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Abstract
In spatial cognition, the Successor Representation (SR) from reinforcement learning
provides a compelling candidate of how predictive representations are used to encode
space. In particular, hippocampal place cells are hypothesized to encode the SR. Here,
we investigate how varying the temporal symmetry in learning rules influences those rep-
resentations. To this end, we use a simple local learning rule which can be made insen-
sitive to the temporal order. We analytically find that a symmetric learning rule results in
a successor representation under a symmetrized version of the experienced transition
structure. We then apply this rule to a two-layer neural network model loosely resembling
hippocampal subfields CA3 - with a symmetric learning rule and recurrent weights - and
CA1 - with an asymmetric learning rule and no recurrent weights. Here, when exposed
repeatedly to a linear track, neurons in our model in CA3 show less shift of the centre of
mass than those in CA1, in line with existing empirical findings. Investigating the func-
tional benefits of such symmetry, we employ a simple reinforcement learning agent which
may learn symmetric or classical successor representations. Here, we find that using a
symmetric learning rule yields representations which afford better generalization, when
the agent is probed to navigate to a new target without relearning the SR. This effect
is reversed when the state space is not symmetric anymore. Thus, our results hint at
a potential benefit of the inductive bias afforded by symmetric learning rules in areas
employed in spatial navigation, where there naturally is a symmetry in the state space.

Author summary
The hippocampus is a brain region which plays a crucial role in spatial navigation for
both animals and humans. Contemporarily, it’s thought to store predictive representa-
tions of the environment, functioning like maps that indicate the likelihood of visiting
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certain locations in the future. In our study, we used an artificial neural network model
to learn these predictive representations by adjusting synaptic connections between
neurons according to local learning rules. Unlike previous research, our model includes
learning rules that are invariant to the temporal order of events, meaning they are sym-
metric with respect to the reversal of input timings. This approach produces predictive
representations particularly useful for understanding spatial relationships, as navigating
from one point to another is often equivalent to the reverse. Our model offers additional
insights: it replicates observed properties of hippocampal cells and helps an artificial
agent solve navigation tasks. The agent trained with our model not only learns to nav-
igate but also generalizes better to new targets compared to traditional models. Our
findings suggest that symmetric learning rules enhance the brain’s ability to create useful
predictive maps for problems which are inherently symmetric, as is navigation.
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1. Introduction
The hippocampus and its adjacent sub- and neocortical regions are widely believed to form
both a crucial part in the acquisition and storage of memory, as well as the encoding of spatial
and navigational variables in the form of spatially stable neural responses [1–5].

It is an increasingly popular assumption that the representations which the brain gener-
ates in general, and in particular for space and memory, are not merely descriptive of the cur-
rent state of the world, post-dictions of events or places just passed. Rather, it is believed that
a predictive representation is learned, such that the objective is to infer future states of the
world from one’s experience [6–10].

One framework that has extensively been used to describe this objective on the algorith-
mic level comes from reinforcement learning. The so called ’successor representation’ (SR),
or more broadly ’successor features’ (SF) are a generalization of the well known value func-
tion, and are essentially a conditional expectation: Given the current state, they encode a
(weighted) expectation of future values of a given function of the states of the world [11,12]. If
that function is simply an indicator of the states, then one obtains the SR, which thus roughly
encodes how often states will be visited in the future.

Originally, the successor representation was proposed as an intermediate between ’model-
based’ and ’model-free’ reinforcement learning [13,14], allowing the storage of certain infor-
mation about the transition structure under a given policy - hence, affording some generaliza-
tion to different reward structures - while still being possible to learn with a efficient temporal
difference (TD) learning algorithm [9,11]. Later work has also used the SR for different objec-
tives such as option discovery [15] and reward free exploration [16]. More generally, main-
taining a predictive representation might be a useful feature of intelligent agents (biological or
artificial ones) that have to plan their behaviour [17].

In the hippocampal navigation literature, the successor representation view has been influ-
ential because apart from fitting well with the more general predictive brain hypothesis, it
could explain non-trivial effects of place cells that had been previously observed, for example
the skewing of place fields in direction of travel or the non-extension of place-fields through
obstacles in the environment [8]. Furthermore, successor representation theory yielded an
algorithmic explanation for grid cells as an eigendecomposition of place-cell structure, which
could also be connected to efficient neurally plausible navigation [18–21].

Despite the success of SR theory explaining neural data on an algorithmic level, there
has been considerably less work dedicated to providing a mechanism through which the SR
should be learned using biologically plausible learning rules [22]. Recently, this question
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has been tackled by the community: Two papers [23,24] used feedforward networks to learn
synaptic weights that compute successor features from their inputs. [23] focuses on the pre-
dictiveness afforded by the theta cycle together with a compartment-neuron learning rule,
while [24] uses spiking neural networks and a spike-time-dependent plasticity (STDP) rule.
On the other hand, [25] used a recurrent neural network, to learn successor features directly
in the activities of the recurrently connected neurons.

Anatomically, the latter approach can be linked to plasticity occurring at the recurrent
synapses of CA3, while the former approach maps on the feedforward synapses to CA1 [26].
Both areas are known to show a considerable proportion of place cells [27], hence both are
indeed candidate regions to encode successor representations. However, it has been sug-
gested that different learning rules might be in place at the respective synapses: the Schaffer
collateral- synapse to CA1 pyramidal cells is classically believed to obey the rules of STDP
[28,29], which in its stereotypical form requires presynaptic increased activity to precede
postsynaptic increased activity for an increase in strength of synaptic connection [30,31].
On the other hand, recent work has identified a regime in which recurrent CA3 synapses get
strengthened if pre- and postsynaptic increased activity are close in time, regardless of the
temporal order - and computationally linked a symmetric learning rule to benefit in memory
storage of a recurrent network [32].

Here, we want to investigate the effect of such symmetric learning rules on the construc-
tion of predictive representations. That is, we aim to understand whether using a learning rule
insensitive to the temporal order of the inputs learns different successor representations - and
which (dis-)advantages it yields.

To this end, we first construct a model which has both a recurrent and a feedforward com-
ponent, reminiscent of the architecture of Hippocampus, and study the successor features that
are learned using a local learning rule. Thereby we extend the earlier work which focused on
learning in a single layer to learning at multiple levels. This extension is rather straightforward
and results in both layers learning successor features based on their respective inputs.

We then find that by changing the learning rule, the representations also undergo a sim-
ilar modification: In the symmetric setting, instead of encoding future expectations under
the current true policy of the agent, successor features under a symmetrized version of the
transition probabilities are learned, while an asymmetric rule learns the ’true’ successor fea-
tures. We then contrast the utility of the respective representations in a reinforcement learn-
ing setting. There, we find that a symmetric learning rule yields benefits for generalization in
navigational tasks, where the symmetry of the state space can be exploited, while an asym-
metric learning rule is more advantageous for generalization in asymmetric state spaces. We
conclude that implementing both an asymmetric and a symmetric learning rule might yield
complementary representations.

2. Results
2.1. Successor representations
The successor representation and the more general successor features describe future expec-
tations of a quantity, conditional on the current state of the world. They are most easily
defined in the following setting: Assume the environment of an agent/animal consists of a set
of states S . The states of the world are changing according to a time homogeneous Markov
chain, denoted St ∈ S , with transition probabilities encoded in the matrix P such that Ps,s′ ∶=
p(s′|s), the probability transitioning from state s to state s′ in one timestep. Then for any
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feature/observation function

𝜙 ∶ S →ℝm (1)

one can define an expectation of weighted, cumulative future values of that function, given
the current state:

SF𝜙(s) = 𝔼
⎡⎢⎢⎢⎣

∞
∑
k=0

𝛾k𝜙(St+k)∣St = s
⎤⎥⎥⎥⎦
. (2)

The weighting factor 𝛾 ∈ [0, 1) puts relatively more importance on proximal times. In
the case that 𝜙 is an injective function, that is for every state of the world there is an unique
observation value, it makes sense to define the ’successor representation’ (SR)

SR𝜙(𝜈) = 𝔼
⎡⎢⎢⎢⎣

∞
∑
k=0

𝛾k𝜙(St+k)∣𝜙(St) = 𝜈
⎤⎥⎥⎥⎦
. (3)

We use this terminology here in a little more generality than is usual, but it can be seen that
one important special case leads to what is usually called SR: Let 𝜙e(s) ∶= es, where es is the
unit vector with a 1 at the entry corresponding to state s. That is, 𝜙e assigns to each state its
indicator vector. Then one obtains

SR𝜙e(es) =
∞
∑
k=0

𝛾k ∑
s′∈S

Pks,s′es′ (4)

=
∞
∑
k=0

𝛾keTs Pk = (Id – 𝛾P)–1s , (5)

where the last equality is the well known identity for the Neumann series. The matrix
(Id–𝛾P)–1 is widely referred to as the SR, so our definition encompasses this special case.
One can see from these equations that the SR of indicator vectors thus gives a weighted sum
of expected future visitation probabilities of states, and it is this expression that has originally
been used to model the predictive representations that hippocampus ought to encode [8,9].

2.2. Learning successor representations with local learning rules
We construct a simple model of two neuron population activities pt which have dynamics of
the form

d
dt
p1 = –p1 + 𝜎(𝛾1Wrp1 + (1 – 𝛾1)𝜙1) (6)

d
dt
p2 = –p2 + 𝜎(𝛾2Wfp1 + (1 – 𝛾2)𝜙2). (7)

Here, Wr is a recurrent connectivity matrix that feeds the activity of the first population
back into itself, while W f is feedforward matrix, which encodes how activity of the first pop-
ulation is fed into the second. This architecture of one population of highly recurrently con-
nected neurons feeding into a second one with little recurrent connectivity is reminiscent of
hippocampal subfields CA3 and CA1 respectively [26]. The two populations obtain additional
external inputs 𝜙1,𝜙2, which might represent the input to CA3 via mossy fibers, or directly
through the perforant path, and the input to CA1 from EC through the latter, respectively. In
the simplest case, these inputs are just indicator-functions for particular states, that is 𝜙i(s) =
𝛿(s = si). A more realistic shape, which we employ in our experiments in Sect 2.5, might be
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given by Gaussian inputs of the form 𝜙i(s) = exp(– ∥s–𝜇i∥2
2𝜎 ) . The 𝛾i ∈ [0, 1] are scalar-valued

global gain factors which control the relative strengths of inputs to the populations. Note that
we intentionally used the same symbol 𝛾 as for the timescale factors in the successor repre-
sentation, as those will turn out to be equivalent. For analysis, we assume that the activation
function 𝜎 is the identity (i.e. the system is linear), and that the population vectors take the
equilibrium values of the above dynamics, that is

p1 = (1 – 𝛾1)(Id –𝛾1Wr)–1𝜙1 (8)

p2 = 𝛾2Wfp1 + (1 – 𝛾2)𝜙2. (9)

We then define a learning rule for the synaptic weights, using these equilibrium val-
ues. Hence, we implicitly assume that neural dynamics happen on a timescale 𝜏p which is
way quicker than that of learning, 𝜏W. Taking the equilibrium values is the limit case which
simplifies analysis, but in practice one can also take 𝜏p << 𝜏W and simply update activities
and weights concurrently. We also assume that our weight matrices are initialized in such a
way that these are stable equilibria of the dynamics, which for example will be the case if all
weights are initialized to sufficiently small non-negative values.

