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Abstract
Myeloablative conditioning is a well‐established procedure that precedes hematopoi-
etic stem cell transplantation (HSCT), particularly in pediatric patients. In the period 
directly following transplantation, several factors may contribute to complications 
that lead to the activation or damage of endothelial cells, involved in the pathogene-
sis of vascular endothelial syndromes (VES). However, to date, sufficiently specific 
and sensitive diagnostic markers for the various forms of VES have not been identi-
fied. This was a retrospective single‐center study of patients who underwent alloge-
neic HSCT. For this cohort of patients, parameters including type of engraftment, 
donor characteristics, and cytokine production were measured and correlated with a 
high prevalence of short‐term complications after HSCT. The aim of this study was 
to identify specific parameters useful for improving diagnostics and predicting ad-
verse effects in VES. We confirmed that monocyte‐predominant engraftment was 
related to a higher risk for an early transplant‐related complication termed sinusoidal 
obstruction syndrome (SOS). The increased production of specific cytokines, in par-
ticular RANTES, represents a marker associated with prevalent engraftment. In ad-
dition, patients undergoing prophylaxis with defibrotide had “classical” engraftment, 
a common cytokine profile and a lower incidence of life‐threatening transplant‐re-
lated complications. The beneficial effect of defibrotide might be a starting point for 
developing selective prophylaxis for patients with monocyte engraftment to prevent 
severe early transplant‐related complications.
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1  |   INTRODUCTION

Hematopoietic stem cell transplantation (HSCT) is com-
monly used to treat pediatric disease, especially hemato-
logical and oncological disorders or congenital errors. 
Particularly aggressive chemotherapy treatments are part of 
most transplantation conditioning regimens. Myeloablative 
conditioning refers to the administration of a maximum 
tolerated dose of chemotherapy or radiotherapy to destroy 
functional hematopoiesis and host pathological cells; thus, 
eradicating all immunocompetent cells and creating space 
in the bone marrow microenvironment to allow new cells to 
engraft and prevent rejection. Within a month after trans-
plantation, patients may develop complications caused by 
the direct or indirect toxicity of chemotherapy or radio-
therapy, which leads to endothelial dysfunction. Examples 
are the production of cytokines by damaged tissues and 
the translocation of bacteriological endotoxins from the 
affected gastrointestinal tract. During HSCT, endothelial 
cells (ECs) are activated by treatments including granu-
locyte‐colony stimulating factor (G‐CSF) or calcineurin 
inhibitors.1

These elements, together with the engraftment of donor 
cells, which can be complicated by allogeneic reactions, 
leads to EC damage.2

Substantial scientific evidence suggests that some post‐
HSCT early complications, such as sinusoidal obstruction 
syndrome (SOS),3 capillary leak syndrome,4 engraftment 
syndrome,5 transplant‐associated thrombotic microangiopa-
thies (TMA),6 and graft‐vs‐host disease (GVHD),7,8 originate 
from localized or systemic EC damage.

Several recent studies suggested different combinations 
of cytokines and chemokines might be specific markers for 
diagnosis and used to distinguish between specific forms of 
vascular endothelial syndrome (VES).2,9-12 However, other 
studies have presented contrasting data, and to date no spe-
cific or sufficiently sensitive marker has been identified for 
the different forms of VES.

Typical engraftment is commonly defined as a rapid 
repopulation of polymorphic nucleated cells (PMN) and 
monocytes13 followed by a generally slow lymphocyte re-
covery. A small number of studies have reported a non‐typi-
cal hematopoietic engraftment, for example, predominantly 
monocyte engraftment14. Over the past 3 years, our insti-
tute has seen a considerable increase in non‐classical en-
graftment, with a clear monocyte predominance compared 
with other cell lineages from the very early stages of the 
engraftment.

Therefore, our retrospective study investigated the rela-
tionship between predominantly monocyte repopulation and 
the appearance of early complications including VES and 
GVHD, and the potential prognostic significance of such 
complications.

2  |   MATERIALS AND METHODS

2.1  |  Patients
A retrospective single‐center study was carried out at the 
Institute for Maternal and Child Health—IRCCS “Burlo 
Garofolo”, Pediatric Transplant Centre in Trieste, Italy. 
The study protocol was approved by the Ethics Committee 
of the IRCCS “Burlo Garofolo” (reference no. 1105/2015). 
Patients were asked to authorize the release of informa-
tion for research purposes. The medical records of all 
patients, who underwent allogeneic HSCT at our Center 
between January 2010 and December 2017 were analyzed. 
The medical records of patients aged >18 years who were 
further treated with subsequent transplantation, were not 
considered. Moreover, subjects for whom post‐transplanta-
tion samples were not available were also excluded from 
the study.

Inclusion criteria were: age of recipient <18 years at the 
time of transplantation, patients treated with their first allo-
geneic transplantation, myeloablative conditioning regimen, 
post‐transplantation follow‐up of at least a month after trans-
plantation, and documented engraftment.

2.2  |  HSCT procedure
Allogeneic transplantations were performed after myeloa-
blative conditioning based on Total Body Irradiation (TBI) 
at a dose of 12 cGy, divided into six sessions for patients 
aged >2 years and suffering from acute lymphoblastic leu-
kemia. All other patients received busulfan orally (360 mg/
m2, dosage subject to adjustment according to therapeutic 
drug monitoring) or treosulfan (12‐14 g/m2 based on recipi-
ent’s age). Patients undergoing a matched unrelated donor 
(MUD), haploidentical or sibling transplantation—in the 
case of haemoglobinopathy—also received antilympho-
cyte serum. Anti‐rejection prophylaxis included tacrolimus 
for sibling transplantations, tacrolimus plus mycophenolate 
mofetil (MMF) for MUD transplantations, and addition of 
cyclophosphamide for haploidentical transplantations.

