atoms around the HBA site are 
not in any ring up to the third shell. If fourth shell 
atoms are in a ring, the atom type is changed.

b.	 Ring + sidechain fragment: At least one atom 
within the third shell around the HBA site is part 
of a ring. The whole ring is taken in addition to 
the sidechain, which extends to the fourth shell.

c.	 Ring fragment: The HBA site is in a ring. The 
whole ring system and any side chains up to the 
fourth shell are taken.

This strategy, which is similar to a functional group 
identification scheme developed by Peter Ertl [54], was 
implemented in rdkit 2017.09.1 [55]. The unique frag-
ment incidences were counted by comparison of canoni-
cal SMILES strings. Importantly, all molecules were 
kekulized (i.e., only single, double and triple bond types 
were used, no aromatic bond types), which ensured that 
heterocyclic compounds, for which aromaticity is some-
times ill-defined within cheminformatics frameworks, 
were treated correctly. The QM-derived partial charges 
are nevertheless based on aromatic bonds.

The resulting unique acceptor and donor fragments 
were subjected to a selection procedure: Only organic 
fragments (atoms H, C, N, O, F, Cl, S, Br, I) were accepted. 
Further criteria for selection were the number of rings 
(less than four), the corrected molecular weight being 

Fig. 1  Depiction of the fragmentation strategy to obtain fragments 
containing a acceptor and b donor functionalities
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below 300 D [56], and the number of donors/acceptors 
in any fragment (less than four). The resulting subset of 
unique fragments was first grouped into six classes for 
acceptors as defined by atom type (O, N) combined with 
fragment type (chain, ring + sidechain, ring) and 9 out of 

12 thinkable classes in case of donors as defined by atom 
type (O, N, S, Csp) combined with fragment type (not 
occurring were not unexpectedly O-ring, C-ring, S-ring). 
Each such class was subjected to a clustering proce-
dure using the Pipeline Pilot [57] component “cluster 

Fig. 2  Experimental target value distributions for 425 acceptors (Gibbs free energies for 4-fluorophenol HB complex formation in CCl4, a) [25] and 
58 donors [38] (Gibbs free energies for acetone HB complex formation in CCl4, b). Quantum chemical results for acceptors (c) and donors (d). Linear 
models for acceptors (e) and donors (f). The RMSEs are given in units of kJ mol−1
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molecules” with MDL public keys fingerprints, Tanimoto 
distance metrics, maximum dissimilarity and optimized 
for speed and memory. NumberOfClusters was set to 
1/25 of the number of fragments of each class, and we 
kept at maximum 30 fragments including the three most 
central compounds from each.

Energy values
We used energy values in units of kJ mol−1 as our target 
values. The experimental hydrogen bonding free energies 
for complex formation in the pKBHX data set were meas-
ured by a infrared (IR) spectroscopic method: The shift 
in absorption induced in the hydrogen-bonded complex 
was used to determine the equilibrium constants and 
thereby the free energies. CCl4 was used as the solvent 
partly because it was IR transparent [25]. The Stras-
bourg data [38] were collected from a variety of different 
primary sources. We pointed out in our previous paper 
that comparing entries for molecular duplicates between 
the two different sources had a root mean square error 
(RMSE) of approximately 2 kJ mol−1 [47].

Quantum chemistry
For each of the generated fragments, we calculated reac-
tion free energies (�G) in solution. The computational 
protocol comprised the following steps:

1.	 Generation of one 3D conformer of each donor 
or acceptor molecule and the reference donor and 
acceptor molecules 4-fluorophenol and acetone 
by the ETKDG method [58] using rdkit, Version 
2017.09.1 [55].

2.	 GFN-xTB [59] semi-empirical QC single point com-
putation including the generation of Foster–Boys 
localized molecular orbitals [60] and their charge 
centers for the acceptor molecules.

3.	 Generate one conformer for each HBA/HBD site 
with the reference donor 4-fluorophenol or the refer-
ence acceptor acetone:

a.	 For acceptor molecules: Placement of the donated 
hydrogen of 4-fluorophenol at a distance of 2.00 
Å from the localized lone pair (LP) charge center 
at an angle of 180°. As our modelling approach 
is a single-structure strategy, the energetically 
higher (i.e. less stable) LP was taken.

b.	 For donor molecules: Placement of the donated 
hydrogen at a distance of 2.00 Å from an LP of 
acetone (isoenergetic orbitals) at an angle of 180°.

4.	 Constrained geometry pre-optimization of each 
complex structure with distance and angle con-
straints of 2.00 Å and 180°, respectively, using the 

MMFF94s [61–66] implementation [67] of Lan-
drum and co-workers in rdkit, Version 2017.09.1.

5.	 Density Functional Theory (DFT) geometry opti-
mization for acetone, 4-fluorophenol, each acceptor 
molecule, each donor molecule, and each pre-opti-
mized complex at the PBEh-3c level of theory [68].

6.	 Calculation of rigid rotor/harmonic oscillator ther-
mal corrections [69] GRRHO,PBEh-3c for all species 
using the Hessian calculated at the PBEh-3c level of 
theory.

7.	 Single-point calculation at the dispersion-corrected 
PW6B95-D3(BJ)/def2-QZVP [70–74] level of theory 
(Ehigh-level DFT). The use of dispersion corrections and 
a large basis set is needed for an accurate description 
of non-covalent interactions [75].

8.	 Implicit solvent calculation for the solvation free 
energies δGsolv at the SMD/BP86-def2-TZVP [74, 
76–78] level using CCl4 as the solvent.

The final reaction free energies in solution were thus 
calculated: 

 with

All DFT computations were carried out using Tur-
bomole 7.0.2 [79] and Gaussian 09, Revision D.01 [80]. 
(SMD calculations) at ETH Zürich and at Bayer high-
performance computing clusters.

Machine learning
We apply our previously developed [44, 45] radial 
atomic reactivity descriptors for the HBA and HBD 
sites, encoding the electronic and steric environment 
of an atom, together with Gaussian Process Regression 
(GPR) [81]. It provides a native estimate of the vari-
ance by taking into account the distance of the query to 
the training data in descriptor space. We used the GPR 
implementation of scikit-learn 0.19.1 [82] with a com-
bined kernel function:

where C is a constant (parameter optimization scale from 
10−3 to 103), M is the Matérn kernel function (with fixed 
parameter ν; manually scanned at values of 1/2, 3/2 and 
5/2, and length scale l optimization (from 10−2 to 102),

�Gsol,QC = �Ehigh−levelDFT +�GRRHO,PBEh−3c

+�δGsolv,SMD(CCl4),

�E = E(complex)− E(molecule)

− E
(

reference donor or acceptor
)

.

(1)K = C ∗M +W ,
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where xi,xj are the data points, d is their distance, and γ is 
a fixed non-negative parameter.

W is a white kernel with an added noise level of 0.05. 
The kernel function involving the Matérn kernel turned 
out to yield the best-performing models. However, we 
also scanned over different kernel functions and com-
pared to other ML regression methods.

Results and discussion
Generated acceptor and donor Fragments
276,004 molecules were extracted from the ChEMBL23 
database [83] and washed. Only compounds with at least 
one activity value below one micromolar against at least 
one target were kept. Applying our fragmentation strat-
egy yielded 162,732 unique HBA and 50,268 unique HBD 
fragments. The top 10 acceptor fragments with their inci-
dences and a selection of diverse and frequent donor frag-
ments are shown in Tables S1 and S2, found in Additional 
file 1, respectively. An aliphatic carboxylic acid moiety tops 
both lists. It was found 5882 times as an acceptor, and 2941 
times as a donor due to the designation of both its oxy-
gens as possible acceptor sites. This is due to our choice 
to only compute neutral fragments. The carbonyl oxygen 
of the carboxy group has an acceptor strength of around 
10 kJ mol−1.

The subsequent filtering and selection steps afforded 
3326 acceptor fragments containing one to four possible 
acceptor sites, and 1088 donor fragments containing one 
or two possible donor sites. The acceptors were therefore 
more abundant and chemically more diverse than the 
donors, which was to be expected under our conditions 
since there were a lot of heterocyclic compounds in the 
original data set, which contained significantly more accep-
tors than donors. With those molecules at hand, we moved 
to compute �Gsol,QC for each contained HBA/HBD site.