The learning rule we use is a slight modification of the learning rule used in [25]. In par-
ticular, we use the same general learning rule for both recurrent and feedforward weights,
only varying certain parameters. Let ppost,i,ppre,i be the activity of the i-th post/pre-synaptic
neuron respectively. We then update the weight from the j–th presynaptic neuron to the i-th
postsynaptic neuron via

ΔWij = 𝛼
⎛
⎝
ppost,it+1 –∑

k
Wikp

pre,k
t
⎞
⎠
ppre,jt + 𝛽 ⎛

⎝
ppost,it –∑

k
Wikp

pre,k
t+1
⎞
⎠
ppre,jt+1 . (10)

The update rule contains terms of the form ppost,ippre,j, which are simply Hebbian terms.
The other summands perform a subtractive normalization: they subtract the total overall
input to a post-synaptic neuron, such that only activity exceeding this input will actually
be considered positive. This term has been interpreted as a decorrelative term by [25] - in
total, the learning rule can be understand as a predictive coding rule approximating a condi-
tional expectation operation, as we explain in Appendix A in S1 Appendices. In matrix-vector
notation the update rule reads

ΔW = 𝛼 (ppostt+1 –Wppret ) p
pre
t

T + 𝛽 (ppostt –Wppret+1) p
pre
t+1

T. (11)

The parameters 𝛼,𝛽 ∈ℝ control the sensitivity of this update to the order of the activity,
put differently, the temporal symmetry of the rule: If we write our synaptic weight change
as ΔW(W, ppostt+1 , p

post
t , ppret+1, p

pre
t ), then for parameters 𝛼 = 𝛽 we obtain a learning rule that is

invariant under a reversal of time, that is

ΔW (W, p′, p, q′, q) =ΔW (W, p, p′, q, q′) , (12)

while for the original learning rule with 𝛼 = 1,𝛽 = 0, no such relation holds - see also Fig 1.
For 𝛼 = –𝛽 we would obtain a rule that is antisymmetric in this sense - it turns out however
that this would yield unstable dynamics.
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Fig 1. Model and learning rule. (A) Cartoon depiction of the model we are using in the main text. A recurrently
connected population of neurons p1, putatively CA3, receives external input 𝜙1, putatively from dentate gyrus
or entorhinal cortex(EC). It projects to another population p2, which receives input 𝜙2. The latter could be CA1
receiving input again from EC. Note that there are no recurrent connections in the second layer and no backwards
connections. (B) Quantities relevant for the update of synapse Wij: pre- and postsynaptic activities, as well as the
sum of the total input to the postsynaptic neuron through the synapses W. (C), (D) Invariance of learning rules
with respect to temporal order. We plot synaptic weight change of a single synapse in a setup with a single pre- and
postsynaptic neuron, respectively. The right column has the same pre- and postsynaptic activities as the left column,
only in reverse order. In (C), the learning rule with parameters 𝛼 = 1,𝛽 = 0 is used, while in (D) 𝛼 = 𝛽 = 1

2 . Only
in the latter the synaptic weight changes are preserved (in reverse order), while in (C), postsynaptic activity before
presynaptic activity leads to a net weight decrease. Note that in this illustrative example W is fixed, in reality, network
dynamics and weights would influence each other and lead to more complex changes.

https://doi.org/10.1371/journal.pcbi.1013056.g001

2.3. Network learns successor representation and successor features
Before exhibiting the representations that are learned under the modified learning rule, it
might be helpful understanding which representations a two layer-network as the above
learns with the simplest choice of parameters (𝛼 = 1,𝛽 = 0). Let us assume the network has
been exposed extensively to features 𝜙1,𝜙2 under the same random walk with transition prob-
abilities P, such that the synaptic weights could converge. In practice this means simulating
discretized dynamics of (Eq 6) together with the learning rule of (Eq 10), which then results
in updates of the form (𝜀p >> 𝜀W):

p1(t + 1) = p1(t) + 𝜀pΔp1(p1(t),Wr(t),𝜙1(St)) (13)

p2(t + 1) = p2(t) + 𝜀pΔp2(p1(t), p2(t),Wf(t),𝜙2(St))
Wr(t + 1) =Wr(t) + 𝜀WΔWr(p1(t), p1(t + 1),Wr(t),𝛼r,𝛽r)

Wf(t + 1) =Wf(t) + 𝜀WΔWf(p1(t), p1(t + 1), p2(t), p2(t + 1),Wf(t),𝛼f,𝛽f)
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Δp1(p1,Wr,𝜙1) = –p1 + 𝜎(𝛾1Wrp1 + (1 – 𝛾1)𝜙1) (14)

Δp2(p1, p2,Wf,𝜙2) = –p2 + 𝜎(𝛾2Wfp1 + (1 – 𝛾1)𝜙2)

ΔWr(p1, p1′,Wr,𝛼r,𝛽r) = 𝛼r(p1′ –Wrp1)p1T + 𝛽r(p1 –Wrp1′)p1′T

ΔWf(p1, p1′, p2, p2′,Wf,𝛼f,𝛽f) = 𝛼f(p2′ –Wfp1)p1T + 𝛽r(p2 –Wfp1′)p1′T

Then, as we show in Appendix A and Appendix D in S1 Appendices, the synaptic weights
converge in such a way that the network computes successor features. Indeed, the equilibrium
is best explained by stating what the population activities encode once the weights have con-
verged. We find that the activities in the network, after extensive exposure to features 𝜙1,𝜙2,
when presented with new inputs ̃𝜙1, ̃𝜙2, compute successor representations/features: They
take the equilibrium values

p1 = (1 – 𝛾1)SF𝜙1( ̃𝜙1) = (1 – 𝛾1)
∞
∑
k=0

𝛾k1𝔼[𝜙1(St+k)|𝜙1(St) = ̃𝜙1] (15)

p2 = (1 – 𝛾2)
⎛
⎝

̃𝜙2 +
∞
∑
k=0

𝛾k2𝔼[𝜙2(St+k)|SF𝜙1(St) = SF𝜙1( ̃𝜙1)]
⎞
⎠
. (16)

In words, this means that the first, recurrent layer computes the weighted cumulative sum
of the predicted values of the feature 𝜙1 it was trained on, but given the possibly new feature
̃𝜙1 - one could see this a form of pattern completion, but with a predictive component. Sim-

ilarly, the second layer computes predictions of 𝜙2, only that these predictions themselves
depend on those predictive representations passed to it from the first layer. In particular,
when the inputs are the same as the model was trained on, and the maps 𝜙i are injective (i.e.,
sufficiently rich features exist for the environment), then these equations simplify to

p1 = (1 – 𝛾1)SR𝜙1 (17)
p2 = (1 – 𝛾2)SR𝜙2 . (18)

That is, in this case the two layers simply learn to encode the successor representations of
their respective inputs.

2.4. Influence on the representations by choice of parameters
We now proceed to ask the question “which representations would be learned depending on
the choice of the parameters 𝛼,𝛽?”. It turns out that the resulting representations are still suc-
cessor representations, albeit corresponding to transition probabilities that are not necessarily
faithful to those of the environmental dynamics anymore. To be precise, we define a weighted
sum of transition matrices

P𝛼,𝛽 ∶=
𝛼

𝛼 + 𝛽P
forward + 𝛽

𝛼 + 𝛽P
backward. (19)

Here, Pforward contains the transition probabilities of the actually observed process (that is,
’forward’ in time), while Pbackward contains the transition probabilities of the reverse process,
i.e. p(st = s|st+1 = s′) - see also (Eq 39) We then show in Appendix D in S1 Appendices that
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under suitable conditions, with the learning rule defined above, the model is able to learn the
successor representations under P𝛼,𝛽 . This entails that the neuronal population activities at
convergence yield

pit = SR
P𝛼i ,𝛽i
𝜙i (𝜙i

t) (20)

with 𝛼i,𝛽i the respective parameters used in the learning rule. In terms of the successor repre-
sentation matrix, this simply means

SRP𝛼,𝛽 =
∞
∑
k=0

𝛾k(P𝛼,𝛽)k. (21)

That is, in particular, under the regime 𝛼 = 1,𝛽 = 0, this corresponds to the ’true’ succes-
sor representation. For 𝛽 = 1,𝛼 = 0 one obtains the ’predecessor representation’ [16]. Under
a symmetric regime, the transition probabilities forward and backward in time are averaged
over, that is one obtains

P 1
2 ,

1
2
= 1

2
(Pforward + Pbackward). (22)

In fact, in this case the transition probabilities are reversible in time - this is not surpris-
ing, as the learning rule was defined to be invariant under a time reversal and hence should
only extract aspects of the dynamics which are reversible. We note here that such reversible
dynamics have been typically assumed in the theory of SR when construing grid cells as effi-
cient representations of the geometry of an environment through the eigenvectors of the SR -
see Appendix C in S1 Appendices.