2.3  |  Type of engraftment
A hemocytometer count was performed for each patient 
using a DXH800 Beckman Coulter haemocytometer 
(Beckman Coulter S.r.l., Cassina de’ Pecchi [MI], Italy) 
to assess the complete blood count and white blood cell 
populations. At the same time, blood samples of patients 
were also evaluated using a cytofluorometric technique 
to confirm the hemocytometer count related to the pres-
ence of different populations of leukocytes and to study 
the distribution of lymphocytes. Anti‐CD45 antibodies 
were used for leukocyte and lymphocyte populations, 
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anti‐CD19 antibodies for the identification of B lympho-
cytes, anti‐CD4 and anti‐CD8 antibodies for lymphocytes, 
and anti‐CD16/56 to identify NK cells. Blood samples 
were analyzed using a flow cytometer (Navios; Beckman 
Coulter). For each analysis, 30 000 events were acquired. 
Data were subsequently analyzed using a gating strategy to 
identify cells of interest.

We considered “predominant‐monocytes” engraftment 
when the percentage of monocytes was higher than any other 
leukocyte lineage in the first stage of engraftment, beginning 
when the total leukocytes exceeded 100 cells/mmc. The pre-
ponderance of monocytes had to be documented in at least 
two different determinations performed at an interval of 2 or 
3 days. Engraftment was defined as “classical” in all other 
cases, ie when the count of lymphocytes and/or PMN was 
higher than that of monocytes.

For flow cytometric analysis, monocytes were gated ac-
cording to their forward and side scatter profile and further 
characterized due to their CD14 and CD16 surface expres-
sion. Monocyte subpopulations CD14++CD16− was classi-
fied “classical” (M1), CD14++CD16+ “intermediate” (M2) 
and CD14+CD16++“non classical” (M3).

To obtain a more accurate statistical profile, we standard-
ized engraftment time from various stem cell sources: in the 
case of PBSCs, the engraftment timeline was shortened by 
4 days because the engraftment time of PBSCs is approxi-
mately 4 days shorter than that of bone marrow stem cells.15

In contrast to previous studies16 and based on our experi-
ence, the engraftment of umbilical cord stem cells was stan-
dardized by shortening the timeline to 4 days instead of 5. 
Chimerism analyses were performed using a semiquantita-
tive polymerase chain reaction (PCR) approach based on the 
amplification of short tandem repeats (STR).

2.4  |  Prophylaxis with defibrotide
Between January 2010 and June 2014, all patients receiving 
an allogeneic transplantation underwent SOS prophylaxis with 
defibrotide. From July 2014 until September 2015, only pa-
tients at high risk of developing SOS underwent prophylaxis 
with defibrotide. Since September 2015, the administration of 
defibrotide in our center has been restricted to treating SOS 
or particularly severe VES. Defibrotide prophylaxis started on 
the first day and lasted until 28 days after conditioning, at a 
dose of 25 mg/kg divided into four administrations per day.

2.5  |  Early complications related to 
transplantation
Sinusoidal obstruction syndrome was diagnosed based on 
the guidelines reported by Corbaciouglu and approved by 
the European Group for Blood and Marrow Transplantation 
(EBMT Group).17 GVHD was diagnosed, and its relevant 

severity level assigned, based on classical criteria.18 Diagnosis 
of capillary leak syndrome was formulated based on criteria 
published by Nürnberger4 in 1997. Engraftment syndrome 
was diagnosed following Spitzer’s definition.5,19 Diagnosis 
of idiopathic pneumonia syndrome was formulated based on 
Clark’s criteria.20 Diagnosis of transplantation‐associated 
TMA was defined following the diagnostic contents in Blood 
and Marrow Transplant Clinical Trials Network (BMT CTN) 
Toxicity Committee Consensus Definition for TMA.20

2.6  |  Analysis of cytokines and chemokines
The analysis of 27 cytokines and chemokines, namely 
IL‐1β, IL‐1ra, IL‐2, IL‐4, IL‐5, IL‐6, IL‐7, IL‐8, IL‐9, IL‐10, 
IL‐12(p70), IL‐13, IL‐15, IL‐17, Eotaxin, FGF basic, G‐
CSF, GM‐CSF, IFN‐γ, IP‐10, MCP‐1 (MCAF), MIP‐1α, 
PDGF‐bb, MIP‐1β, RANTES (CCL5), TNF‐α, and VEGF 
was carried out on plasma samples with multiple immuno-
assays, using a bead‐based magnetic sensor (27 human‐Bio‐
Plex assay; BIO‐RAD Laboratories, Milan, Italy) following 
the manufacturer’s instructions. Data were acquired by a 
Bio‐Plex 200 reader, and a digital processor and BIO‐RAD, 
Hercules, California, USA software converted data into me-
dian fluorescence intensity and concentration (pg/μL).

Cytokines and chemokines were measured in 26 patients. 
For 20 subjects receiving myeloablative chemotherapy, sam-
ples were obtained before conditioning, while for six subjects 
treated with chemoradiotherapy condition, baseline samples 
were obtained after TBI.

A second determination was carried out on 26 samples 
from the same patients, collected 2‐3 days after engraftment. 
The last determination was performed on 18 samples from 
patients who developed an early complication associated with 
transplant procedure, including VES or grade III‐IV GVHD. 
Samples were collected 1 or 2 days before the appearance of 
clinical signs of complication.

The adopted methodology allowed ULOQ (Upper Limit of 
Quantification) and LLOQ (Lower Limit of Quantification) cyto-
kine values to be assigned a numeric value higher than the determi-
nation threshold value. The highest determinable threshold value 
for RANTES was 203 356.8 pg/μL. Any determination having 
a ULOQ result was therefore assigned a value of 205 000.0 pg/
μL. For IL‐2, the lowest determinable value was 0.9 pg/μL. Any 
determination with an LLOQ was assigned a value of 0 pg/μL.

