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Abstract

How the morphology of individual neurons is controlled remains poorly understood. A recent
in vivo genome-wide screen based on RNA interference identified a large number of
transcriptional factors that regulate the stereotyped growth and branching of dendrites on some
Drosophila sensory neurons.
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Many neurons receive most of their input through thin

processes, called dendrites, that form synapses with the

axons of other neurons. Dendrites can be highly branched

and have complex architecture. The shape and size of the

dendrites of a single neuron determine the number and

specificity of the axonal contacts it receives. Therefore, the

development of the correct pattern of dendritic branching,

or arborization, on different neurons is essential for the

proper functioning of the nervous system. Neuronal sub-

types in mammals and insects can have specific patterns of

dendrite branching [1,2], and several unbiased genome-wide

‘forward’ genetic screens in Drosophila have identified

factors that regulate dendritic morphogenesis in both the

peripheral and central nervous systems [3-5]. But although

these studies uncovered dozens of genes that might have

essential roles in dendritic morphogenesis, most of the genes

have yet to be cloned and characterized, and the information

on genetic pathways has been sparse. Except for a few iden-

tified transcription factors that have been implicated in den-

dritic morphogenesis in flies and mammals [6-14], little is

known about the overall transcriptional programs that

specify the characteristic patterns of dendritic arborization

in different neurons.

Over the past few years, however, large-scale ‘reverse’

genetic approaches such as RNA interference (RNAi) have

emerged to help characterize molecular pathways. Screens

based on RNAi have been used to analyze cellular processes

in cultured insect cells [15,16] and in intact Drosophila

embryos [17,18]. In a recent paper in Genes and Develop-

ment, Parrish et al. [19] report the results of an in vivo

RNAi-based screen set up to examine transcription factor

networks that control several aspects of dendritic morpho-

genesis in Drosophila.

Identification of three functional groups of
transcription factors 
Parrish and colleagues [19] took advantage of the simple and

stereotyped dendrite branching patterns of type I dendritic

arborization (DA) neurons in the Drosophila peripheral

nervous system. They prepared double-stranded RNAs

(dsRNA) representing 730 known and putative transcription

factors, injected them into early embryos, and screened for

dendritic defects at the end of embryogenesis. To avoid false

positives, only genes showing dendritic phenotypes as

assessed in several blind tests were chosen for further analy-

sis. Because the effectiveness of RNAi silencing could not be

systematically quantified, RNAi phenotypes were evaluated

qualitatively. The authors identified 76 genes for transcrip-

tional regulators that could be divided into three functional

groups (Figure 1). Group A comprises  genes coding for



transcription factors that regulate dendrite outgrowth and

branching, and thus the size and complexity of a neuron’s

dendritic ‘field’. Group B includes genes with opposing effects

on dendrite outgrowth and dendrite branching. Group C

includes genes that specifically control the orientation of the

developing dendrites of embryonic type I DA neurons. 

The 39 genes in group A were further divided into two sub-

groups. In one subgroup were 19 genes whose silencing

reduced the size of the dendritic field, indicating that these

genes normally promote both dendrite outgrowth and

branching. Although silencing of most of these genes

affected dendritic branching and outgrowth equally, RNAi of

the genes encoding the nuclear ecdysteroid hormone recep-

tors Ultraspiracle (Usp) and EcR (the ecdysone receptor),

appeared to affect mostly the extension of primary dendrites

without notably altering the number and length of lateral

branches. The second subgroup, of 20 genes, had opposing

functions to those of the first group, in that their normal

function appeared to be to limit both dendrite branching and

outgrowth. This group included the gene abrupt, which

restricts dendritic branching and outgrowth of type I DA

neurons [12,13], as well as other transcriptional regulators

with unknown function in neurons, such as Elongin c. Inter-

estingly, the second subgroup included four genes of the

same group of transcriptional regulators, the Polycomb

group. The downregulation of the genes - Su(z)12, E(z), esc

and Caf1 - resulted in increased dendritic branching and an

expanded dendritic field in type I DA neurons, suggesting that

the Polycomb group plays an important role in the trans-

criptional repression of dendrite outgrowth and branching. 