2.4.1. Activities in the model converge to theoretically obtained limits. Having theo-
reticallly obtained the limits of the weights and the corresponding activities, we next verified
these limits empirically in simulations. In these simulations, we consider an environment with
a discrete number of states s∈ S and inputs 𝜙i which are functions of these states. In the sim-
plest case, 𝜙(s) = es, we obtain the classical successor representation. In particular, for a sym-
metric learning rule we obtain a symmetrized successor representation - which shows less
dependence on the policy. For example, on a circular track, the representation becomes indif-
ferent to whether the agent is performing a clock-wise or a anti-clockwise walk (Fig 2). One
might argue that a reversible representation encodes more of the geometry of the underlying
state space and less of the actual dynamics (although there is still an indirect influence of the
dynamics through the stationary distribution). Indeed, we show in Appendix G in S1 Appen-
dices that the symmetrized transition probabilities are always closer to a uniform policy than
the unsymmetrized ones.

We also verified our theoretical results in more complex scenarios: the convergence pre-
vails also when the features are random inputs instead of one-hot vectors, and also when the
random walk is arbitrary instead of circular - see Fig 3. Additionally, we investigated the sta-
bility under the choice of parameters 𝛼,𝛽. Here we found that it seems that the model is only
stable when the positive weight is bigger (in absolute value) than the negative weight, with no
convergence at the boundary case of 𝛼 = –𝛽. The latter is in line with the theoretical results -
note that (Eq 19) is undefined in this case.

2.5. Place fields under symmetrized rule show less shift
Although both areas CA3 and CA1 show place cells, these cells exhibit different properties
and dynamics [33,34]. It is well known, that on a linear or circular track place fields shift

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013056 June 23, 2025 8/ 37

https://doi.org/10.1371/journal.pcbi.1013056


ID: pcbi.1013056 — 2025/6/16 — page 9 — #9

PLOS COMPUTATIONAL BIOLOGY Symmetry and generalization in local learning of predictive representations

Fig 2. Successor Representations learned in circular random walks. We construct a circular state space with possible actions stay, move clockwise and move anti-
clockwise. We simulate three random walks, one where the actions are selected uniformly (first row), one where clockwise actions are preferably selected (second row)
and one where anti-clockwise actions are preferably selected (third row). The first column shows an example trajectory of the respective walk. The second and third
column show the successor representations learned by the first and second layer of our model, using a symmetric (𝛼 = 𝛽 = 1

2 and an asymmetric (𝛼 = 1,𝛽 = 0) learn-
ing rule, respectively. Note how the successor representation learned with a symmetric rule does not distinguish between the policies. Here, the inputs to the cells are
one-hot vectors encoding the respective states and the plotted successor representations are obtained by taking the average population activity in the respective states.

https://doi.org/10.1371/journal.pcbi.1013056.g002

backwards opposite the direction of travel in both regions [35,36]. However, when directly
comparing cell recordings from both, it has been observed for example in [37] that the shift
in CA3 is in general less pronounced, that is, the center of mass of these cells is more sta-
ble than in their counterparts in CA1. We hypothesized that a difference in learning rules
could explain this effect. Indeed, it is not hard to see theoretically why this should be the case:
Through learning, the features 𝜙i(s) get replaced by their successor features SF𝜙i(s). If there is
a preferred direction of travel, then states preceding those where the feature puts a lot of mass
will also have more mass, since they are predictive of the former states. If there is an asymme-
try in the policy, the same will not hold true for succeeding states, hence one observes a shift
towards the predecessors. If now however one has symmetric transition probabilities, then
there is no directionality, hence this shift would not occur. Indeed, we provide a simple proof
of this in Sect 4.5.

We confirmed this intuition, running our two-layer model in a simple linear track where
the agent repeatedly moves from the left side to the right. Indeed, we find a tendency to shift
in the CA1 cells, which isn’t as pronounced in the CA3 population (Fig 4). Qualitatively, our
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Fig 3. Successor representations are learned for a variety of inputs, dynamics, and parameters. Top: Convergence of recurrent (red) and feedforward (blue) matrices
to their theoretical limit with random features in circular (left) and arbitrary (right) random walks. Bottom: Convergence of recurrent weight (left) and feedforward
weight (right) for different parameters 𝛼,𝛽. The other set of parameters is fixed to (1,0) and ( 1

2 ,
1
2 ) in these experiments, respectively. In graphs, we measure conver-

gence by the loss term L as explained in Methods section. In the bottom row, we compute the fraction of the loss at the final step over the initial loss and display the
result in a logscale. Thus, negative values indicate converging towards the target. Note that the values on the antidiagonal are approximately 0.

https://doi.org/10.1371/journal.pcbi.1013056.g003

results match those obtained in [37]. Importantly, these results only hold when using the sym-
metrized version of the learning rule for CA3, while the asymmetric variant yields almost no
distinction.

2.6. Generalization and learning with (a)-symmetric rules
Having derived the different kinds of successor representations that symmetric and asymmet-
ric learning rules encode, we next sought to understand what the functional benefits of these
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Fig 4. Symmetric learning rule leads to more stable place fields in linear track. We simulated an experiment with a rat repeatedly running on a linear track, similar to
[37]. A two-layer SR network was used where the recurrent weights had a symmetric (A, middle row) or asymmetric (A, top row) learning rule. In the the symmetric
case, there is less shift of the centre of mass of place fields in the modelled CA3 population (red) than in the CA1 population (blue), which is not the case in the asym-
metric version. Histograms show distribution of shifts comparing last five laps versus first five laps, while the rightmost plot shows shift relative to the 12-th lap. The
results in the symmetric case are qualitatively similar to data (A, bottom row) from Ca2+ recordings of hippocampal neurons in a similar experiment - figure adapted
from Dong, C., Madar, A. D., & Sheffield, M. E. (2021)( [37]). In B, we show firing rates of an exemplar cell from CA3 and CA1 respectively, where the symmetric learn-
ing rule is used for CA3. The firing rates in each position are averaged over the first and last five laps, and plotted relative to the centre of mass in the first laps. With
experience, only the place field in CA1, not the place field in CA3 shifts backwards (arrow indicates direction of travel).

https://doi.org/10.1371/journal.pcbi.1013056.g004

representations might be. In particular, we hypothesized that a symmetric learning rule for
successor representations might be a relatively simple inductive bias that would favour learn-
ing such representations that are invariant under time reversal. This could be useful in such
environments where there is a symmetry in transition structure. A particularly simple exam-
ple of this setting - but still likely for biological agents to encounter - is when the transition
structure of the environment is deterministic and transitions in both directions between states
are possible. In this case, the state space becomes a metric space and the metric a particular
invariant under the symmetry - that is d(s, s′) = d(s′, s). This then hints at a possible benefit of
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using a learning rule biased towards such symmetry: In a metric space, an optimal policy for
navigating towards any target depends only on the metric - in fact one may give a closed form
expression as we show in Appendix H in S1 Appendices. Hence, the more the representations
that are learned in one particular tasks encode something akin to the distance on the underly-
ing space, the more useful these representations should be for generalizing to new such tasks.
In other words, one would want to bias the representations to encode more of the geometry of
the space and less of the dynamics of the particular tasks.

In the light of this hypothesis, we trained a reinforcement learning agent, equipped with
a temporal difference (TD) learning rule that for a fixed policy would converge to the same
weighted representation under P𝛼,𝛽 , and investigated performance in simple navigation tasks.
Note that since we now want to understand the benefits on the computational level irrespec-
tive of the biological implementation, we use a classical RL model and not the neural net-
work model from the preceding sections - however, all experiments could also be conducted
using such a model. The agent we use encounters transitions of states and updates an inter-
nal matrix M which serves as an estimate of the successor representation. When transitioning
from state s→ s′, the update equations are given by

M(t + 1) =M(t) + 𝜀ΔM (23)
ΔMu,v = 𝛼𝛿(u = s) (𝛿(v = s) + 𝛾Ms′ ,v –Ms,v) (24)

+ 𝛽𝛿(u = s′) (𝛿(v = s′) + 𝛾Ms,v –Ms′ ,v)

where 𝜀 is a fixed learning rate. Note that for 𝛼 = 1,𝛽 = 0 this yields the standard TD learning
rule for the successor representation [14]. Furthermore, the agent learns a reward vector R,
and computes the value function of states via VR(s) =MR(s). Together with a local transition
model p(s′|s, a) (which we assume as given), the agent can then define Q values of state action
pairs Q(s,a) and take the next action based on these Q–values [11,38].

The task for the agent is split in two parts: In the first part, in each epoch, the agent is ini-
tialized in a random location and has to navigate to a fixed goal starget, where a unit reward
is received -i.e., 𝜙 = estarget . This goal does not change over epochs. After a fixed number of
epochs, the goal is changed to a new location s′target, randomly drawn from all other locations.
Importantly, the agent is then only allowed to relearn the reward vector, not the successor
representation matrix.

We find that both the classical SR, corresponding to parameters 𝛼 = 1,𝛽 = 0, as well as the
symmetrized version 𝛼 = 𝛽 = 1

2 are able to learn the navigation tasks with similar mean learn-
ing curves. Although it might be counterintuitive at first that symmetrization yields a policy
which still navigates to the correct target, we actually prove in Appendix H in S1 Appendices
that indeed an optimal policy is stable under such symmetrization - which shows at least that
once such a policy is learned, it can be maintained. However, this result only shows stabil-
ity once an optimal policy is reached, and indeed one may observe in Fig 5 that the symmet-
ric agent generally shows a higher variation. Furthermore, we find that the symmetric agent
seems to be more sensitive to the choice of hyperparameters: Indeed, we find that for smaller
learning rates, there is a steeper degradation of performance caused by high variability in
the results for the symmetric agent. However, for higher learning rates, both show a similar
performance (Fig 6).