2.7  |  Statistics
Collected data were analyzed using descriptive statistics to 
determine the distribution and frequency of the variables. 
Continuous variables were expressed as the mean and standard 
deviation (SD), while categorical variables were expressed as 
the frequency, absolute or percentage value. Student’s t tests 
were used to compare different groups of patients. Two‐tailed 
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Fisher exact test was performed to assess the association be-
tween categorical variables. Paired Student’s t tests were 
used to compare pre‐ and post‐transplant paired data in the 
same group of patients. P‐values <0.05 were considered as 
statistically significant. To avoid problems of separability, 
we carried out simultaneous analyses adopting Firth’s penal-
ized likelihood approach to logistic regressions, considering 
the type of engraftment as the main dichotomous outcome. 
Statistical analyses were performed using WinStat (v.2012.1; 
In der Breite 30, 79189 Bad Krozingen, Germany), Prism 
5 for Windows (7825 Fay Avenue, Suite 230, La Jolla, CA 
92037 USA. Software, Inc.) and Stata/IC 14.2 (StataCorp 
LLC, College Station, TX).

3  |   RESULTS

We examined the medical records of 87 patients who under-
went allogeneic transplant at our Institute from January 2010 
until December 2017. Eight patients were excluded from the 
study for the following reasons: four patients were ≥18 years 
of age at the time of transplant; three patients had a condi-
tioning regime that was not myeloablative; and insufficient 
biological samples were available for one patient, who died 
during the first month after transplant. The remaining 79 pa-
tients constituted our study group with a prevalence of males 
vs females (62% and 38%, respectively) and with a mean age 
of 8.7 years at the time of transplant.

The indication for transplantation in almost half of the 
cases was high‐risk acute lymphatic leukemia (46%), fol-
lowed by myelodysplastic syndrome and acute myeloid 
leukemia (19% and 18%, respectively).The conditioning reg-
imen was myeloablative in all cases, which were subdivided 
between total body irradiation (TBI) and myeloablative che-
motherapy (MCHT) groups, with a slight prevalence toward 
MCHT (57% vs 43%). The demographic data of the study 
group are shown in Table 1.

3.1  |  Factors that influence engraftment
Based on the main objective of the study, we divided our 
population into two groups, differentiating them by the type 
of patient engraftment. The first group comprised 53 patients 
(67%) with a “classic” engraftment (“classic engraftment 
group”), and the other group comprised 26 patients (33%) 
with a clear monocytic prevalence in the first phase of the 
engraftment (“monocyte‐predominant engraftment group”). 
We analyzed the immunophenotype expressed by these 
monocytes and found that all samples had an extremely ho-
mogeneous monocyte population composed exclusively of 
monocytes with a classical immunophenotype (M1).

Donor chimerism was analyzed in a time frame from 
day +20 to day +30 in all patients. Among 26 patients with 

monocyte engraftment, full donor chimerism was documented 
in 23 patients. The donor chimerism was almost complete in 
the three remaining patients: one had 99.2% donor chimerism, 
and two had 98.8% and 98.9% donor chimerism, respectively.

The factors related to the bone marrow niche, infused stem 
cells, conditions of the recipients and possible concomitant 
treatments in both groups are shown in Table 2. There was no 
statistically significant difference in the accumulation of iron 
in bone and osteoporosis in the two groups. Factors signifi-
cantly associated with “classical engraftment” were the use 
of bone marrow as a source of stem cells; use of a matched 
related donor; age of the donor below 18 years; G‐CSF stim-
ulation; and use of myelotoxic drugs. In contrast, factors as-
sociated with “monocyte predominant engraftment” were the 

T A B L E  1   Patient demographics

Pretransplant baseline characteristics Whole cohort

Number of patients (%) 79 (100)

Sex

Male (%) 49 (62)

Female (%) 30 (38)

Age at transplant, years, mean (±SD) 8.7 (4.9)

Underlying disease, number (%)

Acute lymphoblastic leukemia 36 (46)

Acute myeloid leukemia 14 (18)

Myelodysplastic syndrome 15 (19)

Inborn error 7 (9)

Hemoglobinopathy 3 (4)

Solid tumor 4 (5)

Disease stage, number (%)a

Early 24 (30)

Intermediate 26 (33)

Late 15 (19)

Myeloablative conditioning, number (%)

MCHT‐based 45 (57)

TBI‐based 34 (43)

Donor type, number (%)

Matched related donor 28 (35)

Matched unrelated donor 44 (56)

Haploidentical donor 7 (9)

Graft source, number (%)

Bone marrow 63 (80)

Peripheral blood stem cells 13 (16)

Umbilical cord blood 3 (5)

MCHT, myeloablative chemotherapy; TBI, total body irradiation; SD, standard 
deviation.
This classification is applied to patients with acute leukemia and myelodysplastic 
syndrome only.33

aDisease stage was defined according to previously published classification. 
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use of PBMC as a source of stem cells and age of the donor 
above 18 years.

Multivariate analysis (Table 3) showed that a subject receiv-
ing the transplant from a donor ≥18 years of age had a much 
higher risk of monocyte engraftment if compared with a subject 
receiving cells from a donor <18 years. Moreover, cord blood 
transplantation significantly increased the probability of mono-
cyte predominant engraftment if compared with bone marrow. 
Finally, of note, the use of defibrotide prophylaxis was associated 
with a much lower risk of monocyte predominant engraftment.