Relation of quantum chemistry to experiment
The first step was to calibrate the quantum chemical com-
putations against experiment. A subset of 425 compounds 
from the pKBHX set [25] was chosen as the experimental 
acceptor strength target value set. The experimental val-
ues of the acceptors ranged from − 20 to + 4 kJ mol−1. 58 
compounds from the Strasbourg database were chosen 
for the donors [38]. The experimental values for donors 
ranged from − 10 to + 8 kJ mol−1. These distributions and 
calibration results were compiled for display in Fig. 2. For 
both donors and acceptors, the computed Gibbs free ener-
gies in solution were systematically off. This was corrected 
by fitting linear regression models for both the donor and 
acceptor compounds. The slopes and intercepts of the 

(2)

M
(

xi, xj
)

= σ 2
(

1+ γ
√
3d

(xi

l
,
xj

l

))

exp
(

−γ
√
3d

(xi

l
,
xj

l

))

,
linear regression models were stable to internal cross-val-
idation with less than 1% standard deviation in the slopes 
and below 5% standard deviation in the intercepts. For the 
acceptors, the target Gibbs free energy value of HB-forma-
tion with 4-fluorophenol was therefore defined as:

For the donors, the target Gibbs free energy value of 
HB-formation with acetone was:

Both linear regression models have very similar slopes 
of approximately 0.6 and intercepts of − 20 kJ mol−1. This 
apparently universal systematic quantum chemistry error 
for the computation of 1:1 HB complex formation in CCl4 
can be traced back to overly repulsive 
�GRRHO,PBEh−3c and�δGsolv,SMD(CCl4) contributions. The 
�GRRHO,PBEh−3c error may arise because of anharmonic 
contributions, which are not taken into account in the 
RRHO approximation. The solvation contributions are 
weakly repulsive, which may arise from the SMD para-
metrization itself. We assume that the combination of 
these two error sources leads to the large absolute RMSEs 
of approximately 30 kJ mol−1 of �Gsol,QC to experiment. 
Applying the linear models shown above, the RMSEs are 
reduced to 2.6  kJ  mol−1 for both acceptors and donors. 
Thus, we call the �G

(

kJ mol−1
)

 target values quantum-
chemically derived instead of quantum chemical. A 
detailed analysis of the systematic error of HB formation 
prediction is beyond the scope of this work, which may, 
however, guide theoretical chemists in future method 
development.

Quantum‑chemically derived databases
6000 acceptor-4-fluorophenol complexes and 1650 
donor-acetone complexes were quantum chemically 
computed. 4426 Gibbs free energies for HBA strengths 
and 1036 Gibbs free energies for HBD strengths were 
obtained. For each of these values, all the necessary quan-
tum chemical calculations converged. The most preva-
lent reason for exclusion from the database was a failed 
PBEh-3c geometry optimization. For the acceptors, no 
X–H distance greater than 2.40 Å in the optimized com-
plex structure was allowed and for the donors no X–H 
distance greater than 2.65 Å was allowed. Other reasons 
for exclusion of data points were (i) DFT convergence 
failures at any level and (ii) imaginary normal modes 
with a frequency more negative than − 50  cm−1, which 
is indicative to incomplete structure optimizations. This 

HBA�G
(

kJ mol−1
)

= �Gsol,QC ∗ 0.56− 20.12kJ mol−1.

HBD�G
(

kJ mol−1
)

= �Gsol,QC ∗ 0.63− 20.94kJ mol−1.
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corresponded to a loss of 26 percent for the selected frag-
ment HBA sites and 37 percent of the selected fragment 
HBD sites. Compared to the experimentally available 
data, the final numbers of entries in the acceptor data-
base were four times as many (4426 vs. approximately 
1200 in the full pKBHX database). For the donors, that fac-
tor was even higher, as previously only a few  dozens of 
points were available on a single scale.

Having started from clustered fragment structures 
according to their chemical diversities, such a loss rate 
is manageable because sufficient chemical diversity for 
application (vide infra) is retained. Nevertheless, future 
work will certainly include amendment and expansion of 
the databases.

The distributions of free energy values and X–H dis-
tances for the acceptor and donor databases are shown 

in Fig.  3. The acceptor database shows a nearly nor-
mal distribution of free energy values. This is expected 
because (i) we only took N and O as acceptors and 
(ii) we selected them to cover a variety of chemi-
cal space even within their functional group chemi-
cal spaces. Therefore, there are stronger and weaker 
carbonyls, amines, etc. among the acceptors, yield-
ing a bell-shaped histogram for the free energies. The 
X–H distances reflect the different types of acceptors, 
because less polar HBA moieties like ethers have a sys-
tematically higher hydrogen bond distance, leading to 
enhanced population of distance values around 2.1 Å 
(Fig. 3b). For the donor database, the findings are simi-
lar: The free energy histogram (Fig.  3c) is bell-shaped. 
The hydrogen bond distance distribution is broader, 
reflecting the varying HBD strengths. Detailed statistics 

Fig. 3  Distributions of quantum chemically derived free energies for the acceptor and donor databases (a, c) and distributions of hydrogen bond 
distances (X–H) at the PBEh-3c level of geometry optimization for the acceptor and donor databases (b, d)
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split by functional groups are given in Additional file 1 
in the respective documentations of the acceptor and 
donor databases. The information therein reveals the 
following: The free energy of 1:1 HBA complex forma-
tion with 4-fluorophenol is more favored energetically 
with a total mean of − 7.72  kJ  mol−1 compared to the 
free energy of HBD complex formation with acetone 
with a total mean of − 2.08 kJ mol−1. For the acceptors, 
the nitrogen-heterocyclic acceptors (imidazoles, pyra-
zoles, etc.) show the most negative free energies (mean 
values more negative than − 10  kJ  mol−1) and thus 
the strongest HBA strengths. Carbonyls are medium 
acceptors. Alcohols and unpolar groups like ethers are 
weak HBAs. This is in line with the observations on the 
pKBHX database, where the same ranking is described 
by the authors [25]. Alcohols are, (unsurprisingly) 
the strongest donors, followed by pyrroles. Amides 
are medium strength donors and thiols are very weak 
HBDs with a positive mean free energy for HB forma-
tion. The result  that OH groups are generally stronger 
donors than NH groups is also found in Abraham’s 
1989 paper [16].

The HB distances in the PBEh-3c optimized complex 
structures are important indicators of the HBA/HBD 
strengths [36]. Figure  4 shows the HB distances against 
the QC-derived target values for the respective data-
bases. For the acceptors (Fig. 4a), a funnel-like structure 
can be seen: The weaker the HBA strength (the more 
positive the free energy), the broader the distribution of 
distance values. This can be rationalized by the following 
example: A weak carbonyl acceptor will have a shorter 
hydrogen bond than a relatively strong ether acceptor, 
see also Fig.  4c, where only oxygen acceptors are plot-
ted. However, the stronger the HBA gets, the less variety 
of HB distance there is, with the strongest HB formed 
at hydrogen bond (HBA–H) distances of 1.7 Å, see also 
Fig. 4e, where only nitrogen acceptors are plotted. There 
is also substantial correlation for the total data between 
the HB distances and the free energies (Pearson corre-
lation r = 0.52). For the HBDs (Fig.  4b, d, f ) the picture 
is similar: There is substantial correlation between the 
donor–acceptor distances and the free energies, in this 
case especially for the oxygen donors (alcohols and car-
bonic acids, Fig. 4d, r = 0.60) but it does not explain eve-
rything as seen by the worse correlation for the nitrogen 
donors (Fig. 4f, r = 0.42), indicating their larger chemical 
variation from amides to heterocycles to amines. This 
analysis is an important sanity check for the internal con-
sistency of our databases.

Two example entries of the QC-derived HBA/HBD 
strength databases are shown in Fig.  5. The carbonyl of 
the acceptor fragment has an associated HBA strength 
of − 12.0  kJ  mol−1 and the pyrrole-like moiety of the 

donor fragment has an associated HBD strength of 
− 2.3  kJ  mol−1. These examples illustrate the power of 
QC calculations because there are multiple sites in each 
fragment, which cannot necessarily be distinguished 
experimentally. Since free energies are in principle non-
additive, it is also not trivial to assign a partial free energy 
value to each site. With QC, this can be done. The ener-
getically most favored sites will be populated according 
to a Boltzmann distribution. Furthermore, to our knowl-
edge, there are simply no experimental HBD strength 
values for 300 different amides as is the case in our HBD 
database.