Importantly, we then find empirically that on the new targets, the symmetric learning
rule outperforms the classical one on average, while both show higher variation in these tests
(Fig 5). Thus, one may argue that the successor representation in a symmetric learning regime
affords better generalization - at least in a navigational setting. This is not merely an effect
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Fig 5. Symmetric successor representation agent affords better generalization in simple navigation tasks. Left: Agents started in random locations in the environ-
ments and had to learn to navigate to fixed targets. After 400 episodes, reward location was switched to a new random location, where agents could only relearn the
reward prediction vector but not the SR. (Generalization) performance is visualized by total number of steps taken per episode, for an agent using the classical rule (blue)
and an agent using the symmetric rule (red). Dashed line indicates change of target location. We show the average performance over different environments as perfor-
mance is qualitatively similar, see S3 Fig for plots in individual environments. Right: Similar to left plot, but instead of switching target after a fixed number of episodes,
the target was switched when the previous target was found with a fixed accuracy. Violin plots show distribution of suboptimality (steps - optimal number of steps) over
all environments, for individual environments see S4 Fig. For an outline of the environments see S2 Fig.

https://doi.org/10.1371/journal.pcbi.1013056.g005

of the trajectories that are sampled with the different learning rules - that is, in particular it
cannot be attributed to the higher variation during training on the first target: We repeated
the above experiment while learning the successor representations based on the transitions
obtained from the classical agent alone - the results remain unchanged, suggesting that the
symmetric rule yields representations more apt to generalization without the need of a dif-
ferent sampling regime (S5 Fig). Similarly, the results also hold when controlling the norm of
the updates, such that both the asymmetric and symmetric update make an equally big update
step at each point. In other words, the agent can concentrate on solving the current task and
still gets afforded a map of the environment which is less influenced by the current policy.
Nevertheless, when learning to navigate to the first target, the symmetric agent still learns a
policy that on average has more entropy than the one learned by the asymmetric agent. This
increase in entropy then yields a generalization advantage: as soon as the new target is intro-
duced, the effect is reversed and the asymmetric agent has the more entropic policy (Fig 6).

Indeed, one can show that the transition probabilities encoded in P 1
2 ,

1
2
will be closer (than

the observed transition probabilities) to those that correspond to a uniform policy, choos-
ing every transition with equal probability - see Appendix G in S1 Appendices - in particular
meaning they have higher entropy. The successor representation of the uniform policy in turn
is closely related to the shortest-path distance [39]. It can thus be used to generalize to any
navigational target, while the successor representation under other policies will not necce-
sarily have this property. Together with our previous considerations on the symmetry of the
state space, this led us to hypothesize that the generalization effect of the symmetric learning
rule should vanish as soon as there is no such symmetry in the state space any more. We thus
repeated the above experiment on a state space that corresponds to a directed graph, where
the number of transitions needed to go from s to s′ is not necessarily equal to those needed
to travel from s′ to s. Indeed, we find that in such a setting the effect is reversed: there, the
classical learning rule leads to better generalization (Fig 7).
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Fig 6. Comparison of policy entropy and sensitivity to learning rate among agents with symmetric and asymmetric learning rule. Left: Policy entropy of the two
agents show different trajectories in the generalization experiment. We calculated the entropy of the agent’s policy, averaged over all states, at the end of each episode.
This reveals that during learning to navigate to the first target, the symmetric agent has more entropy, which is then reversed when the new target has to be reached.
Right: Symmetric agent shows more sensitivity to learning rate parameter for lower learning rates. We trained the agents repeatedly until a fixed accuracy in navigation
to the target was met. We then recorded the number of episodes it took until that criterion was reached. Curves show median and interquartile range of this number for
the two agents.

https://doi.org/10.1371/journal.pcbi.1013056.g006

Fig 7. Symmetric learning rule provides no advantage in generalization experiment on a directed graph. We conducted the same kind of experiment as in Fig 5 on
a directed graph. Left: The state space is tree-like, with the addition that from the leaf nodes at the last level one travels back to the central node (orange dashed line).
Right: In this scenario an SR agent with the classical learning rule (blue) performs better in generalization than one with the symmetric learning rule (red).

https://doi.org/10.1371/journal.pcbi.1013056.g007

2.7. Variation in symmetry
So far the temporal difference learning rules we used had either perfect symmetry or no sym-
metry at all. In biological agents, such perfect symmetry might rarely be given, rather, one
might expect that the temporal sensitivity profile of learning rules could vary both in space
and time, meaning that cells exhibit different learning rules at different moments and fur-
thermore two cells might vary in how they learn. We wondered how robust our findings are
to such variations. Thus, we investigated the generalization performance of our successor
representation agents under variations that might correspond to imperfect symmetry. First,
we investigated how well agents would generalize that have a learning rule in between the
symmetric and the classical ones we have discussed so far. To do so, we chose parameters
𝛼 = 1

1+s ,𝛽 =
s

1+s , where s is a parameter that we varied. Note that for s = 0 we get the classi-
cal rule, while for s = 1 we get the symmetric rule. We found that generalization performance
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increased with the parameter s, with the highest generalization at s = 1, again confirming that
the symmetric rule might afford a representation that generalizes best.

To further assess the robustness of our results, we then investigated whether dropping
the assumption of globally fixed values 𝛼,𝛽 would qualitatively alter the results. Again, this
is motivated by the assumption that in biological agents, learning rules will not be perfectly
static but might vary.

To capture this in the RL setting, first,we introduced noise to the parameters at every time
step. That is, our update rule for the successor representation would become

ΔMu,v(t) = (𝛼 + 𝜈𝛼(t))𝛿(u = s) (𝛿(v = s) + 𝛾Ms′ ,v –Ms,v) (25)
+ (𝛽 + 𝜈𝛽(t))𝛿(u = s′) (𝛿(v = s′) + 𝛾Ms,v –Ms′ ,v)

where 𝜈𝛼,𝜈𝛽 is independent noise that is added at each timestep to the parameters. Secondly,
we studied a condition where we introduced a state-dependent heterogeneity in the parame-
ters. That is, for each possible transition s, s′ in the state space, there is a separate set of param-
eters 𝛼(s, s′),𝛽(s, s′) which are randomly initialized at the start of learning and then fixed.
The update rule thus is

ΔMu,v(t) = 𝛼(u, v)𝛿(u = s) (𝛿(v = s) + 𝛾Ms′ ,v –Ms,v) (26)
+ 𝛽(u, v)𝛿(u = s′) (𝛿(v = s′) + 𝛾Ms,v –Ms′ ,v) .

To determine the parameters, first some putative values �̃�, ̃𝛽 are drawn from Gaussian dis-
tributions with identical variance and different meansN (𝜇𝛼,𝜎),N (𝜇𝛽 ,𝜎), and afterwards
the absolute value of those is taken. This is to ensure that we don’t have negative parameters,
which might result in qualitatively different and unstable learning rules. The means 𝜇𝛼,𝜇𝛽
are then either set to (1,0) to mimic the asymmetric with inhomogeneous parameters, or to
( 12 ,

1
2) for the symmetric agent. In both variations we again find qualitatively similar results

as before: even with noisy parameters, both agents are able to learn simple navigation tasks
(Fig 8). The symmetric agent shows more variation in performance, but is in turn able to
generalize better to new targets.

2.8. Maze tasks
The grid worlds we used to investigate the generalization capability so far were topologically
very simple. In reality, biological agents will be exposed to more complicated navigation sit-
uations, with multiple paths and detours. We thus repeated our setup in a more contrived
maze with multiple chambers and more convoluted paths. In particular, instead of keeping
the environment static, when we tested the generalization abilities of the agents we introduced
slight modifications, such that previously open paths were blocked. Again, in this setting the
symmetric agent showed a better generalization, indicated by a higher probabilty of solving
the new task with a number of steps close to the optimal one, as indicated by the distribu-
tion plots in Fig 9. However, in comparison to simpler grid worlds, both agents are worse
at generalization in this setting, which might be caused by the additional complexity of the
environment.

3. Discussion
Here, we have expanded the existing work on successor representation models of the hip-
pocampus. We extended previous local learning rule models by including learning at two
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Fig 8. Variations of symmetry in the learning rule Experiment for all plots is the same as in Fig 5. Top: Generalization
for parameters 𝛼 = 1

1+s ,𝛽 =
s

1+s . Violin plots show distribution of differences (steps-optimal number of steps) when
evaluated on new targets. Distributions broaden towards the optimal value of 0 with increased symmetry. Middle: Gener-
alization with parameters 𝛼, 𝛽 randomly initialized for each pair of states. Bottom: Generalization with noise added to 𝛼,
𝛽 at each timestep.

https://doi.org/10.1371/journal.pcbi.1013056.g008
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Fig 9. Generalization performance in maze task with blocked paths Top: Grid world mazes used for generalization task. Leftmost maze was used for train-
ing, the other three environments for testing the generalization. Bottom: Violin plots show distribution of suboptimality (steps - optimal number of steps) of
the agents when using the successor representation trained on one target and tested on another one. Training and test targets are randomly drawn from all
possible states in the respective environments. The distribution for the symmetric agent is broader around 0, which indicates optimal generalization, and less
pronounced at 400, which was the maximum number of steps allowed.

https://doi.org/10.1371/journal.pcbi.1013056.g009

synapses, corresponding to CA3-CA3 recurrent synapses and CA3-CA1 feedforward
synapses. In this model, we then studied the effect of making a local learning rule invariant to
a reversal of time on the learned representations. We have found that the successor represen-
tations that are learned under such a learning rule correspond to encoding a transition struc-
ture which is also invariant to a time reversal - irrespective of the actual dynamics which are
experienced. In particular, we could show that under such a symmetrized learning rule, place
fields shift less when on a linear track, which is in line with empirical findings showing a dis-
tinction between place field shifting in CA3/CA1. Although we show that our model is able to
replicate the observed shifting effects from [37], further experimental data would be needed
to corroborate these findings. Indeed, albeit CA3 place fields are generally reported as being
more stable [40], there are additional experimental and behavioural covariates to consider:
For example, although [36] find that the centre of mass of place fields in CA1 shift while those
in CA3, are relatively stable, this holds only for familiar environments. In novel environments,
both exhibit shift, although more pronounced in CA1. This speaks to the fact that a static,

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013056 June 23, 2025 17/ 37

https://doi.org/10.1371/journal.pcbi.1013056.g009
https://doi.org/10.1371/journal.pcbi.1013056


ID: pcbi.1013056 — 2025/6/16 — page 18 — #18

PLOS COMPUTATIONAL BIOLOGY Symmetry and generalization in local learning of predictive representations

symmetric learning mechanism alone might be insufficient to account for all data, and plas-
ticity might generally vary - both in strength as well as in symmetry. Additional experiments
would be needed to disentangle such influences.