3.2  |  Differences in leukocyte 
engraftment and early transplant‐related 
complications
The results of this analysis are shown in Table 4. The time 
at which the engraftment of total leukocytes and polymor-
phonuclear cells occurred was similar in both groups. As 
expected, the percentage of monocytes at engraftment was 
significantly higher in the “monocyte predominant engraft-
ment” group. Regarding transplant‐related complications, 

Variables “Classical” engraftment
Monocyte predomi-
nant engraftment P‐value

Type of engraftment, 
number

53 26 —

Haematopoietic niche‐related factors, number (%)

Bone iron overloada 28 (53) 16 (62) 0.483

Osteoporosisb 12 (23) 7 (27) 0.781

Graft‐related factors

Graft source, number (%)

Bone marrow 47 (89) 16 (62) 0.008

PBSC 4 (8) 9 (35) 0.007

Cord blood 2 (4) 1 (4) 1.000

Donor type, number (%)

Matched related 
donor

23 (43) 5 (19) 0.046

Matched unrelated 
donor

27 (51) 17 (65) 0.241

Haploidentical 
donor

3 (6) 4 (15.) 0.210

Donor age, number (%)

<18 y 23 (43) 3 (12) 0.005

≥18 y 30 (57) 23 (88)

Number of 
TNC × 108/kg 
infused, mean (SD)c

5.7 (2.5) 6.5 (2.4) NS

Number of 
CD34 × 106/kg 
infused, mean (SD)d

10.5 (5.4) 9.5 (4.1) NS

Patient‐related engraftment‐concomitant factors, number (%)

G‐CSF stimulation 15 (28) 1 (4) <0.001

Virus infection 15 (28) 8 (31) 1.000

Myelotoxic drugs 12 (23) 6 (23) 1.000

Defibrotide prophy-
laxis, number (%)

42 (79) 2 (8) <0.001

G‐SCF, granulocyte colony‐stimulating factor; HSCT, hematopoietic stem cell transplantation; NS, not signifi-
cant; PBCS, peripheral blood stem cells; SD, standard deviation; TNC, total nuclear cells.
aMagnetic resonance imaging was used to measure iron concentrations in the liver, spleen, pancreas and bone.34 
bDual energy X‐ray absorptiometry bone densitometry was used. 
cApplied to bone marrow only. 
dApplied to PBCS only. 

T A B L E  2   Factors affecting 
engraftment during allogeneic HSCT
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subjects with “monocyte predominant engraftment” had a 
higher mean grade of mucositis than subjects with classical 
engraftment. While infections from virus or bacteria oc-
curred at similar rates in the two groups, fungal infections 
were recorded only in subjects with classical engraftment.

From our data analysis, no significant associations emerged 
between the type of engraftment and the degree of GVHD. In 
contrast, the onset of VES was significantly associated with 
monocyte engraftment (88% vs 8%, P < 0.001). Considering 
the specific clinical forms constituting VES, we found a signif-
icant difference for all clinical forms engraftment syndrome.

3.3  |  Cytokine profile at baseline and 
engraftment phase and the proximity of 
complications
Analyzing the differences between baseline cytokine levels in 
the two groups of patients, the only statistically significant dif-
ference was detected for IL‐1ra levels, which was higher in the 
monocyte engraftment group. Of note, RANTES levels were 
very high in the groups of patients at baseline and there was a 
clear trend toward higher levels in the monocyte predominant 
group (97 128.2 ± 97 878.9 pg/mL in the “classic” group vs 
12 5936.1 ± 92 615.2 pg/mL in the monocytosis group, normal 
values up to 25 450 pg/mL). It is likely that this difference did 
not reach statistical significance only because several samples in 
the monocyte prevalent group had RANTES levels at the Upper 

Limit of Quantification (ULOQ). For statistical calculations, the 
values of these samples were set at the upper limit of the range, 
ie 220 000 pg/mL. ULOQ samples were significantly more 
common in the monocyte group compared with the “classic” 
group (19/26 vs 3/26, P < 0.05). Overall, these data suggest that 
higher RANTES levels at baseline are associated with monocyte 
predominant engraftment. Patients expressing normal RANTES 
value had MDS, inborn errors or congenital immunodeficiency 
and, therefore, had never undergone chemo‐ or radiotherapy.

At the time of engraftment, significant differences in 
IL‐1ra, IL‐4, IL‐5, PBGF‐BB and TNF‐α values were de-
tected between the two groups (P < 0.05) with higher levels 
in the monocyte predominant group (Table 5). RANTES lev-
els decreased to near normal values without significant differ-
ences between the two groups.

Finally, we analyzed changes in cytokine expression immedi-
ately before the appearance of clinical signs of early post‐trans-
plant complications attributable to endothelial activation (GVHD 
or VES). We included 10 patients with SOS, six patients with 
GVHD III‐IV degree and two patients with ES. For statistical 
reasons, given the small number of samples available for each 
type of complication, we examined the cytokine profile in all 
18 patients taken together, making a comparison between the 
baseline levels and the levels found before the onset of symp-
toms. Statistically significant differences were documented for 
IL‐1ra, IL‐2, IL‐5, IL‐7, IL‐9, IL‐15, Eotaxin, Basic FGF, GM‐
CSF, MCP‐1 and RANTES (Table 6). IL‐2 levels in the analyzed 

Variables Odds ratio
95% confidence 
interval P‐value

Bone iron overload (1. Yes vs 
0. No)

3.000 0.421‐21.385 0.273

Osteoporosis (1. Yes vs 0. No) 1.257 0.143‐11.010 0.836

Graft source (bone marrow as reference)

PBSC 8.279 0.456‐150.201 0.153

Cord blood 134.952 1.489‐12232.43 0.033

Donor type (matched related donor as reference)

Matched unrelated donor 0.041 0.001‐2.270 0.119

Haploidentical donor 0.417 0.010‐17.616 0.647

Donor age (1. ≥18 y vs 0. 
<18 y of age)

148.688 1.625‐13607.13 0.030

G‐CSF stimulation (1. Yes vs 
0. No)

0.091 0.003‐3.079 0.182

Virus infection (1. Yes vs 0. 
No)

0.737 0.096‐5.643 0.769

Myelotoxic drugs (1. Yes vs 0. 
No)

0.533 0.051‐5.559 0.599

Defibrotide prophylaxis (1. No 
vs 0. Yes)

134.113 4.273‐4209.074 0.005

G‐CSF, Granulocyte‐colony stimulating factor; HSCT, hematopoietic stem cell transplantation; PBSC, periph-
eral blood stem cells.