Machine learning model optimization and descriptor scan
In order to gauge the usefulness of our quantum-chem-
ically derived databases, machine learning models were 
trained using our radial atomic reactivity descriptors. 
The trained models were evaluated in internal cross-
validation (CV) and on test sets with experimental (not 
quantum chemical!) free energies. For the HBAs, the 
experimental test set consisted of 917 data points from 
the pKBHX database [25] (converted to units of kJ mol−1). 
For the HBDs, we took the calibration set of 58 experi-
mental values obtained from the Strasbourg database 
[38].

We performed two loops of scans: The first loop was 
for the optimal atomic descriptors for the HBA atoms 
and HBD atoms. The second loop was for the optimal 
machine learning models. A summary of descriptor 
types and kernels used in Gaussian Process regression, 
the best performing ML method, is found in Table  1. 
Complete tables on the performance of various descrip-
tor types and other ML regression methods are found in 
Additional file  1. All descriptor elements involving par-
tial charges were based on the GFN-xTB [59] computed 
CM5 [84] charges for the single conformer created by 
the method of Riniker and Landrum [58]. All atoms were 
used for descriptor creation, including the hydrogens.

For the acceptor database, the results of tenfold inter-
nal cross validation for various descriptor types are dis-
played in Fig.  6. GPR using the Matérn kernel (v = 1.5) 
was the prevailing ML method. Most descriptors failed at 
capturing the data adequately. The sorted shell descriptor 
performed best, followed by the radial distribution func-
tion descriptor. Both descriptors also had a better perfor-
mance on the test set than in internal CV, as indicated by 
the red dots in Fig. 6.

The charge shell, spatial and topological charge auto-
correlation and mass shell descriptors all perform badly, 
with an even worse performance on the test set. The 
combination of the shorted shell descriptor with the 
charge shell descriptor and the spatial charge autocor-
relation function was chosen as the final combinatorial 
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Fig. 4  Hydrogen bond distances (HBA–H)) in units of Å for the total acceptor (a) and donor (b) databases vs the quantum chemically derived target 
values. c, e Show the same plots for only the oxygen and nitrogen acceptors, whereas d, f show the same plots for only the oxygen and nitrogen 
donors. The Pearson correlation coefficient (r) is given. The coloring of the points is according to point density: The lighter the color, the higher the 
point density
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descriptor, for the exact parameter combination, see 
Additional file  1. Although the CS and CACF descrip-
tors perform badly in internal cross-validation, the model 
obtained with the full training performed by far the best 
on the test set. The final combinatorial descriptor had 
151 dimensions, which is appropriate for training on 
4424 data points.

The bad performance of the descriptors in internal CV 
is mostly due to the large variety of chemical HBA space. 
More data points are required, and we hope that in the 
near future, either us or other members of the scientific 
community will be able to expand the databases that are 
available in full as Additional file  1 and compare their 
results to ours, which we view as an adequate beginning. 
The performance on the test set is discussed below.

For the donor database (results for the descriptor types 
with their respective best descriptor creation parameters 
shown in Fig. 7), 981 of the 1036 data points were used 
for training (for the others, there was some problem to 

compute all descriptors, e.g., the charge shell descriptor 
cannot be applied when there is no nth shell—the aver-
aging leads to a division by 0) the best-performing ML 
models were the GPR models with a combined Matérn 
Kernel (v = 0.5). Among the descriptor types, the sorted-
shell descriptor performed best both in tenfold internal 
cross-validation and on the test set. The charge shell 
descriptor, which averaged over the electronic environ-
ment of the HBA atoms, performed the second best. All 
other descriptor types performed worse, especially on 
the test set, marked by the red dots in Fig. 7. The charge 
radial distribution descriptor model had the same perfor-
mance on the test set as in internal CV. The spatial charge 
autocorrelation function descriptor performed terribly 
on the experimental test set (the test set performance 
was in the upper range of its violin plot). Similar findings 
were true for the mass shell descriptor and the topologi-
cal charge autocorrelation descriptor. The final descrip-
tor is a combination of the spatial charge-autocorrelation 
function descriptor together with the sorted-shell and 
the charge-shell descriptors, for the exact combination 
of parameters, see Additional file 1. Although the charge-
autocorrelation function descriptor performed badly 
on its own, in combination with the two other descrip-
tor types, it led to the best performance on the test set 
of experimental free energies for HB formation with ace-
tone. The final combinatorial descriptor had 115 dimen-
sions, which is considered fair against the 981 training 
data points.

Learning curves and applicability domain analysis
We analyzed also the learning curves and a perspective 
on the applicability domain via the GPR variance esti-
mates for the HBA/HBD ML models using the final com-
binatorial descriptors.

Fig. 5  Representative 3D structures of the acceptor (a) and donor (b) 
complexes with the reference donor 4-fluorophenol (a) and acetone 
(b). The acceptor and donor atoms are marked with circles, and the 
associated QC-derived Gibbs free energies for complex formation are 
displayed

Table 1  Radial atomic reactivity descriptors [45] for the HBA/HBD atoms used for machine learning and kernel functions 
in Gaussian Process Regression (GPR) as implemented in scikit-learn 0.19.1 [82]

The hyperparameters of the constant kernel (C) and the RBF, M, and RQ functions were optimized in their default ranges (10−2 to 102 for length scales, 10−3 to 103 for 
C), and the white kernel (W) was used with a noise value of 0.05

Descriptor abbreviation Description (for details, see our previous publication [45])

Sorted-shell Charge shell descriptor with values sorted by Cahn-Ingold-Prelog rules

CS Charge shell descriptor with average charge per shell

CRDF Spatial charge radial distribution function

CACF Spatial charge autocorrelation function (split into positive and negative parts)

MS Mass shell; the elements are the sums of the masses of each shell

GACF Topological charge autocorrelation function

GPR kernel function Description

C ∗ RBF +W RBF = radial basis function (Gaussian)

C ∗M+W M = Matérn kernel function (v scanned manually for values of 0.5, 1.5 and 
2.5)

C ∗ RQ +W RQ = rational quadratic function
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Figure  8 shows the training performance of the GPR 
model for the HBAs using the final 151-dimensional 
descriptor against the fraction of QC target values. The 
learning curves were produced by increasing the frac-
tion of training data points in 10% intervals from 0.1 to 
1.0. The R2 score never reaches more than 0.50, which 
is an indication that further descriptor development 
or extension of the data is needed in the future as not 
even our best-performing descriptor can fully capture 
the atom space of acceptor atom environments avail-
able in molecules. The RMSE reaches its minimum 
value for the full training at around 3.7 kJ mol−1 (which 
is also the performance on the test set), which does not 
necessarily represent the optimally achievable accuracy. 
The Spearman correlation coefficient, which is a meas-
ure for the correct rank order of the data points, climbs 
continuously to a value of approximately 0.75. The GPR 
variance estimate (the 95% confidence interval inherently 
predicted by any GPR method) stays roughly constant 
around 4.5 kJ mol−1 until 70% of the training data points 

are included, and then continuously falls to a value of 
roughly 4.2 kJ mol−1. This analysis hints at the possibility 
of assessing the applicability domain of our HBA strength 
ML model: If the GPR variance estimate is significantly 
larger than 4.2 kJ mol−1, then the test data point may not 
be trustworthy.

Figure 9 provides the analogous analysis for the donors 
using the GPR model for the donors and the final combi-
natorial 115-dimensional HBD atom descriptor. For the 
hydrogen bond donors, performances are better across 
the board, which indicates that donor atom environ-
ments are less diverse than acceptor atom environments. 
The R2 score for the full training set reaches 0.75, and 
the RMSE is close to 2.0 kJ mol−1 The Spearman correla-
tion coefficient climbs continuously to a value of almost 
1, indicating almost perfect rank ordering for the fully 
trained GPR model on the training set. The GPR variance 
estimate for the HBDs stays roughly constant around 
3.5  kJ  mol−1 until 60% of the training data points are 
included, and then continuously falls to a value of roughly 
3.2 kJ mol−1, providing an indication whether a predicted 
HBD strength is trustworthy or not. The significantly bet-
ter performance for our ML models for the HBDs also 
shows in the evaluation on the test sets.