The local learning rule we have modified from [25] is not the only one which could be used
to obtain successor representations. Indeed, also [41] and [24] use local learning rules to learn
these representations. It seems plausible that to obtain the successor representations we stud-
ied here, the exact shape of the learning rule is not important, as long as one can symmetrize
it in an appropriate way. This might not even necessarily mean symmetrizing the plasticity
kernel: For example, [41] use STDP to learn feedforward connections between CA3 and CA1
neurons. Specifically, phase precession was used to provide a location code in the timescale
of STDP, and importantly, in the absence of phase precession, a symmetric SR is learned in a
biased random walk. Thus, it is plausible that precession in their model breaks the temporal
invariance.

To understand the functional significance of such learning rules, we then went on to rein-
forcement learning experiments, where we trained an agent in navigation tasks. Here, we
could show that a symmetrized learning rule affords a better generalization performance
when the agent should navigate to a new target. This is interesting, because successor features
have been explicitly employed in RL to obtain better generalization to new tasks [11,12,42]. In
particular, also when the SR was introduced as a model for hippocampus in the neuroscience
literature, the generalization capability of such representations was measured [8,14]. In fact, it
was argued in [8] that especially a successor representation that corresponds to a uniform pol-
icy should be beneficial for generalization. This was later also identified as a flaw of classical
successor representation theory when linear reinforcement learning was suggested as a model
for the hippocampal formation instead [43]. In the latter, instead of storing the successor rep-
resentation under the current policy, the representation under a default policy is stored, and
the current policy can be efficiently represented by only encoding the deviations from default.
This default policy in navigation is of course intuitively the uniform policy, which could be
learned by an agent as soon as it encounters a new environment, in an explorative manner.
Our symmetrized learning rule provides a middle ground between these two perspectives:
the successor representation that one learns with this learning rule is depending on the cur-
rent policy, but one can show that the reversible version is always closer to the SR of uniform
policy than the SR under the original policy (see S1 Appendices). Thus, an agent does not nec-
essarily have to start with exploration to construct a map of its environment, but can do so
while performing a particular task. This is of course only possible due to the inductive bias
that is inherent in the learning rule, which assumes that the state space is symmetric, since we
observed that when this assumption is not true, the SR affords worse generalization.

Adapting learning mechanisms to symmetries of the data is a topic under ongoing inves-
tigation in biological and machine learning communities [44,45]. In reinforcement learn-
ing, symmetries are frequently considered under the framework of MDP homomorphisms
[46–48]. This line of research for example aims at learning efficient abstractions of large state
spaces into more amenable ones, or exploits known symmetries in the task structure to learn
more efficiently. The symmetric state spaces we consider here are simple cases of an equiva-
lence of states induced by the optimal value function: in a navigational problem in a metric
space, any two states are equivalent with respect to the optimal value function if they have the
same distance to the target [49]. It would be interesting to investigate whether modifications
of TD learning are also beneficial for the more general case of symmetries that are consid-
ered in this literature. Interestingly, it has been shown before that TD learning can be consid-
ered as performing a form of gradient descent if and only if the dynamics under the policy are
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reversible [50]. This is intriguing, since TD-learning is known to be unstable in the contin-
uous setting [38] - if our symmetrized learning rule extends to this setting, then it might be
possible that it could be useful for a more stable learning in symmetric settings.

Using a fixed learning rule for all synapses of a region might be a simplistic assumption,
and in real networks, possibly a variety of learning rules are at play [51]. Our model of course
does not fully capture this diversity, although we have investigated the stability of our RL
model under noisy variations of the parameters. However, it would be easy to adapt the learn-
ing rules of individual neurons in such a sense that they have varying temporal profile. This
could then possibly lead to a whole spectrum of successor features, each with its own sensitiv-
ity to future and past. In fact, it has been proposed before that the hippocampus encodes rep-
resentation of both predecessors and successors [52], where representing preceding states has
furthermore been suggested as useful for exploration in unsupervised reinforcement learning
[16]. These purely predictive respectively postdictive representations would be the two ends
of a continuum of representations, with the symmetric learning rule in the middle. Thus, a
model representing such a continuum could provide a more nuanced understanding of neural
encoding and learning processes

Furthermore, it should be noted that there is a picture emerging where synaptic learning
mechanisms are not but static but rather are controlled by neuromodulators, which could
determine whether a certain firing pattern in pre- and postsynaptic neurons will result in
potentiation or depression [53–55]. Indeed, prominently (but not exclusively) dopamine and
acetylcholine will modulate learning rules - both of which are important in reward-based
learning and navigation [56,57]. In particular, it has been shown in a computational model
that switching between plasticity regimes in a transmitter-dependent manner may result in
successful spatial learning, in navigation tasks similar to the ones we considered here [58]. It
may thus be an interesting avenue for future research to analyze such dynamically switching
regimes in terms of successor representations to understand which predictive operation they
compute. This might for example be achieved in the model presented here by modulating the
parameters 𝛼,𝛽 depending on some external variable like reward.

Additionally, it is noteworthy that replay phenomena, where sequences of cells correspond-
ing to recently visited states are reactivated in an orderly, time-compressed fashion, are taking
place in hippocampus both in a forward as well as a reverse direction [59,60]. From the per-
spective of reinforcement learning, for offline planning agents might indeed want to be able
to simulate replay in the backward as well as the forward direction [61,62]. These replay pro-
cesses would provide yet another mechanism by which a symmetrized successor representa-
tion could be learned: Indeed, instead of modifying the TD learning rule during online learn-
ing, one could instead apply the classical learning rule during offline learning on replayed tra-
jectories. This should again lead to a symmetrized representation, if forward and backward
trajectories are replayed with equal probabilities. On the other hand, a symmetric learning
rule in CA3 has been identified as a key mechanism to generate replay in the reverse direction
[63].

Our model naturally is a broad oversimplification of matters and lacks biological real-
ism. This is not a problem per se, because we aimed here at analytical amenability and to
expand on the theory of successor representations, which operates on the computational level.
Still, our focus was obtaining an explicit relation to successor representations by consider-
ing CA3/CA1 in isolation, with external input synapses not subject themselves to learning. In
reality, it is now accepted that there is not a simple forward pass through the hippocampus,
but rather there are projections from the deep layers of entorhinal cortex back into the super-
ficial layers (which provide input to hippocampus), essentially creating a loop [64,65]. With

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013056 June 23, 2025 19/ 37

https://doi.org/10.1371/journal.pcbi.1013056


ID: pcbi.1013056 — 2025/6/16 — page 20 — #20

PLOS COMPUTATIONAL BIOLOGY Symmetry and generalization in local learning of predictive representations

plasticity also happening at these synapses, one would then obtain a model that is not as sim-
ple anymore as the one we presented here. Studying the representations in such an extended
model, which would include learning for example in synapses from HC to EC, and whether
these can still be framed in Successor representation theory, would be an interesting future
research direction and could possibly build a bridge to computational models which include
hippocampal-entorhinal interactions [66,67]. Speculatively, when including spatially selec-
tive cell types like grid cells from the entorhinal cortex in the loop, the general result that HC
represents successor features should not change. Indeed, taking the input from multiple grid
cell modules together, these cells provide a unique encoding of spatial position [68]. This is
thus an injective function of the current spatial state, just as we used as input for our system.
These coordinates, as they encode space, naturally benefit from a symmetrized representation
in CA3. One step further one could then include additional, non-spatial input externally to
CA1. This would then result in a successor representation of the non-spatial features, condi-
tioned on the spatial features. That is, a long-term prediction of expected stimuli, given cur-
rent position in space. Connections back from hippocampus to EC might in turn be included
to plasticity rules of a similar spirit as the one we used here. Spatial cell types like grid and
head direction cells are widely believed to follow specific connectivity implementing a con-
tinuous attractor [69–71]. Indeed, typical continuous attractor models are characterized by
their fixed connectivity patterns, establishing an attracting manifold as well as a velocity mod-
ulated update mechanism thereon. Projections from CA1 to EC would then putatively imple-
ment a predictive mechanism that would be focussed on predicting the outcome of this rigid
update mechanism using the predictive representation of the conjunctive spatial and non spa-
tial features obtained from the hippocampal loop. However, as this is a slightly different kind
of model, there might not be a straightforward result linking the weights to a successor rep-
resentation type quantity, but this would be an interesting avenue for further computational
work.

Finally, we want to mention that the hippocampal formation is also of high interest in
studying generalization in human cognitive neuroscience [72,73]. Since evidence is growing
that the systems which are partaking in spatial representations are also recruited to encode
more abstract variables, possibly forming ’conceptual spaces’ [74–76], it might be interesting
to understand whether an inherent bias for symmetry also shapes these representations. In
particular, one might speculate for which domains of cognition such a bias for symmetry or
a metric space structure might be adequate, and when it would not be. This might for example
be tested by constructing explicit tasks where dynamics are reversible and compare subjects
accuracy in predictions to such tasks where the dynamics are not.

In conclusion, our model contributes to the theoretical framework of hippocampal predic-
tive representations, both on the mechanistic level through suggesting the use of symmetric
local learning rules, as well as on the functional level, where such learning might be useful for
generalization in spatial learning.

4. Methods and materials
4.1. Methods

4.1.1. Neural network model. We consider two populations of rate-based neurons
p1 ∈ℝm, p2 ∈ℝn respectively. The population p1 is recurrently connected via a matrix of
synaptic weights Wr ∈ℝm×m, and feeds its activity forward to population p2 via the matrix
of synaptic weights Wf ∈ℝn×m. Both regions receive additional external inputs, 𝜙1,𝜙2, and
decay to equilibrium in the absence input. The temporal evolution of the populations is then
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modelled by the following differential equations:

d
dt
p1 = –p1 + 𝜎 (𝛾1Wrp1 + (1 – 𝛾1)𝜙1) (27)

d
dt
p2 = –p2 + 𝜎 (𝛾2Wfp1 + (1 – 𝛾2)𝜙2) . (28)

Here, 𝜎 is an activation function, and the 𝛾 parameters control the relative weight of the
different types of inputs. On the computational level, these parameters will correspond to the
discounting factor of the successor representation, effectively scaling how far in the future
predictions are made.