T A B L E  3   Multivariate logistic 
regression analysis on factors associated 
with monocyte predominant engraftment vs 
“classical” engraftment, during allogeneic 
HSCT
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samples were particularly interesting. Of the 18 samples col-
lected immediately before the development of complications, the 
IL‐2 values were below the LLOQ in 15 patients (83.4%) and, 
therefore, were not determinable. Furthermore, samples with 
IL‐22 below the LLOQ were found in eight of 10 SOS patients, 
five of six GVHD grade III‐IV patients, and two ES patients. The 
baseline IL‐2 values were within normal limits for all patients.

3.4  |  Potential correlation between variables 
related to transplantation and abnormal 
production of RANTES in subjects with short‐
term complications
We analyzed the relationship between the anomalous produc-
tion of RANTES with chemotherapy before transplantation, 

the type of transplant conditioning, engraftment, and the inci-
dence of early endothelial complications. RANTES levels at the 
upper limit of quantification (ULOQ) were found in 22 baseline 
plasma samples (28%), 18 (82%) of which developed short‐term 
complications. They had all received TBI‐based (11 subjects) or 
MCHT‐based (seven subjects) conditioning. Moreover, 19 of 
the 22 subjects with RANTES ULOQ levels (86%) had engraft-
ment with a monocyte predominance (Table 7).

Another close association was found between the pro-
phylactic administration of defibrotide, a powerful en-
dothelial protector, and the incidence of VES. Of 79 
patients examined, 44 underwent prophylaxis with defi-
brotide (Table 6). In this group only two patients (4.5%, 
P < 0.0001) acquired a VES compared with 27 (34%) pa-
tients in the whole group.

T A B L E  4   Transplant‐related features: differences between two groups during the engraftment phase

Variables “Classical” engraftment (n = 53)
Monocyte predominant engraft-
ment (n = 26) P‐value

Time of WBC engraftment (≥1000/mm3), days; 
mean (±SD)

22 (9.9) 19.4 (5.8) 0.271

Time of neutrophil engraftment, days; mean (±SD)

ANC ≥ 500/mm3 20 (8.2) 19 (5.7) 0.650

ANC ≥ 1000/mm3 26 (11.0) 26 (10.3) 0.849

Time of monocyte engraftment, days; mean (±SD)

Monocyte ≥ 500/mm3 23 (6.4) 18 (6.3) 0.053

Monocyte ≥ 1000/mm3 34 (7.1) 35 (8.7) 0.742

Maximum percentage of neutrophils at 
engraftment, mean (±SD)

98 (18.9) 43 (10.7) <0.001

Maximum percentage of monocyte at engraft-
ment, mean (±SD)

26 (13.2) 59 (11.3) <0.001

WHO grade mucositis, mean (±SD) 2 (0.8) 3 (1.0) <0.001

Infectious complications, number (%) 37 (70) 13 (50) 0.627

Bacterial infection 9 (17) 6 (23) 0.551

Fungal infection 11 (21) 0 (0.0) 0.013

Virus infection 17 (32) 7 (37) 1.000

GVHD, number (%)

None 34 (64) 15 (58) 0.627

I/II overall grade 13 (25) 3 (12) 0.239

III/IV overall grade 6 (11) 8 (31) 0.057

Vascular endothelial syndromes, number (%) 4 (8) 23 (88) <0.001

Sinusoidal obstruction syndrome 2 (4) 6 (23) 0.014

Engraftment syndrome 1 (2) 3 (12) 0.102

Capillary leak syndrome 1 (2) 6 (23) 0.004

Transplant‐associated thrombotic 
microangiopathy

0 5 (19) 0.003

Idiopathic pneumonia syndrome 0 3 (12) 0.033

Diffuse alveolar hemorrhage 0 0 —

ANC, absolute neutrophil count; GVHD, Graft vs host disease; SD, standard deviation; WBC, white blood cell; WHO, World Health Organization.
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4  |   DISCUSSION

The main feature of regular hematopoietic engraftment is the 
rapid normalization of the number of PMN cells and mono-
cytes, followed by a slow reconstruction of the lymphocyte 
lineage.13 During engraftment, the percentage of monocytes 
in the peripheral blood of patients undergoing HSCT from 
HLA‐matched, HLA‐mismatched, or haploidentical donor 
was similar to the physiological percentage in healthy sub-
jects.21 A previous German study in 1996 reported ten patients 
affected by temporary monocytosis with absolute values of 
>10 000 monocytes/μL in the early stage of engraftment.14 
The authors attributed this phenomenon to the high number 

of monocytes in infused PBSCs and the use of G‐CSF at the 
hematologic nadir. In the current study, only one of 26 pa-
tients showing monocyte engraftment was stimulated with G‐
CSF. Of note, we focused on the ratio of monocytes to PMN 
rather than the absolute count of monocytes. We showed that 
“monocyte predominant” engraftment, regardless of absolute 
monocytosis, was associated with a higher risk of complica-
tions such as VES.