Fig. 6  Violin plots: tenfold internal cross validation results and test 
set performances (red dots) for various atomic reactivity descriptor 
types with their respective best sets of descriptor parameters 
trained on 4424 QC-HBA data points. RMSE, root mean square 
error. The descriptor abbreviations are as follows: CS charge shell; 
CRDF = charge radial distribution function, CACF = spatial charge 
autocorrelation function, MS mass shell; GACF topological charge 
autocorrelation function, combinatorial combination of CACF, CS, and 
shorted-shell. The mean RMSEs of the tenfold CV results are indicated 
above the descriptor abbreviations. The red dots mark the RMSE on 
the experimental test set. The partial charge type used was CM5 for 
all atoms in all cases

Fig. 7  Violin plots: tenfold internal cross validation results and test set 
performances (red dots) for various atomic reactivity descriptor types 
with their respective best sets of descriptor parameters trained on 
981 QC-HBD data points. RMSE root mean square error. The descriptor 
abbreviations are as follows: CS charge shell, CRDF charge radial 
distribution function, CACF spatial charge autocorrelation function, 
MS mass shell, GACF topological charge autocorrelation function, 
combinatorial combination of CACF, CS, and shorted-shell. The mean 
RMSEs of the tenfold CV results are indicated above the descriptor 
abbreviations. The red dots mark the RMSE on the experimental test 
set. The partial charge type used was CM5 for all atoms in all cases
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Performance of machine learning models on experimental 
test sets
Finally, we show the performances of both the acceptor 
and donor models using their respective final combina-
torial descriptor/GPR combination. The test sets are 917 
free energies of HB formation with 4-fluorophenol taken 
from the pKBHX data base and the 58 free energies for 
HB formation with acetone that are used for calibration 
of the QC computations (in the absence of other experi-
mental data). Figure  10 shows the performances of the 
final HBA and HBD models. The acceptor model predicts 
the HBA strength with an RMSE of 3.78 kJ mol−1, an R2 
of 0.54 and a Spearman R of 0.77. The variance estimates 
range from 4.0 to 7.6 kJ mol−1 (although this high value 
is only reached for one data point in the test set, which 
is chemically apparently very different from the training 
data points). The target value distributions are found in 
Additional file 1: Figure S2.

This performance is considerably better than in internal 
cross-validation and comparable with the performance 
on the training set. We expect this to be due (i) error 
cancellation of experimental uncertainty and QC calcula-
tional error, and (ii) the pKBHX contained acceptors have 

a lower chemical variety than the ones from the QM test 
set, even among only nitrogen and oxygen acceptors. In 
this light, predicting the experimental HBA strength at 
an expected accuracy of less than 1 kcal mol−1 using val-
ues that are created from thin air and first principles is 
at least a strong start. For the donors, the picture looks 
strikingly better. The final HBD model trained on QC-
derived free energies predicts the experimental HBD 
strength with an RMSE of 2.34  kJ  mol−1, an R2 of 0.74 
and a Spearman R of 0.88. The variance estimates (3.0 to 
5.0 kJ mol−1) are comparable to the one reached on the 
training set. Thus, our HBD strength model derived from 
QC computations is a fast and reliable means to assess 
HBD strengths.

With respect to the previously published models based 
on ISIDA fragment descriptors that can predict the 
strength of a hydrogen bond with in principle arbitrary 
HBA/HBD pairs [37, 38], our models have the follow-
ing advantages: First, the data on which they are trained 
are easily extendable because they are computed using 
a robust quantum chemical protocol. Second, the GPR 
methodology gives an inbuilt estimate of the applicability 
of the models. Concerning the performance comparison 

Fig. 8  Learning curves including GPR variance estimates for the GPR (Matérn, v = 1.5, final 151-dimensional combinatorial descriptor) quantum 
chemically derived HBA database. Var.est = GPR variance estimate
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on the test sets, we note that our final trained HBA model 
performs slightly worse at an RMSE of 3.78  kJ  mol−1 
compared to the external test set 1 performance of 

reference 34 (RMSE 3.20  kJ  mol−1). However, our final 
HBD model performs excellently on the HBD test set. 
For a series of individual HBD to be screened for HBD 

Fig. 9  Learning curves including GPR variance estimates for the GPR (Matérn, v = 0.5, final 115-dimensional combinatorial descriptor) quantum 
chemically derived HBD database. Var.est, GPR variance estimate

Fig. 10  Performances of the HBA final 151-dimensional combinatorial descriptor GPR model trained on the quantum chemically derived free 
energies on the HBA test set (a) and of the HBD final 115-dimensional combinatorial descriptor GPR model on the HBD test set (b). The color bars 
show the GPR variance estimates for the respective models
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strength, our final HBD model may therefore be a pre-
ferred choice.

Application example
We now present four molecules that contain both accep-
tor and donor moieties to illustrate the potential of our 
ML models (the GPR mean value is reported) and assess 
the possibility of our models to predict intramolecular 
HB formation, which often changes the physicochemical 
properties of molecules, e.g., their solubilities [85].

Figure  11 shows two amides (1 and 2) and two agro-
chemicals, imidacloprid and fipronil. For these com-
pounds, an NMR method [86] has been used to 
determine the internal hydrogen bond formation. The 
amide 1 forms a strong intramolecular hydrogen bond 
whereas the amide 2 does not [87]. The predicted donor 
strength of the HBD in 1 is − 3.3 kJ mol−1 and the pre-
dicted acceptor strength for the amide carbonyl HBA 
is − 7.8  kJ  mol−1. In 2, both the acceptor and donor 
strengths are predicted to be less negative. This is an indi-
cation that our quantum-chemically derived ML models 
for HBA/HBD strengths can explain tendencies in intra-
molecular HB formation in amides.

The second comparison concerns fipronil (no intramo-
lecular HB formation) and imidacloprid (weak intramo-
lecular HB formation) [88]. In imidacloprid (secondary 
amine tautomer, which has been detected in the NMR 
measurement), the HBA strength of the nitro oxygen is 
predicted to be − 6.2 kJ mol−1 and the predicted donor 
strength of the secondary amine is − 1.7  kJ  mol−1. Our 
predicted HBA strength for the sulfinyl of fipronil is 
− 3.8  kJ  mol−1 and the predicted HBD strength for the 
primary amine is − 3.5  kJ  mol−1. Although the fipronil 
potential intramolecular HB donor is predicted to be 
stronger than in imidacloprid, the weaker acceptor may 
be the cause that no intramolecular HB is formed. Our 
predicted HBA/HBD strengths are therefore consist-
ent with the experimental determinations of intramo-
lecular HB formation. This indicates the potential of our 
method’s predicted HBA/HBD strengths to be used as 
descriptors in a productive setting for molecular design 
within the context of intramolecular HB formation.

Summary and conclusions
We presented machine learning models for hydrogen 
bond acceptor (HBA) and hydrogen bond donor (HBD) 
strengths, which were trained on quantum chemically 
computed complexation free energies in solution.

The underlying databases, which are published along 
with this article, represent a diverse HBA and HBD 
chemical space and are the largest such databases on 
record. After a necessary linear fit due to systematic 
errors of the QC method employed, the RMSE of the 
computed HBA/HBD strengths are 2.6 kJ mol−1 in both 
cases.

We built ML models on those databases, scanning 
over both ML models and features using tenfold internal 
CV. Our previously developed radial atomic descriptors 
served as the scanned feature space. For ML, we scanned 
over GPR including different kernel functions and other 
regression models (linear regression, multilayer percep-
tron regression, random forest regression, and support 
vector regression, see Additional file  1) The best-per-
forming final descriptors for HBA and HBD atoms, 
respectively, each involved a sorted shell descriptor based 
on CM5 partial charges computed at the GFN-xTB level 
of theory, and GPR models employing the Matérn kernel. 
The learning curves derived showed that the variance 
estimate of the GPR models decreased with growing frac-
tions of training data points, which indicates the useful-
ness and interpretability of the GPR variance estimate: It 
could be used as a threshold for an on-the-fly estimation 
of the models’ applicability domains.