On the level of biological implementation, there are two speculative interpretations one
may have for these parameters. First, the 𝛾i might be associated with acetylcholine. Indeed,
this transmitter is believed to control the relative strength of external and internal input in
hippocampus [77]. In particular, a low value of 𝛾 would correspond to an encoding mode,
where the network is relatively stronger driven by external input and thus susceptible to
encoding associations or transition structures between these inputs. For high 𝛾, the network
is in retrieval mode and its outputs will depend more on the recurrent weights and there-
fore previously learned transition structure. Indeed, this interpretation has been pursued in
[25], who showed how a recurrent net could learn weights at low 𝛾 and then use those learned
weights to retrieve successor representations at arbitrary high 𝛾. Another interpretation of
𝛾 would be that it represents the respective proportions of inputs of different kinds a certain
subpopulation receives due to anatomic difference. That is, it could for example encode the
number of synaptic contacts from other CA3 axons for a certain subpopulation - then under-
stood not in absolute terms, but compared to other cells of the same type. Indeed, there is evi-
dence that both connections in as well as connections to hippocampus are not homogeneous
but vary along the septotemporal and proximodistal axis [78,79]. Thus, it might be plausi-
ble to assume a varying degree of strength of the different input types. In this work, how-
ever, we do not explicitly model these biological details, and thus the precise role of 𝛾 remains
undetermined.

Assuming the weights (and the external inputs) change on a slower timescale than the pop-
ulation dynamics, we can let the above differential equations go to equilibrium for analysis
- in practice, we can also integrate the ODE above with a timescale 𝜏 orders of magnitude
smaller than the timescale of learning. If 𝜎 is approximately linear, this results in

p1 = (1 – 𝛾1)(Id – 𝛾1Wr)–1𝜙1 (29)

p2 = 𝛾2Wfp1 + (1 – 𝛾2)𝜙2. (30)

We assume that the animal receives inputs depending on the current state of the environ-
ment, which we will denote by the process St. In the reinforcement learning setting, the agent
influences the way in which the state-process is sampled by selecting actions At, but at this
point this is not relevant since we are only building up a predictive representation of states,
not actions. The inputs to the two neural populations thus take the form

𝜙i
t = 𝜙j(St) (31)
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where 𝜙i is a function mapping the state space to an activation pattern in neural space. If the
state space is discrete, we can also write this as

𝜙i
t =ΦieSt (32)

with Φi now being a matrix of appropriate dimension, and eSt is the unit-vector correspond-
ing to state St, which hence selects the corresponding activation pattern from Φis columns. In
the special case Φi = Id, we have a so called one-hot encoding, where hence every cell corre-
sponds to a distinct state and fires if and only if the agent is in that state.

4.1.2. Learning rule. The synaptic weights - both feedforward and recurrent - in our
model are subject to a learning rule which is controlled by two parameters 𝛼,𝛽 ∈ℝ:

ΔW = 𝛼 (ppostt+1 –Wppret ) p
pre
t

T + 𝛽 (ppostt –Wppret+1) p
pre
t+1

T. (33)

Here, ppre,ppost denote the vectors of pre- and postsynaptic activities. The parameters 𝛼,𝛽
do not model a biological substrate, they control the qualitative behaviour of the learning
rule: they serve as a (crude) discrete approximation for a continuous plasticity kernel as is
typically observed in spike-time dependent plasticity protocols. Indeed, for 𝛼 = 1 the learn-
ing rule strengthens connections where post-synaptic activity at the later timestep was high
(measured relative to overall input), and presynaptic activity at the earlier timestep was high
as well. In contrast, for 𝛽 = 1, the learning rule strengthens connections where postsynaptic
activity at an earlier timestep was high, and so was presynaptic activity at the later timestep.

Note that a synaptic update of the form

ΔW = (ppost –Wppre)pTpre. (34)

may be seen as performing a sort of conditional expectation or regression objective: At equi-
librium, the expected update in synaptic weights, given the current activity, should be zero

𝔼 [ΔW|ppre] = 0. (35)

We have that this holds in general only if

Wppre = 𝔼 [ppost|ppre] . (36)

That is, if W encodes an optimal prediction of the post-synaptic activity given the presy-
naptic activity. Hence, heuristically, 𝛼 emphasizes to learn weights that are optimally tuned to
predict the next state of their output. In our setting, the cells are driven by external input iden-
tifying the state St of the world, so this amounts to optimally predicting the next state St+1. In
turn, 𝛽 emphasizes a backward prediction, where St should be predicted by St+1.

4.2. Forward and backward process, reversibility
Recall that a time-homogeneous Markov process on a finite state space S is determined by its
one-step transition probabilities

Ps,s′ ∶= p(St+1 = s′|St = s) = p(S1 = s′|S0 = s). (37)
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Under standard assumptions, the process has a unique stationary distribution [80,81], that
is, a probability distribution 𝜋 over states such that

∑
s
𝜋(s)p(S1 = s′|S0 = s) = 𝜋(s′). (38)

That is, if we are in stationary distribution, the probability mass is left invariant when tran-
sitioning according to our process. In particular, if we assume we start in stationary distribu-
tion, then p(St = s) = 𝜋(s)∀t. We may now define the reverse process of our original process,
by simply reversing the order of time. That is, define a process Rt with transition probabilities

p(Rt+1 = s′|Rt = s) = p(St = s′|St+1 = s). (39)

These probabilities will generally depend on the timestep t, but they will not if our pro-
cess St is in stationary distribution. In that case, we again have a single matrix that encodes all
transition probabilities:

Pbackwards,s′ = p(R1 = s′|R0 = s) (40)
= p(S0 = s′|S1 = s) (41)

= p(S1 = s|S0 = s′)
𝜋(s)
𝜋(s′) . (42)

In matrix notation, we have

Pbackward =Π–1PTΠ, (43)

whereΠ is a diagonal matrix with the values of 𝜋 on the diagonal. It is easy to see from this
definition that Pbackward is again a valid transition matrix, and that it has the same stationary
distribution as P = Pforward.

Forward and backward transition probabilities are equal if and only if the process fullfills
the detailed balance condition

𝜋(s)Ps,s′ = 𝜋(s′)Ps′ ,s. (44)

In that case, the process is called reversible. In (Eq 19) we have used a weighted sum of
transition probabilities of the forward and backward process Note that the symmetrized pro-
cess with transition probabilities

Psym = 1
2
(Pforward + Pbackward) (45)

will always be reversible, as can either be seen by a simple algebraic calculation, or by the fol-
lowing argument: Let P∗ be the adjoint of P with respect to the inner product induced by 𝜋.
This means that for any vectors x,y we have

xTΠPy = (P∗(x))TΠy. (46)

We then have that

P∗ = Pbackward, (47)
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as may be seen by plugging in the definition of Pbackward into (Eq 46). For the adjoint, we have
that (P∗)∗ = P. Thus, in particular,

(Psym)∗ = 1
2
(P + P∗)∗ = 1

2
(P∗ + P) = Psym. (48)

This also explains that it is warranted to talk about a ’symmetrization’ here: indeed, the
adjoint with respect to the standard inner product is the transpose of a matrix A, in which
case one would obtain the standard symmetric part of a matrix, that is, 1

2(A +A
T).

4.3. Reinforcement learning and successor features
In Reinforcement learning, one generally considers a Markov decision process (MDP), that is
a tuple (S ,A,T,R,𝛾), where S ,A are the sets of possible states and actions, T(s′|s, a) gives the
transition probability from state s to state s′ when choosing action a, R(s,a) is obtained reward
when chosing action a in state s, and 𝛾 is a discount factor. The goal in RL usually is to find
an optimal policy, that is a probability distribution 𝜋(a|s) over actions, given states, which
maximizes the expected discounted cumulative reward

𝔼
⎡⎢⎢⎢⎣

∞
∑
k=0

𝛾kR(St,At)
⎤⎥⎥⎥⎦
, (49)

where the states and actions St,At are sampled according to the policy 𝜋 and the transition
probabilities T. In our experiments, we are only interested in the particularly simple case
where the transitions are deterministic - that is, taking an action a in state s surely leads to a
specified state s′(a). Furthermore, we only consider the situation where the reward is a func-
tion of the state only. However, all definitions in the paragraph below readily generalize to
functions of states and actions. Assume a fixed policy 𝜋 and a process St following said policy.

Now consider any mapping from the state space

𝜙 ∶ S →ℝm, (50)

which we can interpret as an observable generated by the state space. Then define a function
on the state space

SFt𝜙(s) = 𝔼
⎡⎢⎢⎢⎣

∞
∑
k=0

𝛾k𝜙(St+k)|St = s
⎤⎥⎥⎥⎦
. (51)

SF𝜙 thus gives the expected (exponentially weighted) cumulative future sum of the obser-
vation or feature 𝜙, given the current state s. This is hence called a ’successor feature’ in the
literature. Define Gt =∑∞

k=0 𝛾k𝜙(St+k). We then have

SFt𝜙(s) = 𝔼[Gt|St = s] = 𝔼[𝜙(St) +
∞
∑
k=1

𝛾k𝜙(St+k)|St = s] (52)

= 𝔼[𝜙(St) + 𝛾Gt+1|St = s] (53)
= 𝔼[𝜙(St)|St = s] + 𝛾𝔼[𝔼[Gt+1|St+1]|St = s] (54)

= 𝜙(s) +∑
a,s′

ℙ[St+1 = s′|St = s]𝛾SFt+1𝜙 (s
′). (55)
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In particular, if the transition probabilities of St are time-homogeneous, we see that SF
itself does not depend on t, and we can write

SF𝜙(s) = 𝔼 [𝜙(St) + SF𝜙(St+1)|St = s] . (56)

Temporal Difference learning (TD-learning) uses this relationship to construct a target to
update an estimate of SF𝜙 online. Indeed, if ̃SFt is the current estimate the agent has for the
successor features, then consider update rules

̃SFt+1(St) = ̃SFt(St) + 𝜀Δt (57)
Δt = 𝜙(St) + 𝛾 ̃SFt(St+1) – ̃SFt(St). (58)

Then we see that if ̃SFt = SF𝜙, we get 𝔼[Δt|St = s] = 0. Thus, here 𝜙(St)+𝛾 ̃SFt(St+1) is used
as a bootstrapping estimate of the target 𝔼[𝜙(St)+𝛾 ̃SFt(St+1)|St = s], and ̃SFt is updated
according to the error to that target - in total, Δt is thus also called TD-error.