Despite a manifold etiology of endothelial damage fol-
lowing bone marrow transplantation, endothelial inflam-
mation is a common pathogenetic mechanism of the major 
complications of BMT. A lag occurs between endothelial 
damage and the clinically diagnosed syndrome. In this time 

T A B L E  5   Baseline and post‐engraftment cytokine and chemokine profile of HSCT recipients

Cytokine/
chemokine (pg/
mL), mean (±SD)

“Classical” engraftment Monocyte predominant engraftment P‐value

Baseline Engraftment Baseline Engraftment Baselinea Engraftmentb

IL‐1β 2.8 (1.0) 2.1 (0.9) 4.5 (3.9) 2.8 (1.1) NS NS

IL‐1ra 193.1 (91.7) 137.4 (91.6) 443.7 (501.0) 247.7 (172.5) 0.049 0.049

IL‐2 15.6 (7.2) 9.6 (2.7) 15.0 (7.3) 12.4 (8.9) NS NS

IL‐4 3.1 (1.5) 1.3 (1.1) 3.9 (2.1) 3.0 (1.8) NS 0.011

IL‐5 1.7 (2.0) 0.8 (1.4) 3.4 (3.1) 2.9 (2.0) NS 0.010

IL‐6 73.0 (167.9) 22.5 (23.4) 73.1 (174.1) 23.7 (29.7) NS NS

IL‐7 5.5 (3.8) 3.9 (4.1) 7.2 (4.7) 7.0 (2.8) NS NS

IL‐8 27.4 (32.4) 29.0 (11.9) 95.0 (220.5) 28.9 (26.0) NS NS

IL‐9 153.0 (68.7) 72.5 (33.0) 261.0 (406.1) 245.7 (706.2) NS NS

IL‐10 9.3 (8.1) 5.5 (2.0) 7.6 (3.5) 5.7 (1.9) NS NS

IL‐12 (p70) 19.2 (9.6) 9.7 (4.6) 22.0 (15.7) 14.0 (10.1) NS NS

IL‐13 4.4 (2.0) 4.2 (4.9) 7.1 (6.3) 4.6 (2.4) NS NS

IL‐15 14.7 (4.5) 11.8 (6.3) 13.7 (6.6) 19.2 (13.5) NS NS

IL‐17 50.4 (18.8) 30.8 (8.4) 63.0 (34.7) 37.4 (14.0) NS NS

Eotaxin 89.4 (44.3) 98.2 (47.2) 85.3 (33.4) 99.1 (40.3) NS NS

Basic FGF 37.5 (14.9) 23.6 (6.5) 39.7 (17.0) 27.3 (9.6) NS NS

G‐CSF 152.6 (211.8) 119.4 (123.7) 148.7 (87.6) 600.3 (2210.5) NS NS

GM‐CSF 101.2 (35.1) 89.9 (45.1) 92.3 (54.2) 71.1 (43.6) NS NS

IFN‐ γ 57.6 (35.7) 35.3 (25.5) 76.4 (45.1) 53.4 (28.2) NS NS

IP‐10 583.7 (763.7) 646.1 (433.8) 449.8 (563.7) 314.2 (134.3) NS NS

MCP‐1 25.2 (34.8) 14.5 (8.6) 17.3 (11.0) 18.9 (10.2) NS NS

MIP‐1α 6.9 (2.2) 6.2 (4.0) 16.1 (27.8) 6.7 (3.1) NS NS

PDGF‐BB 1136.9 (1271.7) 107.8 (8972) 890.1 (994.4) 267.0 (192.5) NS 0.011

MIP—1b 126.8 (108.5) 77.8 (37.5) 155.3 (191.6) 69.1 (38.5) NS NS

RANTES 97128.2 (97878.9) 2188.8 (2333.0) 125936.1 (92615.2) 19269.8 (38232.1) NS NS

TNF‐α 55.6 (23.7) 33.8 (12.29) 70.7 (32.9) 60.2 (40.1) NS 0.017

VEGF 39.8 (39.0) 20.1 (84.3) 35.6 (25.4) 18.9 (7.8) NS NS

HSCT, hematopoietic stem cell transplantation; IL, interleukin; NS, not significant; SD, standard deviation.
aP‐value for the comparison of baseline values between Classical vs Monocyte predominant engraftment 
bP‐value for the comparison of engraftment values between Classical vs Monocyte predominant engraftment. 
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frame an interplay takes place between the endothelium and 
the inflammatory cells recruited at the site of the damage, 
where several cytokines are being produced. MCP1/CCL2 
is one of them and regulates the migration of monocytes, 
memory T lymphocytes, and natural killer (NK) cells. MCP1 
induces endothelial expression of adhesion molecules, and 
tissue factor production switching the endothelium into a 
pro‐coagulant cell‐layer.22 MCP‐1 also modulates mac-
rophage cytotoxicity by increasing the level of membrane 
bound FasL.23 The activation of monocytes is evidenced by 
the increase of TNF‐α along with IL‐15, a T‐ cell growth 
factor.

IL‐2 plays essential roles in the immune system, tolerance 
and immunity, primarily via its direct effects on T cells. In 
the thymus, where T cells mature, it prevents autoimmune 
diseases by promoting the differentiation of certain immature 

T cells into regulatory T cells, which suppress other T cells 
that are otherwise primed to attack normal healthy cells in the 
body. IL‐2 is produced by Th1 cells. Reduction of IL‐2 and 
increase of IL‐4 might suggest an alternative pattern of CD4 
differentiation toward a Th2 phenotype; this hypothesis is en-
forced by the associated increase of IL‐5 and IL‐9 (cytokines 
produced by Th2 cells). IL‐4 stimulates B‐cells to produce 
antibodies, and Th2 activation against autoantigen will cause 
Type1 IgE‐mediated allergy and hypersensitivity, which, in 
turn, induces vascular hyperpermeability. Of interest, eosin-
ophils are chemoattracted by IL‐5, eotaxin, RANTES and 
MCP1 which were all found increased (Table 5), suggesting 
that also acidophils may play a role in vascular endothelial 
syndromes.