Of the 21 genes in group B, the normal function of 19 appeared

to be to restrict the extension of the primary dendrite in favor

of lateral branch formation and outgrowth (see Figure 1b). In

contrast, the normal function of the two remaining genes, glial

cells missing 2 (gcm2) and the histone acetyltransferase gene

pcaf, appeared to be to promote primary dendrite extension

and restrict lateral branch formation, as their downregulation

caused increased lateral branching and decreased primary

dendrite extension. For both these genes, this phenotype was

observed only in one of the two type I DA neurons in the

dorsal cluster, the ddaE neurons. Whether the loss of function

of gcm2 and pcaf leads to the absence of ddaD neurons, the

other type I of DA neurons in the dorsal cluster, or to their

inability to extend any neurites (the growing ends of dendrites

or axons) is not clear. Nevertheless, the existence of these two

antagonistic transcriptional pathways suggests that the out-

growth of primary dendrites could inhibit the outgrowth of

lateral branches, and vice versa, and that transcriptional regu-

lation might be critical to the redistribution of the cellular

machinery for neurite extension from the main dendrite to the

lateral processes. 

Finally, Parish et al. [19] identified ten transcription factor

genes (group C) that regulate the orientation of the growing
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Figure 1
Schematic representation of the functions of each transcription factor
group in dendritic patterning of type I DA neurons in the Drosophila
peripheral nervous system. Subtypes of DA neurons have simple and
stereotyped branching patterns (the black neuron represents the ddaD
subtype and the gray neuron the ddaE subtype). (a) Group A genes fall
into two different subgroups. One group (19 genes) promotes overall
dendrite outgrowth (left), whereas the other (20 genes) inhibits overall
outgrowth (right). (b) Group B also includes genes with opposing
functions. Most of this group (19 genes) promote dendritic branching and
inhibit primary dendrite extension (left). The other two members inhibit
dendritic branching and promote primary dendrite extension (right).
(c) Group C genes (10 genes) influence the routing, or direction of
growth, of dendrites. The normal branching pattern is shown on the left.
The abnormal routing of dendrite lateral branches observed when a
group C gene is downregulated is shown on the right. 
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dendrites. The ddaD and ddaE neurons normally extend the

lateral branches of their dendrites towards the anterior and

posterior boundaries, respectively, of an embryonic body

segment. The silencing of the group C transcription factors

disrupted this pattern: in ddaE neurons, for example, lateral

branches even extended toward the anterior boundary of the

segment. Laser ablation of all other DA neurons in the dorsal

cluster did not affect the extension of lateral branches of

ddaE neurons toward the posterior segment boundary [20],

so it is possible that the orientation of these neurites is

mainly driven by extracellular attractive cues, and that group

C transcription factors regulate the expression of proteins

responsible for receiving and integrating these signals. 

Pathways that might control dendrite
arborization 
The formation of stereotyped dendritic arborization not only

requires overall dendrite outgrowth but also the coordina-

tion of the extension of the primary dendrite with the forma-

tion of lateral branches and with the direction of growth. On

the basis of RNAi phenotypes, Parrish and colleagues [19]

classified 76 transcription factors into three functional

groups that affect different aspects of dendrite arborization.

But is there any unity of mechanism behind the functional

unity of each group? The answer is likely to be yes. For

instance, several group A genes, such as those for the Poly-

comb group proteins and the nucleosome-remodeling

complex NURF, are associated with the regulation of Hox

gene expression [21]. Hox proteins are key developmental

transcription factors that control cell proliferation and dif-

ferentiation. Moreover, RNAi of group A genes resulted in

the highest rate of embryonic lethality, suggesting that these

transcription factors control basic pathways responsible for

general cell growth and survival. The vast majority of group

B genes identified in this screen control the balance between

primary dendrite outgrowth and lateral branching, and most

of them participate in protein complexes that repress tran-

scription. It is worth noting that runx1, the mammalian

homolog of the group B gene runt, regulates the diversifica-

tion of sensory neurons in mice [22]. Thus, Runx-family

transcription factors might be involved in both cellular iden-

tity and morphogenesis in vertebrate and invertebrate

peripheral nervous system neurons. Last but not least, three

of the ten group C genes encode components of the Brahma

protein complex, which regulates the expression of the sig-

naling protein Decapentaplegic (Dpp) in wing imaginal discs

[23], raising the possibility that some group C genes regulate

dendritic routing through a common molecular pathway. 