Successor features encompass important special case examples: For the choice of 𝜙 = R the
reward function, SFR becomes the value function: The value function under a policy 𝜋, which
is typically denoted as V𝜋 , hence encodes the weighted cumulative sum of expected rewards,
given the current state. In particular, the current estimate of the reward function may be used
to define a new policy as

𝜋∗(⋅|s) = 𝛿a∗
a∗ = argmax

a
V𝜋(s′(a)). (59)

That is, the policy deterministically selects the action a∗ which leads to the next state with
the highest value according to the current value function estimate. Iterating this process then
successively learns a better value function - this process of updating an estimate of the value
function and then choosing an optimal policy with respect to it is the basis of the classical
TD-learning algorithm [38]. Indeed, for our navigation experiments we use this approach,
only replacing the maximum in (Eq 59) by a softmax which smoothens the transition prob-
abilities. Note that the above assumes a model of which actions lead to which next states -
which posing as given should be a sensible assumption in navigation problems - but a com-
pletely model-free approach simply computes the value of a state-action pair instead.

Successor Representations. In the case that we have that 𝜙 is in fact an injective mapping,
we can define a modified version of successor features as

SR𝜙(𝜌) = 𝔼
⎡⎢⎢⎢⎣

∞
∑
k=0

𝛾k𝜙(St+k)|𝜙(St) = 𝜌
⎤⎥⎥⎥⎦
, (60)

where 𝜌 ∈ 𝜙 (S) . Here, the injectivity of the mapping is necessary to ensure SR defined as
above still enjoys desirable properties like homogenity in time and the Bellman equation, but
besides of that one could also define a similar quantity without using injectivity. Now, in the
injective situation, we would like to call the above ’successor representation’. This is because
when we take mapping 𝜙(s) = es, where eS is a unit vector inℝ|S|, then we obtain

SR𝜙(es) = (Id – 𝛾P)–1s (61)
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which corresponds to the classical definition of successor representation. In general, if we
assume Φ∈ℝm×|S| is the matrix of features (could also be an operator if we allow for contin-
uous state space), then we have that

SR𝜙(𝜙(s)) = (Φ(Id – 𝛾P)–1)s = (Φ(Id – 𝛾P)–1Φ–)𝜙(s), (62)

where Φ– is such that Φ–Φ = Id|S|.
Generalization and Successor Features. The idea behind using successor features for

some set of function 𝜙i, instead of simply directly computing the the value function is that of
generalization/transfer: Assume the reward function R can be written as a linear combination
of the features 𝜙, that is

R =∑
i
wi𝜙i. (63)

Then also for the respective predictive representations one has

SFR(s) =∑
i
wiSF𝜙(s). (64)

Now assuming that the reward changes to a new function R̃, which also can be expressed
with the features, then the only thing that has to be relearned is the weights wi, while the suc-
cessor features SF𝜙 can be reused. Thus, one may then generalize more easily to a new task,
since the transition structure under a policy is essentially already learnt. In particular, in a dis-
crete state space, a fixed reward function can R can of course be encoded by a reward vector R,
that is

R =∑
s
R(s)es. (65)

The value function is then simply given through the classical SR as

V(s) = (Id – 𝛾P)–1 R(s). (66)

Thus, for a fixed policy, this separates the computation of value into learning a successor
representation and learning a reward vector. Our navigation experiments probe the gener-
alization capability of this approach, by introducing a new reward vector R̃, after an optimal
policy and a SR for a reward vector R have been learned. Importantly, only the reward vector
is allowed to be relearned, while the SR has to be reused from the previous task.

Symmetric TD-learning. In our reinforcement learning experiments, we use a modified
version of TD-learning to mimic the behaviour of the local learning rule in the SR-network.
In practice, Successor features are typically parametrized by some parameter 𝜃 (e.g., the
weights of a neural network), which is then updated to reduce the TD-error. That is, for each
value of 𝜃 we obtain a map ̃SF𝜃(s) of states. We can then update the parameter 𝜃 via

𝜃t+1 = 𝜃t + 𝜀Δ(𝜃)t (67)

Δ(𝜃)t = 𝛼 (𝜙(St) + 𝛾 ̃SF𝜃t(St+1) – ̃SF𝜃t(St))
T∇𝜃 ̃SF𝜃t(St) (68)

+ 𝛽 (𝜙(St+1) + 𝛾 ̃SF𝜃t(St) – ̃SF𝜃t(St+1))
T∇𝜃 ̃SF𝜃t(St+1), (69)

PLOS Computational Biology https://doi.org/10.1371/journal.pcbi.1013056 June 23, 2025 26/ 37

https://doi.org/10.1371/journal.pcbi.1013056


ID: pcbi.1013056 — 2025/6/16 — page 27 — #27

PLOS COMPUTATIONAL BIOLOGY Symmetry and generalization in local learning of predictive representations

where 𝛼,𝛽 are parameters corresponding to the ones controlling the local learning rule. In
particular, for 𝛼 = 1,𝛽 = 0 one obtains the classical TD-learning rule for function approxima-
tion [38] and for 𝛼 = 0,𝛽 = 1 one obtains the ’predecessor representation’ [16]. The case 𝛼 = 𝛽
yields a symmetrized version of TD-learning. In our experiments, we use a particularly sim-
ple version of the above: for a discrete state space, one can simply parametrize ̃SF by means of
a matrix M∈ℝd×k, where d is the number of features and k is the number of states. Then one
has ̃SFM(s) =Mes, and hence the update rule

Δ(M)t = 𝛼 (𝜙(St)eTSt + 𝛾MeSt+1e
T
St –MeSte

T
St)

T
(70)

+ 𝛽 (𝜙(St+1)eTSt+1
+ 𝛾MeSte

T
St+1

–MeSt+1e
T
St+1
) .

4.4. Successor representations and hitting times
In the theory of Markov chains, it is a common exercise to study the fundamental matrix of
the Markov process, which encodes properties about the process via the first hitting times of
states [82]. The first hitting time of a state, 𝜏s1, is defined as the first time a process hits the state
s. The successor representation may similarly be interpreted as an operator that encodes cer-
tain expectations related to the first hitting times. Indeed, in Appendix H in S1 Appendices we
prove the following formula:

Mss′ = 𝛿(s, s′) +

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0,T (s′|s) = 0

𝔼[𝛾𝜏s
′

1 |S0 = s],T (s′|s) = 1
𝔼[𝛾𝜏

s′
1 ]|S0=s]

1–𝔼[𝛾𝜏s
′
1 ]|S0=s′]

,T (s′|s) =∞.

(71)

Here, T (s′|s) denotes the largest number of times which state s′ may be hit with nonzero
probability when starting from state s. It may only take values 0, if s′ may not be hit from s at
all, 1, if s′ is a transient state, or∞, when the process may arbitrarily often return to a state.
(Eq 71) provides a convenient reformulation of the value function. In particular, when we are
in the setting of a navigation task, where the goal is navigating to target s∗, the reward is a unit
reward at s∗. Hence, for an optimal policy 𝜋∗ which only chooses among shortest paths to the
target, the successor representation becomes

Mss′ = 𝛿(s, s′) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, s = s′ ≠ s∗

0, s ≠ s′, s′not on a shortest path from s to s∗ which the policy visits
𝛾d(s,s′), s′ ≠ s∗ ≠ s
𝛾d(s,s

′)

1–𝛾d(s,s′)
, s′ = s∗

(72)

where d(s, s′) is the distance on the state space. The value function may then be read of as the
column corresponding to s∗. We use this formula in Appendix H in S1 Appendices to prove
a stability result of optimal policies in the navigational setting under symmetrization: If we
are in the deterministic navigation setting, and our policy 𝜋 is optimal, then after taking the
symmetrization of the transition probabilities and computing the value function with these
probabilities, the policy 𝜋 is still optimal.
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4.5. A predictive representation leads to backward shift only in the
asymmetric case

Here we want to give an analytic explanation for the stronger backward shifts of the centre
of mass observed in Fig 4 when using an asymmetric learning rule, while a symmetric learn-
ing rule does not result in a shift. Recall that we simulated an agent repeatedly running on a
linear track, always in the same direction, which was then reset to the starting position. The
effect is most easily analyzed if we ignore boundaries and go to a continuous situation. Let’s
thus assume an agent is repeatedly running on the real lineℝ. In the beginning, before learn-
ing, the cells in our model are just driven by the external input, and thus can be taken equal
to the features. That is, cell j will take the value 𝜙j(x) when at position x. After learning, it
will instead encode a successor feature. With continuous space it is also more convenient to
assume continuous time. The successor representation may be easily transferred to this setting
[23], where the definition then is

SF𝜙j(x) ∶=∫
∞

0
e–𝛾t ∫ 𝜙j(y)pt(y|x)dydt, (73)

where pt(y|x) is the probability of transitioning from state x to state y in time t. The centre of
mass (COM) of a cells’ firing field is just the spatial mean of the cells’ activity when the latter
is normalized to be a probability distribution. That is, for example before learning, when the
cell j fires at position x according to the feature 𝜙j, the j-th centre of mass is

COM(𝜙j) = ∫ℝ
x𝜙j(x)dx
∫ℝ 𝜙j(x)dx

. (74)

To understand the observed shifting effect in COM, it is now instructive to study the suc-
cessor feature with deterministic dynamics: Assume we are moving with constant velocity v,
that is,

pt(y|x) = 𝛿(y – (x + tv)), (75)

then the successor feature takes the form

SF𝜙j(x) =∫
∞

0
e–𝛾t𝜙j(x + tv)dt. (76)

Now, taking the mean over all positions yields:

∫ xSF𝜙j(x)dx =∫ x∫
∞

0
e–𝛾t𝜙j(x + tv)dtdx (77)

=∫
∞

0
x∫ e–𝛾t𝜙j(x + tv)dxdt (78)

=∫
∞

0
(u – tv)∫ e–𝛾t𝜙j(u)dudt (79)

=∫
∞

0
u∫ e–𝛾t𝜙j(u)dudt – ∫

∞

0
tv∫ e–𝛾t𝜙j(u)dudt (80)

= 1
𝛾 ∫ u𝜙j(u)du –

v
𝛾2 ∫ 𝜙j(u)du. (81)
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Similarly we have

∫ SF𝜙j(x)dx =∫ ∫
∞

0
e–𝛾t𝜙j(x + tv)dtdx (82)

=∫ ∫
∞

0
e–𝛾t𝜙j(u)dtdu (83)

= 1
𝛾 ∫ 𝜙j(x)dx. (84)

Thus, in total we obtain

COM(SF𝜙j) = ∫
u𝜙j(u)du
∫ 𝜙j(u)du

–
v
𝛾 = COM(𝜙

j) – v
𝛾 (85)

That is, the center of mass is shifted backward by a factor which is controlled by the pre-
diction timescale 𝛾 and the velocity of the movement. We thereby also obtain the seemingly
new prediction that faster running speed and smaller terminal place field size (as a proxy for
𝛾) should result in bigger shifts. Now if our forward process is a deterministic process with
constant velocity v, then conceptually, our backward process is also deterministic with veloc-
ity –v (although stricly speaking, there is no stationary distribution). In particular, the sym-
metrized process is a process which in an infinitesimal amount of time travels either forward
with velocity v or backward with velocity v with equal probability. The shifts thus cancel and
the centre of mass stays the same as for the initial feature. The same relation of shift and veloc-
ity/timescale holds also when the dynamics come from a Brownian motion with constant
drift, that is dxt = vxt +√𝜌Bt, as we show in Appendix B in S1 Appendices. Now when we
symmetrize the Brownian motion with drift, the drift term will disappear, that is, we have a
standard Brownian motion. It is thus clear that under this motion, there should again be no
shift of the centre of mass.