IL‐1RA binds to IL‐1 receptor and prevents its activa-
tion. Its reduction observed after monocyte predominant 

T A B L E  6   Cytokines and chemokine profile in the short‐term complications of HSCT evaluated a few days before onset

Cytokine/ 
chemokine (pg/mL), 
mean (±SD)

Sinusoidal obstruction syndrome 
(n = 10)

Graft vs host disease III‐IV grade 
(n = 6) Engraftment syndrome (n = 2)

P‐valueaBaseline Pre‐onset Baseline Pre‐onset Baseline Pre‐onset

IL‐1β 6.5 (5.0) 3.8 (1.8) 2.9 (1.7) 3.0 (17) 2.6 (0) 3.1 (0.1) NS

IL‐1ra 587.6 (633.2) 132.5 (66.2) 342.3 (241.8) 135.4 (92.7) 151.3 (12.1) 83.5 (3.0) 0.013

IL‐2 18.2 (7.2) 1.0 (2.2) 11.4 (9.2) 1.2 (2.9) 10.6 (0.5) 0 <0.001

IL‐4 5.3 (1.9) 3.9 (1.3) 3.3 (1.9) 4.4 (1.8) 3.1 (0) 5.1 (0.8) NS

IL‐5 9.5 (3.3) 12.9 (5.9) 2.2 (29.9) 48.7(40.5) 2.1 (0.6) 15.1 (1.7) 0.006

IL‐6 128.9 (230.9) 31.9 (14.3) 12.3 (62.2) 78.6 (63.5) 10 (0.3) 27.2 (1.3) NS

IL‐7 5.4 (7.9) 34.1 (5.4) 5.8 (7.7) 21.0 (4.3) 5.8 (1.0) 28.9 (4.4) <0.001

IL‐8 162.6 (294.0) 42.4 (13.4) 21.1 (71.1) 80.8 (59.9) 14.5 (0.7) 44.6 (4.3) NS

IL‐9 206.5 (124.0) 50.0 (20.0) 121.4 (77.0) 73.6 (43.4) 73.7 (22.8) 47.9 (2.1) 0.002

IL‐10 9.3 (3.4) 9.6 (9.1) 5.3 (7.1) 14.9 (10.7) 4.6 (0.3) 7.3 (0.3) NS

IL‐12 (p70) 27.4 (16.1) 23.9 (20.4) 15.0 (11.7) 16.4 (6.3) 8.6 (0.7) 10.8 (0.5) NS

IL‐13 10.6 (7.8) 11.9 (6.8) 5.0 (6.3) 10.7 (5.7) 3.9 (0.4) 13.6 (3.0) NS

IL‐15 15.9 (6.0) 53.8 (23.5) 10.8 (24.5) 30.0 (43.7) 7.5 (1.1) 89.3 (0.6) <0.001

IL‐17 76.2 (34.2) 39.3 (24.8) 44.9 (37.7) 58.8 (55.0) 35.6 (6.5) 32.9 (4.6) NS

Eotaxin 94.4 (25.4) 166.3 (35) 87.4 (52.5) 113.9 (85.8) 61.8 (8.3) 75.6 (3.1) 0.006

Basic FGF 48.2 (16.6) 54.6 (34.6) 31.9 (23.4) 65.0 (27.9) 27.1 (1.0) 58.0 (1.2) 0.038

G‐CSF 186.0 (89.6) 162.0 (50.9) 86.2 (93.7) 253.0 (60.6) 96.7 (12.2) 235.3 (1.8) NS

GM‐CSF 95.6 (26.3) 102.7 (38.2) 59.5 (45.5) 115.4 (63.8) 50.0 (11.6) 88.6 (5.5) 0.049

IFN‐ γ 104.8 (44.5) 75.2 (34.4) 58.5 (41.9) 60.3 (24.0) 58.4 (2.3) 63.5 (7.2) NS

IP‐10 386.0 (267.7) 940.6 (329.6) 283.6 (4173.8) 4831.2 (6826.0) 331.5 (31.4) 258.7 (4.7) NS

MCP‐1 18.1 (9.2) 272.3 (88.8) 12.4 (318.5) 477.9 (443.4) 8.1 (3.5) 323.9 (14.4) <0.001

MIP‐1α 24.8 (36.9) 5.8 (4.0) 6.8 (8.2) 5.0 (2.4) 5.6 (0.1) 4.0 (0.4) NS

PDGF‐BB 1094.5(814.1) 138.7 (96.5) 997.6 (1019.0) 922.1 (1277.3) 222.3 (79.5) 173.9 (3.9) NS

MIP—1b 169.3 (230.5) 113.4 (37.2) 67.4 (63.4) 157.3 (57.2) 55.1 (16.2) 92.3 (3.6) NS

RANTES 181718.8 (54843.7) 2221.8 (1324.8) 128279.8 (86233.7) 6623.2 (7696.0) 36107.2 (902.8) 2215.2 (101.2) <0.001

TNF‐α 92.4 (29.7) 56.8 (31.3) 58.1 (29.8) 54.2 (27.9) 44.5 (2.2) 49.4 (5.3) NS

VEGF 46.9 (29.1) 35.9 (21.8) 28.0 (23.9). 57.5 (29.0) 12.6 (0) 18.3 (6.7) NS

HSCT, hematopoietic stem cell transplantation; IL, interleukin; NS, not significant; SD, standard deviation.
aP‐value for comparison between all baseline and pre‐onset values. 
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engraftment could be detrimental in controlling the autoim-
mune response.