The final mean RMSEs of 4.6  kJ  mol−1 for the HBA 
model and 3.8 kJ mol−1 for the HBD model in internal CV 
are far higher than the RMSE of the underlying QC data 

Fig. 11  Application example of the trained ML models using the 
best-performing radial atomic activity descriptors on four molecules. 
Acceptor and donor atoms that could participate in an internal 
hydrogen bond are marked in bold and the predicted hydrogen 
bonding strengths in kJ mol−1 for the respective atoms are displayed 
next to them. The experimental determinations of whether an 
internal hydrogen bond was formed or not were performed by NMR 
spectroscopy [86–88]
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against experiment and indicate that there is a need for 
even more data and better performing descriptors in the 
future. Nevertheless, a striking test set performance of 
the HBA and HBD final models is obtained with RMSEs 
of 3.8  kJ  mol−1 for HBA experimental strengths and 
2.3  kJ  mol−1 for experimental HBD strengths. The donor 
performance falls within the same range of accuracy of pre-
vious models applying quantum chemical descriptors [35] 
or ISIDA fragment descriptors, trained on experimental 
HB free energies [38]. QC target values can therefore serve 
as a full substitute for experiment for HBA/HBD strengths, 
not only drastically reducing costs compared to experimen-
tal determination, but also allowing for the calculation of 
interaction energies in case of multiple potentially interact-
ing acceptors or donors in one molecule. Finally, it appears 
that our predicted HBA/HBD strengths could be used as 
descriptors to classify whether intramolecular H-bond 
formation will take place or not as the correct trends are 
observed for the two case studies of provided for one pair 
of differentially substituted amides and two agrochemicals.

Future work will consist of expanding the openly avail-
able databases and to explore the use of novel or dif-
ferent atomic descriptors to improve the internal CV 
performance of the ML models.

Additional files

Additional file 1. Supporting information (SI), detailing (i) the hydrogen 
bonding scales used in this study, (ii) generated hydrogen bonding frag-
ments with high frequencies, and (iii) the results of the descriptor scans 
and additional machine learning regression results. 

Additional file 2. HBA database.

Additional file 3. HBD database. 

Additional file 4. HBA complexes database. 

Additional file 5. HBD complexes database. 

Additional file 6. Documentation for the HBA database. 

Additional file 7. Documentation for the HBD database.  

Additional file 8. Source code for training the HBA and HBD models and 
two example molecules.

Acknowledgements
The authors thank Alexandre Varnek and Christian Laurence for the experi-
mental data from references [25, 38]. The authors thank Dr. Petra Schneider for 
the set of 276,004 washed active compounds extracted from the ChEMBL23 
database.

Authors’ contributions
CAB performed the machine learning and quantum chemical calculations, 
prepared the final databases and implemented the H bonding fragment 
generation strategy. AHG performed quantum chemical calculations and car-
ried out the H bonding fragment selection process. AHG designed the study. 
GS and AHG supervised the research. All authors contributed to writing the 
manuscript. All authors read and approved the final manuscript.

Funding
This study was funded by Bayer AG in cooperation with ETH Zurich.

Availability of data and materials
Four databases in.sdf format are submitted as additional files with this article. 
These are the acceptor (Additional file 2) and donor databases (Additional 
file 3) with their 2D structures and the optimized complex coordinates with 
their 3D structures (Additional files 4, 5). All the molecular properties are 
documented in Additional files 6 and 7 (pdf ). Source code to train the accep-
tor and donor models and two test molecules are provided in Additional file 8 
(zipped archive).

Competing interests
Gisbert Schneider is co-founder of inSili.com GmbH, Zürich.

Received: 4 February 2019   Accepted: 10 August 2019

References
	1.	 Arunan E, Desiraju GR, Klein RA et al (2011) Definition of the hydrogen 

bond (IUPAC Recommendations 2011). Pure Appl Chem 83:1637–1641. 
https​://doi.org/10.1351/pac-rec-10-01-02

	2.	 Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecu-
lar interactions. J Med Chem 53:5061–5084. https​://doi.org/10.1021/
jm100​112j

	3.	 Bissantz C, Kuhn B, Stahl M (2010) Erratum: A medicinal chemist’ guide to 
molecular interactions (Journal of Medicinal Chemistry (2010) 53 (5061) 
https​://doi.org/10.1021/jm100​112j). J Med Chem 53:6241. https​://doi.
org/10.1021/jm100​950p

	4.	 Houk KN, Leach AG, Kim SP, Zhang X (2003) Binding affinities of host-
guest, protein-ligand, and protein-transition-state complexes. Angew 
Chemie Int Ed 42:4872–4897. https​://doi.org/10.1002/anie.20020​0565

	5.	 Hunter CA (2004) Quantifying intermolecular interactions: guidelines for 
the molecular recognition toolbox. Angew Chemie Int Ed 43:5310–5324. 
https​://doi.org/10.1002/anie.20030​1739

	6.	 Freire E (2008) Do enthalpy and entropy distinguish first in class from best 
in class? Drug Discov Today 13:869–874. https​://doi.org/10.1016/j.drudi​
s.2008.07.005

	7.	 Ladbury JE, Klebe G, Freire E (2010) Adding calorimetric data to decision 
making in lead discovery: a hot tip. Nat Rev Drug Discov 9:23–27. https​://
doi.org/10.1038/nrd30​54

	8.	 Freire E (2009) A thermodynamic approach to the affinity optimization of 
drug candidates. Chem Biol Drug Des 74:468–472. https​://doi.org/10.111
1/j.1747-0285.2009.00880​.x

	9.	 Leach AR, Gillet VJ, Lewis RA, Taylor R (2010) Three-dimensional pharma-
cophore methods in drug discovery. J Med Chem 53:539–558. https​://
doi.org/10.1021/jm900​817u

	10.	 Hessler G (2003) Protein–ligand interactions. From molecular recognition 
to drug design. Herausgegeben von Hans-Joachim Böhm und Gisbert 
Schneider. Weinheim: Wiley VCH Verlag GmbH & Co. KGaA

	11.	 Abraham MH, Ibrahim A, Zissimos AM et al (2002) Application of hydro-
gen bonding calculations in property based drug design. Drug Discov 
Today 7:1056–1063. https​://doi.org/10.1016/S1359​-6446(02)02478​-9

	12.	 Laurence C, Berthelot M (2000) Observations on the strength of 
hydrogen bonding. Perspect Drug Discov Des 18:39–60. https​://doi.
org/10.1023/A:10087​43229​409

	13.	 Hamaguchi W, Masuda N, Miyamoto S et al (2015) Synthesis, SAR study, 
and biological evaluation of novel quinoline derivatives as phosphodies-
terase 10A inhibitors with reduced CYP3A4 inhibition. Bioorg Med Chem 
23:297–313. https​://doi.org/10.1016/j.bmc.2014.11.039

	14.	 Taft RW, Gurka D, Joris L et al (1969) Studies of hydrogen-bonded 
complex formation with p-fluorophenol. V. Linear free energy relation-
ships with oh reference acids. J Am Chem Soc 91:4801–4808. https​://doi.
org/10.1021/ja010​45a03​8

	15.	 Kamlet MJ, Taft RW (1976) The solvatochromic comparison method. I. The 
β-Scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem 
Soc 98:377–383. https​://doi.org/10.1021/ja004​18a00​9

	16.	 Abraham MH, Duce PP, Prior DV et al (1989) Hydrogen bonding. Part 9. 
Solute proton donor and proton acceptor scales for use in drug design. 
J Chem Soc Perkin Trans 2:1355–1375. https​://doi.org/10.1039/p2989​
00013​55

https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1186/s13321-019-0381-4
https://doi.org/10.1351/pac-rec-10-01-02
https://doi.org/10.1021/jm100112j
https://doi.org/10.1021/jm100112j
https://doi.org/10.1021/jm100112j
https://doi.org/10.1021/jm100950p
https://doi.org/10.1021/jm100950p
https://doi.org/10.1002/anie.200200565
https://doi.org/10.1002/anie.200301739
https://doi.org/10.1016/j.drudis.2008.07.005
https://doi.org/10.1016/j.drudis.2008.07.005
https://doi.org/10.1038/nrd3054
https://doi.org/10.1038/nrd3054
https://doi.org/10.1111/j.1747-0285.2009.00880.x
https://doi.org/10.1111/j.1747-0285.2009.00880.x
https://doi.org/10.1021/jm900817u
https://doi.org/10.1021/jm900817u
https://doi.org/10.1016/S1359-6446(02)02478-9
https://doi.org/10.1023/A:1008743229409
https://doi.org/10.1023/A:1008743229409
https://doi.org/10.1016/j.bmc.2014.11.039
https://doi.org/10.1021/ja01045a038
https://doi.org/10.1021/ja01045a038
https://doi.org/10.1021/ja00418a009
https://doi.org/10.1039/p29890001355
https://doi.org/10.1039/p29890001355