4.6. Experiments
4.7. Convergence experiments
For our initial convergence experiments (Fig 3, top row) we simulate our model in a circular
random walk setting with 30 states and use n = 40 cells in each layer. The input at each state is
drawn from an i.i.d. Gaussian distribution (𝜎 = 0.1) (i.e., for each cell and each state we draw
a value from a Gaussian distribution, this is then assumed to be the input for that cell when-
ever the specific state is visited). Throughout this and the following experiments, we use a
moderately high value of 𝛾 = 0.7 - meaning a relatively large timescale/small discounting. This
is an arbitrary choice, but relatively high values have been used in the past in SR-theories of
hippocampus [83].

We observe 100000 transitions, and repeat the experiment 30 times. We then repeat the
same experiment (top row, right of Fig 3), also drawing the transition matrix P randomly. To
track the convergences, we consider the loss terms

LWr = ||𝔼[ΔWr]|| (86)
LWf = ||𝔼[ΔWf]||, (87)
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where the terms on the right hand vanish at convergence and are defined in (Eq 45). The
resulting convergence curves are shown in Fig 3. These experiments are conducted with a lin-
ear activation function, we also repeat this experiment with the activation functions tanh, relu
as shown in S1 Fig.

To check the effect of different values 𝛼,𝛽, we conduct a parameter sweep in a circular
random walk, and random Gaussian features as above. For each combination 𝛼,𝛽 we run 30
random initializations for 1000 iterations, and check this combination once for the recurrent
layer and once for the feedforward layer. Here, we track convergence similar as above, but
now we take the fraction

LW
LW0

(88)

with W0 the initial weight, to judge if we are moving towards or away from equilibrium. This
results in the matrices shown in Fig 3. To speed up the experiments, we use a smaller network
for these experiments, with 20 neurons in each layer and 10 states. Again we use dt = 0.1.

4.8. Linear track experiments
To simulate the animal running on a linear track, we partitioned a track of length 300cm in
50 discrete states and let the agent perform a rightward biased walk that either took a step to
the right (p = 0.9) or stayed in place (p = 0.1). We chose a time step of dt = 0.4, corresponding
to a velocity of ≈ 15cm/s. The agent would run 25 laps on the linear track, with a short resting
phase in between two laps. We set up a two-layer model, with n = 100 cells in each layer, and
again 𝛾 = 0.7. For the feedforward weights, we always used the parameters 𝛼 = 1,𝛽 = 0, while
for the recurrent weights we tested both the symmetric case 𝛼 = 𝛽 = 1

2 as well as the asymmet-
ric case 𝛼 = 1,𝛽 = 0. We then performed an analysis approach as in [37]. For each lap, we col-
lected the mean activities of each layer per state and computed the center of mass (COM) by
the formula

COMj =
∑x xpj(x)
∑x pj(x)

(89)

where x is position on the track and pj(x) denotes the mean activity of cell j when at that loca-
tion. To obtain a distribution of the overall shifts of the COMs over all laps, we calculated
the average COMs for the first and the last five laps and subtracted them from each other,
obtaining the histograms in Fig 4. To track the evolution of the shift, we subtracted the COMs
from the 12-th lap, which yields a more gradual tracking of shifts. We plot the results of this
approach in the scatterplots in Fig 4.

4.9. Reinforcement learning
We investigated the generalization capabilities of a symmetric over an asymmetric learning
rule in TD-learning in different scenarios.

4.9.1. Navigation experiments. Since the hippocampal formation is prominently
involved in navigation tasks, we first focused on tasks of such nature. We thus studied differ-
ent variations of the same general problem setup: Given a grid environment with a determin-
istic transition structure, the agent would receive a unit reward only when arriving at the des-
ignated target state sT, upon which the episode is terminated, and the next episode starts in
an initial state s0, drawn uniformly at random. The agent is thus encouraged to navigate from
all possible starting states to the target state to receive a reward. We used the Neuronav tool-
box [84] to implement the grid environment and implemented our modified SR-agent in the
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framework of that toolbox. For completeness, let us here again give a concise summary of how
the agent learns. The agent possesses a world-model P(s′|s, a) and updates an internal esti-
mate M of the successor representation as well as an estimate w of the reward vector. Having
observed a transition from state s to state s′ via action a and a reward r, the updates are

Δ(M) = 𝛼 (eseTs + 𝛾Mes′eTs –MeseTs ) (90)
+ 𝛽 (es′eTs′ + 𝛾MeseTs′ –Mes′eTs′) (91)

Δ(w) = (r –w(s))es. (92)

In summary, this is how the agent selects actions and updates its internal estimates:

• Given the current state s and current estimate M for the successor representation, com-
pute q(s, a) =∑s′ ,s′′ w(s

′′)M(s′′|s′)P(s′|s, a)
• Select an action according to 𝜋(a|s) = softmax(q(s, a))
• Observe next state s′ and reward r
• Update reward estimate w and successor representation estimate M.

To check for generalization capability, we would train agents which utilize the respective
learning rules (symmetric,asymmetric) to navigate to a fixed sT first. We trained the agent
either for a fixed number of episodes (we used 400 episodes with a maximum number of steps
of 400), or until a fixed accuracy criterion was met (the mean deviation from optimal perfor-
mance for the preceding 8 episodes was lesser than 2). Then, we would randomly select a new
target state ̃sT from among all possible states. Importantly, after the modification of the tar-
get states, the agents were only allowed to modify the reward-prediction vector w, but not the
successor representations M themselves. That is, they could only learn the reward structure of
the new task, but had to rely on the transition structure that was encoded during learning the
previous task, which also depends on the policy. We repeated this experiment for 200 times,
with randomly drawn combinations (sT, ̃sT) in each repetition. The results of these experi-
ments are depicted in Fig 5. For the first experiments reported in the main text, we used a
learning rate of 0.1 and set 𝛾 = 0.7.We chose a relatively high value of 𝛾, as this is typically
done when modelling hippocampal place cells in standard navigation tasks [8,20], but we
repeated the second kind of analysis for different values of 𝛾 and the learning rate, as shown
in S6 Fig.

For the experiments in the maze, we used the same parameters for the maximum number
of steps and the performance criterion, but higher values for the learning rate and the dis-
count factor: 𝛾 = 0.9, lr = 0.999. This is because for lower parameter values the agents needed
too many repetitions to converge.

Since all the environments we tested in the above setting have a symmetric nature, that
is, their underlying state space is an undirected graph, we repeated the same generaliza-
tion experiment in a setting where the state space is a directed graph, and hence travel time
between two nodes is not symmetric. We constructed a simple graph with 17 nodes, which is
essentially a tree graph with the addition of a directed edge from the lowest level to the high-
est. On this graph, we performed the same kind of navigation experiment. We used the same
values for the learning rate and 𝛾 (0.1,0.7), but reduced the number of episodes to 50 since the
state space is smaller and hence can be learned faster.

4.9.2. Policy entropy. In Fig 6 we computed the entropy of the current policy of the
agents after each episode of learning. As explained previously, we computed the current policy
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by applying the softmax-function to the q-values

q(s, a) = ∑
s′ ,s′′

w(s′′)M(s′′|s′)p(s′|a, s) (93)

where w is the estimate of the reward vector and M is the current estimate of the successor
representation. Then the policy is: 𝜋(a|s) = softmax(q(s, a)), and we computed the entropy
of the policy averaged over all states as

H[𝜋] = 1
|S|

∑
s∈S

∑
a

– ln𝜋(a|s)𝜋(a|s). (94)

Supporting information
S1 Appendices. Contains mathematical proofs and additional explanation for statements
made in the main text.
(PDF)

S1 Fig. Convergence experiments with different activation functions. We conducted the
same experiments as in Fig 3, with the activation functions (tanh, relu) from left to right.
(EPS)

S2 Fig.Grid world environments used in navigation tasks. Outline of the environments used
to produce Fig 5. In all environments, agents started at random locations and could choose
between four actions (or stay in place when a move would hit a wall). Plots were generated
using the Neuronav package [84].
(EPS)

S3 Fig.Generalization performance in individual environments with fixed number of
episodes. Generalization performance in the individual environments that are averaged to
generate the left plot in Fig 5.
(EPS)

S4 Fig.Generalization performance in individual environments with fixed accuracy cri-
terion. Generalization performance in the individual environments that are averaged to
generate the right plot in Fig 5.
(EPS)

S5 Fig.Generalization when seeing the same data while training. This figure is identical to
Fig 4.9.2, except that here we trained the symmetric agent on the transitions sampled by the
asymmetric agent—hence both agents see exactly the same data before generalization.
(EPS)

S6 Fig.Generalization performance for varying choices of discount factors and learn-
ing rates. All experiments were conducted in the ‘empty’ environment. Note that in the case
where the asymmetric agent outperforms the symmetric agent, generalization is considerably
worse than in the regimes where it does not.
(EPS)
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