Temporal action and relationships between the
different groups of transcription factors 
Does this RNAi-based screen allow the characterization of all

transcription factors involved in dendritic arborization

among the 730 genes tested? The answer is probably no.

Indeed, when the authors reproduced their screen with

higher dsRNA concentrations, they identified three addi-

tional genes (bonus, stat92e, and rpd3) missed in their pre-

vious screen. This was presumably due to the difficulty of

silencing genes that have a high maternal contribution in the

embryo. And since the effectiveness of RNAi silencing could

not be quantified, other transcription factors involved in

dendritic morphogenesis might have been overlooked. Of

the 76 candidate genes that Parrish et al. [19] identified in

their screen, 32 have available mutant alleles and the

authors have analyzed the morphology of type I DA neurons

in these mutant flies. In most cases, the mutant alleles pro-

duced a phenocopy of the RNAi phenotype, validating the

accuracy of the approach. Analysis of the mutant flies

revealed that some of the candidate genes are also involved

in later stages of dendritic morphogenesis when type I DA

neurons do not extend new branches. Thus, some transcrip-

tion factors seem to be required to continuously maintain

the dendritic arborization and allow type I DA neurons to

retain their capacity to form new dendrites. 

Identification of a large number of transcription factors

through reverse genetic screens offers an exciting opportu-

nity to map the transcriptional network that controls den-

dritic morphogenesis. Parrish et al. [19] also explored the

effect of simultaneously disrupting two group A genes with

opposite effects on dendrite outgrowth. The loss of function

of either of two genes normally required for dendrite exten-

sion was epistatic to the loss of abrupt, which normally

antagonizes overall dendrite outgrowth. The different group

A transcription factors are thus likely to positively or nega-

tively regulate a common set of target genes responsible for

overall dendrite extension. As outlined earlier, group B

genes can act as transcriptional switches between primary

dendrite outgrowth and lateral branch extension, and this

raises the question of the epistatic relationship between

these transcription factors and the group A genes that

control overall extension of the dendritic tree. In a further

experiment, the RNAi phenotype of four group A genes

appeared to override the mutant phenotype of the gene

senseless, which functionally belongs to both group B and

group C. The group A genes targeted here either promoted

or limited dendrite extension, suggesting that the loss of reg-

ulation of overall dendrite outgrowth is epistatic to the loss

of the correct balance between primary dendrite extension

and the extension of lateral branches.

To sum up, the RNAi-based screen carried out by Parrish et

al. [19] identified an extensive list of transcription factors

that regulate dendrite growth and the pattern of dendrite

arborization of type I DA neurons. Overlapping but distinct

sets of transcription factors may be required for dendritic

morphogenesis in other types of DA neurons in Drosophila.

As the dsRNAs were injected into early-stage embryos, which

are still in the syncytial stage, the cell-autonomous function

of these genes in either precursor cells or postmitotic neurons
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needs to be further assessed for a better understanding of

the mechanism of action of the transcription factors they

encode. Nevertheless, this comprehensive study offers a

powerful entry point to the task of dissecting the transcrip-

tional networks in postmitotic neurons and precursors that

are ultimately responsible for the morphology of each

subtype of DA neurons. Finally, most of the genes identified

in this screen have homologs in mammals. A recent screen

based on in situ hybridization characterized 349 transcrip-

tion factors with expression patterns restricted to different

anatomical regions of the mouse brain [24]. It will be inter-

esting to examine more closely all the transcription factors

identified in both screens with the aim of understanding

the transcriptional programs that regulate the dendrite

morphology of specific neuronal subtypes in mammals. 
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