Page 15 of 16Bauer et al. J Cheminform           (2019) 11:59 

	17.	 Abraham MH, Grellier PL, Prior DV et al (1990) Hydrogen bonding. Part 
10. A scale of solute hydrogen-bond basicity using log K values for com-
plexation in tetrachloromethane. J Chem Soc Perkin Trans 2:521. https​://
doi.org/10.1039/p2990​00005​21

	18.	 Abraham MH (1993) Scales of solute hydrogen-bonding: their construc-
tion and application to physicochemical and biochemical processes. 
Chem Soc Rev 22:73–83. https​://doi.org/10.1039/CS993​22000​73

	19.	 Abraham MH (1993) Hydrogen bonding. 31. Construction of a scale of 
solute effective or summation hydrogen-bond basicity. J Phys Org Chem 
6:660–684. https​://doi.org/10.1002/poc.61006​1204

	20.	 Abraham MH, Abraham RJ, Byrne J, Griffiths L (2006) NMR method for the 
determination of solute hydrogen bond acidity. J Org Chem 71:3389–
3394. https​://doi.org/10.1021/jo052​631n

	21.	 Raevsky OA, Grigoryev VY, Solovyev VP (1989) Modeling of structure–
activity relationship. 2. Calculation of electronodonor and acceptor 
functions of active-centers in the molecules of physiologically active 
compounds. Khimiko FarmatsevticheskiiZhurnal 23:1294–1300

	22.	 Raevsky OA, Grigorev VJ, Solovev VP, Kireev DB, Sapegin AM, Zefirov NS 
(1991) Drug Design H-Bonding Scale. In: Silipo C, Vittoria A (eds) QSAR: 
rational approaches in the design of bioactive compounds. Elsevier, 
Amsterdam

	23.	 Raevsky OA, Grigorev VY, Kireev DB, Zefirov NS (1992) Complete thermo-
dynamic description of H-bonding in the framework of multiplicative 
approach. Quant Struct Relationships 11:49–63. https​://doi.org/10.1002/
qsar.19920​11010​9

	24.	 Raevsky OA (2007) Hydrogen bond strength estimation by means of the 
HYBOT program package. Computer-assisted lead finding and optimiza-
tion: current tools for medicinal chemistry. Wiley, New York, pp 367–378

	25.	 Laurence C, Brameld KA, Graton J et al (2009) The pKBHX database: toward 
a better understanding of hydrogen-bond basicity for medicinal chem-
ists. J Med Chem 52:4073–4086. https​://doi.org/10.1021/jm801​331y

	26.	 Graton J, Besseau F, Brossard AM et al (2013) Hydrogen-bond acidity of 
OH groups in various molecular environments (phenols, alcohols, steroid 
derivatives, and amino acids structures): experimental measurements 
and density functional theory calculations. J Phys Chem A 117:13184–
13193. https​://doi.org/10.1021/jp410​027h

	27.	 Bogdan E, de Verneuil AQ, Besseau F et al (2016) α-Fluoro-o-cresols: 
the key role of intramolecular hydrogen bonding in conformational 
preference and hydrogen-bond acidity. ChemPhysChem. https​://doi.
org/10.1002/cphc.20160​0453

	28.	 Oliferenko AA, Oliferenko PV, Huddleston JG et al (2004) Theoretical scales 
of hydrogen bond acidity and basicity for application in QSAR/QSPR 
studies and drug design. Partitioning of aliphatic compounds. J Chem 
Inform Comput Sci 44:1042–1055. https​://doi.org/10.1021/ci034​2932

	29.	 Schwöbel J, Ebert RU, Kühne R, Schüürmann G (2009) Prediction of the 
intrinsic hydrogen bond acceptor strength of chemical substances 
from molecular structure. J Phys Chem A 113:10104–10112. https​://doi.
org/10.1021/jp904​812b

	30.	 Besseau F, Graton J, Berthelot M (2008) A theoretical evaluation of the 
pKHB and ΔH HB ⊖ hydrogen-bond scales of nitrogen bases. Chem Eur J 
14:10656–10669. https​://doi.org/10.1002/chem.20080​0977

	31.	 Green AJ, Popelier PLA (2014) Theoretical prediction of hydrogen-bond 
basicity pK BHX using quantum chemical topology descriptors. J Chem 
Inform Model 54:553–561. https​://doi.org/10.1021/ci400​657c

	32.	 Kenny PW, Montanari CA, Prokopczyk IM et al (2016) Hydrogen bond 
basicity prediction for medicinal chemistry design. J Med Chem 
59:4278–4288. https​://doi.org/10.1021/acs.jmedc​hem.5b019​46

	33.	 Graton J, Le Questel JY, Maxwell P, Popelier P (2016) Hydrogen-bond 
accepting properties of new heteroaromatic ring chemical motifs: a theo-
retical study. J Chem Inform Model 56:322–334. https​://doi.org/10.1021/
acs.jcim.5b005​74

	34.	 Klamt A, Reinisch J, Eckert F et al (2012) Polarization charge densities pro-
vide a predictive quantification of hydrogen bond energies. Phys Chem 
Chem Phys 14:955–963. https​://doi.org/10.1039/c1cp2​2640a​

	35.	 Klamt A, Reinisch J, Eckert F et al (2013) Interpretation of experimental 
hydrogen-bond enthalpies and entropies from COSMO polarisation 
charge densities. Phys Chem Chem Phys 15:7147–7154. https​://doi.
org/10.1039/c3cp4​4611e​

	36.	 Zheng S, Xu S, Wang G et al (2017) Proposed hydrogen-bonding 
index of donor or acceptor reflecting its intrinsic contribution to 

hydrogen-bonding strength. J Chem Inf Model 57:1535–1547. https​://
doi.org/10.1021/acs.jcim.7b000​22

	37.	 Ruggiu F, Solov’Ev V, Marcou G et al (2014) Individual hydrogen-bond 
strength QSPR modelling with ISIDA local descriptors: a step towards pol-
yfunctional molecules. Mol Inform 33:477–487. https​://doi.org/10.1002/
minf.20140​0032

	38.	 Glavatskikh M, Madzhidov T, Solov’ev V et al (2016) Predictive models for 
the free energy of hydrogen bonded complexes with single and coop-
erative hydrogen bonds. Mol Inform 35:629–638. https​://doi.org/10.1002/
minf.20160​0070

	39.	 Nocker M, Handschuh S, Tautermann C, Liedl KR (2009) Theoretical 
prediction of hydrogen bond strength for use in molecular modeling. J 
Chem Inf Model 49:2067–2076. https​://doi.org/10.1021/ci900​1469

	40.	 Rahaman O, Doren DJ, Di Toro DM (2014) Quantum mechanical estima-
tion of Abraham hydrogen bond parameters using 1:1 donor-acceptor 
complexes. J Phys Org Chem 27:783–793. https​://doi.org/10.1002/
poc.3337

	41.	 Koné M, Illien B, Laurence C, Graton J (2011) Can quantum-mechanical 
calculations yield reasonable estimates of hydrogen-bonding acceptor 
strength? the case of hydrogen-bonded complexes of methanol. J Phys 
Chem A 115:13975–13985. https​://doi.org/10.1021/jp209​200w

	42.	 El Kerdawy A, Tautermann CS, Clark T, Fox T (2013) Economical and accu-
rate protocol for calculating hydrogen-bond-acceptor strengths. J Chem 
Inf Model 53:3262–3272. https​://doi.org/10.1021/ci400​6222