We hypothesized a potential relationship between the pre-
dominance of monocytes in the early engraftment stage and 
abnormal RANTES levels before conditioning in this group 
of patients. Although the levels of RANTES were not sig-
nificantly higher in subjects with a prevalence of monocytes, 
almost all subjects with extremely high values (ULOQ) of 
RANTES presented with predominant monocyte engraft-
ment. RANTES is a β‐chemokine with chemoattractant prop-
erties for monocytes and T‐lymphocytes, and is expressed on 
the endothelial surface of inflamed or damaged organs.24

Most chemokines are expressed by epithelial cells, 
monocytes and fibroblasts within a few minutes after cell 
damage, whereas RANTES is expressed 3‐5 days after the 
activation of T‐lymphocytes.25 This unusual kinetic pro-
file of RANTES contributes to the duration of inflamma-
tion, allowing it to expand and be maintained over time.26 
RANTES is involved in various pathological processes 
including immunological, degenerative, and chronic in-
flammatory diseases. It is also overexpressed in radiother-
apy‐induced pulmonary fibrosis.27 Our case study included 
22 clinical cases with ULOQ baseline RANTES levels, 
19 of which reported monocyte engraftment. Eighteen of 

22 patients with ULOQ RANTES levels underwent TBI‐
based conditioning, which was performed at a different 
hospital. Their baseline samples were collected after six 
TBI fractions of 2 Gy, when admitted to our hospital. We 
hypothesized that TBI‐induced systemic damage alone 
was sufficient to cause the ULOQ RANTES levels. Not all 
18 patients undergoing TBI with ULOQ RANTES levels 
had monocyte engraftment: three patients receiving pro-
phylaxis with defibrotide reported regular engraftment, 
while monocyte engraftment was detected in the remaining 
15 patients not undergoing prophylaxis with defibrotide. 
Indeed, multivariate analysis showed that treatment with 
defibrotide was inversely associated with the risk of mono-
cyte engraftment.

The baseline samples of four patients with ULOQ 
RANTES levels and who did not undergo TBI treatment 
were collected before conditioning. Therefore, their cyto-
kine expression could not have been affected by treatment 
connected with transplantation. Two of these patients were 
treated with sofosbuvir and underwent transplantation be-
cause of chronic active hepatitis C. Data in the literature sug-
gests that RANTES levels are significantly higher in chronic 
active hepatitis C subjects.28 Two other patients were treated 
with blinatumomab before conditioning, because of relapsed 

Variables Whole cohort
No VES, 
number (%) VES, number (%) P‐valuea

Number of 
patients (%)

79 (100) 52 (65.8) 27 (34.2) —

Previous chemotherapy, number (%)

Yes 64 (81.0) 38 (48.1) 26 (32.9) P < 0.05

No 15 (19.0) 14 (17.7) 1 (1.3)

Type of conditioning, number (%)

TBI‐based 34 (43.0) 23 (29.1) 11 (13.9) NS

MCHT‐based 45 (57.0) 31 (39.2) 14 (17.7)

Type of engraftment, number (%)

“Classical” 53 (67.1) 50 (63.3) 3 (3.8) P < 0.0001

Monocyte‐pre-
dominant

26 (32.9) 2 (2.5) 24 (30.4)

Number of 
baseline plasma 
samples (%)

26 (100) 8 (30.8) 18 (69.2)

Rantes baseline value, number (%)

Normal 4 (15.4) 4 (75.0) 0 P < 0.05

OOR > 22 (84.6) 4 (13.6) 18 (100)

Defibrotide prophylaxis, number (%)

Yes 44 (55.7) 42 (53.2) 2 (2.5) P < 0.0001

No 35 (44.3) 10 (12.7) 25 (31.6)

HSCT, hematopoietic stem cell transplantation; MCHT, myeloablative chemotherapy; OOR, out of range (pg/
mL); TBI, total body irradiation; VES, vascular endothelial syndrome; NS, not significant.
aP‐values are calculated from two‐tailed exact Fisher tests. 

T A B L E  7   Transplant‐related variables 
associated with vascular endothelial 
syndrome (VES) development
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leukemia. Blinatumomab is another powerful, well‐known 
inducer of cytokine release.29 None of these four patients 
underwent prophylaxis with defibrotide, and monocyte en-
graftment was detected in all of them. Our data show a sig-
nificant decrease in RANTES levels to the normal range in 
79 patients within 10 days after transplantation. This might 
be explained by the absence of cells competent to produce 
RANTES at the hematologic nadir: all patients were com-
pletely depleted of T‐cells.

Previous studies report a cytokinetic nadir occurring at 
the same time as the hematologic nadir for a high number of 
cytokines and chemokines.9 This event, however, does not 
explain the extremely low levels of IL‐2 found in the plasma 
samples of our 15 patients 1 or 2 days before the onset of 
early complications after transplant, and which cannot be 
measured using the adopted method (LLOQ). IL‐2 levels 
measured in these patients at the early stage of engraftment 
only 5‐7 days before the onset of complications were lower 
than the baseline values, but similar to those measured in 
all samples analyzed at the same stage. Not surprisingly, pa-
tients with extremely low IL‐2 levels develop a particularly 
severe form of GVHD, because this cytokine has a crucial 
role in immunologic tolerance. IL‐2−/− mice develop lethal 
autoimmunity.30 A significant result of our study was that 
none of the 15 patients underwent prophylaxis with defib-
rotide. Defibrotide is a drug that acts directly on ECs and 
is used for the prevention and treatment of SOS, ischemia, 
atherosclerosis and thrombocytopenic purpura, as well as 
any pathological condition originating from endothelial 
damage.31-34

5  |   CONCLUSION

Our study demonstrated that patients undergoing prophylaxis 
with defibrotide have a predominantly “classical” engraft-
ment, with a common cytokine pattern and a significantly 
lower incidence of severe early transplant‐related compli-
cations. The results of our study demonstrate a close rela-
tionship between the type of engraftment and the onset of 
such complications. A predominantly monocyte engraftment 
might be an accessible and early predictive factor of post‐
transplant complications. Given the high cost of defibrotide, 
selective prophylaxis may be considered for patients with 
monocyte engraftment.

This study had some limitations. It was a retrospective, 
single‐center study with a small cohort of patients. The anal-
ysis of cytokines was performed on a limited number of 
plasma samples. The number of patients who developed VES 
was too small for a comparative analysis between each type 
of VES, and even smaller to compare classical and mono-
cyte‐predominant engraftments. In our opinion, further ran-
dom studies will be necessary to confirm our data.
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