	43.	 Cerón-Carrasco JP, Jacquemin D, Laurence C et al (2014) Determination of 
a solvent hydrogen-bond acidity scale by means of the solvatochromism 
of pyridinium-N-phenolate betaine dye 30 and PCM-TD-DFT calculations. 
J Phys Chem B 118:4605–4614. https​://doi.org/10.1021/jp501​534n

	44.	 Finkelmann AR, Göller AH, Schneider G (2016) Robust molecular repre-
sentations for modelling and design derived from atomic partial charges. 
Chem Commun 52:681–684. https​://doi.org/10.1039/c5cc0​7887c​

	45.	 Finkelmann AR, Göller AH, Schneider G (2017) Site of metabolism predic-
tion based on ab initio derived atom representations. ChemMedChem 
12:606–612. https​://doi.org/10.1002/cmdc.20170​0097

	46.	 Finkelmann AR, Goldmann D, Schneider G, Göller AH (2018) MetScore: 
site of metabolism prediction beyond cytochrome P450 enzymes. 
ChemMedChem 13:2281–2289. https​://doi.org/10.1002/cmdc.20180​0309

	47.	 Bauer CA, Schneider G, Göller AH (2019) Gaussian process regression 
models for the prediction of hydrogen bond acceptor strengths. Mol 
Inform 38:1800115. https​://doi.org/10.1002/minf.20180​0115

	48.	 von Lilienfeld OA (2018) Quantum machine learning in chemical 
compound space. Angew Chemie Int Ed 57:4164–4169. https​://doi.
org/10.1002/anie.20170​9686

	49.	 Qu X, Latino DARS, Aires-De-sousa J (2013) A big data approach to the 
ultra-fast prediction of DFT-calculated bond energies. J Cheminform 
5:1–13. https​://doi.org/10.1186/1758-2946-5-34

	50.	 Yao K, Herr JE, Brown SN, Parkhill J (2017) Intrinsic bond energies from a 
bonds-in-molecules neural network. J Phys Chem Lett 8:2689–2694. https​
://doi.org/10.1021/acs.jpcle​tt.7b010​72

	51.	 Pereira F, Aires-de-Sousa J (2018) Machine learning for the prediction 
of molecular dipole moments obtained by density functional theory. J 
Cheminform 10:1–11. https​://doi.org/10.1186/s1332​1-018-0296-5

	52.	 Zhang Q, Zheng F, Fartaria R et al (2014) Chemometrics and Intelligent 
laboratory systems A QSPR approach for the fast estimation of DFT/NBO 
partial atomic charges. Chemom Intell Lab Syst 134:158–163

	53.	 Bleiziffer P, Schaller K, Riniker S (2018) Machine learning of partial charges 
derived from high-quality quantum-mechanical calculations. J Chem 
Inform Model 58:579–590. https​://doi.org/10.1021/acs.jcim.7b006​63

	54.	 Ertl P (2017) An algorithm to identify functional groups in organic mol-
ecules. J Cheminform 9:1–7. https​://doi.org/10.1186/s1332​1-017-0225-z

	55.	 The RDKit: Open-Source Cheminformatics Software, version 2017.09.1
	56.	 Lobell M, Hendrix M, Hinzen B et al (2006) In silico ADMET traffic lights 

as a tool for the prioritization of HTS hits. ChemMedChem 1:1229–1236. 
https​://doi.org/10.1002/cmdc.20060​0168

	57.	 Pipeline Pilot, version 16.5.0.143, Server version 17.1.0.115, Dassault Syste-
mes Biovia Corp.; 2016

	58.	 Riniker S, Landrum GA (2015) Better informed distance geometry: using 
what we know to improve conformation generation. J Chem Inform 
Model 55:2562–2574. https​://doi.org/10.1021/acs.jcim.5b006​54

	59.	 Grimme S, Bannwarth C, Shushkov P (2017) A robust and accurate 
tight-binding quantum chemical method for structures, vibrational 

https://doi.org/10.1039/p29900000521
https://doi.org/10.1039/p29900000521
https://doi.org/10.1039/CS9932200073
https://doi.org/10.1002/poc.610061204
https://doi.org/10.1021/jo052631n
https://doi.org/10.1002/qsar.19920110109
https://doi.org/10.1002/qsar.19920110109
https://doi.org/10.1021/jm801331y
https://doi.org/10.1021/jp410027h
https://doi.org/10.1002/cphc.201600453
https://doi.org/10.1002/cphc.201600453
https://doi.org/10.1021/ci0342932
https://doi.org/10.1021/jp904812b
https://doi.org/10.1021/jp904812b
https://doi.org/10.1002/chem.200800977
https://doi.org/10.1021/ci400657c
https://doi.org/10.1021/acs.jmedchem.5b01946
https://doi.org/10.1021/acs.jcim.5b00574
https://doi.org/10.1021/acs.jcim.5b00574
https://doi.org/10.1039/c1cp22640a
https://doi.org/10.1039/c3cp44611e
https://doi.org/10.1039/c3cp44611e
https://doi.org/10.1021/acs.jcim.7b00022
https://doi.org/10.1021/acs.jcim.7b00022
https://doi.org/10.1002/minf.201400032
https://doi.org/10.1002/minf.201400032
https://doi.org/10.1002/minf.201600070
https://doi.org/10.1002/minf.201600070
https://doi.org/10.1021/ci9001469
https://doi.org/10.1002/poc.3337
https://doi.org/10.1002/poc.3337
https://doi.org/10.1021/jp209200w
https://doi.org/10.1021/ci4006222
https://doi.org/10.1021/jp501534n
https://doi.org/10.1039/c5cc07887c
https://doi.org/10.1002/cmdc.201700097
https://doi.org/10.1002/cmdc.201800309
https://doi.org/10.1002/minf.201800115
https://doi.org/10.1002/anie.201709686
https://doi.org/10.1002/anie.201709686
https://doi.org/10.1186/1758-2946-5-34
https://doi.org/10.1021/acs.jpclett.7b01072
https://doi.org/10.1021/acs.jpclett.7b01072
https://doi.org/10.1186/s13321-018-0296-5
https://doi.org/10.1021/acs.jcim.7b00663
https://doi.org/10.1186/s13321-017-0225-z
https://doi.org/10.1002/cmdc.200600168
https://doi.org/10.1021/acs.jcim.5b00654


Page 16 of 16Bauer et al. J Cheminform           (2019) 11:59 

frequencies, and noncovalent interactions of large molecular systems 
parametrized for all spd-block elements (Z = 1-86). J Chem Theory Com-
put 13:1989–2009. https​://doi.org/10.1021/acs.jctc.7b001​18

	60.	 Foster JM, Boys SF (1960) Canonical configurational interaction proce-
dure. Rev Mod Phys 32:300–302. https​://doi.org/10.1103/revmo​dphys​
.32.300

	61.	 Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals 
and electrostatic parameters for intermolecular interactions. J Comput 
Chem 17:520–552. https​://doi.org/10.1002/(SICI)1096-987X(19960​
4)17:5/6%3c520​:AID-JCC2%3e3.0.CO;2-W

	62.	 Halgren TA (1996) Merck molecular force field. III. Molecular geometries 
and vibrational frequencies for MMFF94. J Comput Chem 17:553–586. 
https​://doi.org/10.1002/(SICI)1096-987X(19960​4)17:5/6%3c553​
:AID-JCC3%3e3.0.CO;2-T

	63.	 Halgren TA, Nachbar RB (1996) Merck molecular force field. IV. Conforma-
tional energies and geometries for MMFF94. J Comput Chem 17:587–
615. https​://doi.org/10.1002/(SICI)1096-987X(19960​4)17:5/6%3c587​
:AID-JCC4%3e3.0.CO;2-Q

	64.	 Halgren TA (1996) Merck molecular force field. V. Extension of MMFF94 
using experimental data, additional computational data, and empirical 
rules. J Comput Chem 17:616–641. https​://doi.org/10.1002/(SICI)1096-
987X(19960​4)17:5/6%3c616​:AID-JCC5%3e3.0.CO;2-X

	65.	 Halgren TA (1999) MMFF VI. MMFF94s option for energy minimization 
studies. J Comput Chem 20:720–729. https​://doi.org/10.1002/(SICI)1096-
987X(19990​5)20:7%3c720​:AID-JCC7%3e3.0.CO;2-X

	66.	 Halgren TA (1999) MMFF VII. Characterization of MMFF94, MMFF94s, and 
other widely available force fields for conformational energies and for 
intermolecular-interaction energies and geometries. J Comput Chem 
20:730–748. https​://doi.org/10.1002/(SICI)1096-987X(19990​5)20:7%3c730​
:AID-JCC8%3e3.0.CO;2-T

	67.	 Tosco P, Stiefl N, Landrum G (2014) Bringing the MMFF force field to the 
RDKit: implementation and validation. J Cheminform 6:4–7. https​://doi.
org/10.1186/s1332​1-014-0037-3

	68.	 Grimme S, Brandenburg JG, Bannwarth C, Hansen A (2015) Consist-
ent structures and interactions by density functional theory with small 
atomic orbital basis sets. J Chem Phys. https​://doi.org/10.1063/1.49274​76

	69.	 Grimme S (2012) Supramolecular binding thermodynamics by disper-
sion-corrected density functional theory. Chem Eur J 18:9955–9964. https​
://doi.org/10.1002/chem.20120​0497

	70.	 Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly 
accurate for thermochemistry, thermochemical kinetics, and nonbonded 
interactions. J Phys Chem A 109:5656–5667. https​://doi.org/10.1021/
jp050​536c

	71.	 Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate 
ab initio parametrization of density functional dispersion correc-
tion (DFT-D) for the 94 elements H-Pu. J Chem Phys. https​://doi.
org/10.1063/1.33823​44

	72.	 Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function 
in dispersion corrected density functional theory. J Comput Chem 
32:1456–1465. https​://doi.org/10.1002/jcc.21759​

	73.	 Becke AD, Johnson ER (2005) A density-functional model of the 
dispersion interaction. J Chem Phys 123:154101. https​://doi.
org/10.1063/1.20652​67

	74.	 Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple 
zeta valence and quadruple zeta valence quality for H to Rn: design and 
assessment of accuracy. Phys Chem Chem Phys 7:3297–3305. https​://doi.
org/10.1039/b5085​41a

	75.	 Goerigk L, Hansen A, Bauer C et al (2017) A look at the density functional 
theory zoo with the advanced GMTKN55 database for general main 
group thermochemistry, kinetics and noncovalent interactions. Phys 
Chem Chem Phys 19:32184–32215. https​://doi.org/10.1039/c7cp0​4913g​

	76.	 Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model 
based on solute electron density and on a continuum model of the sol-
vent defined by the bulk dielectric constant and atomic surface tensions. 
J Phys Chem B 113:6378–6396. https​://doi.org/10.1021/jp810​292n

	77.	 Becke AD (1988) Density-functional exchange-energy approximation 
with correct asymptotic behavior. Phys Rev A 38:3098–3100. https​://doi.
org/10.1103/PhysR​evA.38.3098

	78.	 Perdew JP (1986) Density-functional approximation for the correlation 
energy of the inhomogeneous electron gas. Phys Rev B 33:8822–8824

	79.	 Sd (2012) TURBOMOLE V6.3 2011, a development of University of 
Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBO-
MOLE GmbH. 2007. http://www.turbo​mole.com

	80.	 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, 
Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Maren-
ich AV, Bloino J, Janesko BG, Gomper. Gaussian 09, Revision D.01

	81.	 Rasmussen CE (2004) Gaussian Processes in Machine Learning. In: Bous-
quet O, von Luxburg U, Rätsch G (eds) Advanced Lectures on Machine 
Learning: ML Summer Schools 2003, Canberra, Australia, February 2–14, 
2003, Tübingen, Germany, August 4–16, 2003, Revised Lectures. Springer, 
Berlin Heidelberg, pp 63–71

	82.	 Pedregosa F, Varoquaux G, Gramfort A et al (2012) Scikit-learn: machine 
Learning in Python. J Mach Learn Res 12:2825–2830

	83.	 Bento AP, Gaulton A, Hersey A et al (2014) The ChEMBL bioactivity 
database: an update. Nucleic Acids Res 42:1083–1090. https​://doi.
org/10.1093/nar/gkt10​31

	84.	 Marenich AV, Jerome SV, Cramer CJ, Truhlar DG (2012) Charge model 5: an 
extension of hirshfeld population analysis for the accurate description of 
molecular interactions in gaseous and condensed phases. J Chem Theory 
Comput 8:527–541. https​://doi.org/10.1021/ct200​866d

	85.	 Caron G, Vallaro M, Ermondi G (2017) High throughput methods to 
measure the propensity of compounds to form intramolecular hydrogen 
bonding. Medchemcomm 8:1143–1151. https​://doi.org/10.1039/c7md0​
0101k​

	86.	 Abraham MH, Abraham RJ, Acree WE et al (2014) An NMR method for the 
quantitative assessment of intramolecular hydrogen bonding; environ-
mental, and biochemical properties, application to physicochemical. J 
Org Chem 79:11075–11083. https​://doi.org/10.1021/jo502​080p

	87.	 Abraham MH, Abraham RJ (2017) A simple and facile NMR method for 
the determination of hydrogen bonding by amide N-H protons in protein 
models and other compounds. New J Chem 41:6064–6066. https​://doi.
org/10.1039/c7nj0​1044c​

	88.	 Clarke ED, Mallon LJ (2013) The Determination of Abraham Descriptors 
and Their Application to Crop Protection Research. In: Jeschke P, Kramer 
W, Schirmer U, Witschel M (eds) Modern methods in crop protection 
research. Wiley VCH Verlag GmbH & Co., KGaA, Weinheim, pp 273–305

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1021/acs.jctc.7b00118
https://doi.org/10.1103/revmodphys.32.300
https://doi.org/10.1103/revmodphys.32.300
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c520:AID-JCC2%3e3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c520:AID-JCC2%3e3.0.CO;2-W
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c553:AID-JCC3%3e3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c553:AID-JCC3%3e3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c587:AID-JCC4%3e3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c587:AID-JCC4%3e3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c616:AID-JCC5%3e3.0.CO;2-X
https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3c616:AID-JCC5%3e3.0.CO;2-X
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7%3c720:AID-JCC7%3e3.0.CO;2-X
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7%3c720:AID-JCC7%3e3.0.CO;2-X
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7%3c730:AID-JCC8%3e3.0.CO;2-T
https://doi.org/10.1002/(SICI)1096-987X(199905)20:7%3c730:AID-JCC8%3e3.0.CO;2-T
https://doi.org/10.1186/s13321-014-0037-3
https://doi.org/10.1186/s13321-014-0037-3
https://doi.org/10.1063/1.4927476
https://doi.org/10.1002/chem.201200497
https://doi.org/10.1002/chem.201200497
https://doi.org/10.1021/jp050536c
https://doi.org/10.1021/jp050536c
https://doi.org/10.1063/1.3382344
https://doi.org/10.1063/1.3382344
https://doi.org/10.1002/jcc.21759
https://doi.org/10.1063/1.2065267
https://doi.org/10.1063/1.2065267
https://doi.org/10.1039/b508541a
https://doi.org/10.1039/b508541a
https://doi.org/10.1039/c7cp04913g
https://doi.org/10.1021/jp810292n
https://doi.org/10.1103/PhysRevA.38.3098
https://doi.org/10.1103/PhysRevA.38.3098
http://www.turbomole.com
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1093/nar/gkt1031
https://doi.org/10.1021/ct200866d
https://doi.org/10.1039/c7md00101k
https://doi.org/10.1039/c7md00101k
https://doi.org/10.1021/jo502080p
https://doi.org/10.1039/c7nj01044c
https://doi.org/10.1039/c7nj01044c

	Machine learning models for hydrogen bond donor and acceptor strengths using large and diverse training data generated by first-principles interaction free energies
	Abstract 
	Introduction
	Methods
	Data sets
	Experimental data sets for quantum chemistry validation
	Generation of hydrogen bonding fragments for the quantum chemical databases
	Energy values
	Quantum chemistry
	Machine learning


	Results and discussion
	Generated acceptor and donor Fragments
	Relation of quantum chemistry to experiment
	Quantum-chemically derived databases
	Machine learning model optimization and descriptor scan
	Learning curves and applicability domain analysis
	Performance of machine learning models on experimental test sets
	Application example

	Summary and conclusions
	Acknowledgements
	References




