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Pooled testing increases efficiency by grouping individual samples
and testing the combined sample, such that many individuals can
be cleared with one negative test. This short paper demonstrates
that pooled testing is particularly advantageous in the setting of
pandemics, given repeated testing, rapid spread, and uncertain
risk. Repeated testing mechanically lowers the infection probabil-
ity at the time of the next test by removing positives from the
population. This effect alone means that increasing frequency by
x times only increases expected tests by around

√
x. However, this

calculation omits a further benefit of frequent testing: Removing
infections from the population lowers intragroup transmission,
which lowers infection probability and generates further effi-
ciency. For this reason, increasing testing frequency can paradox-
ically reduce total testing cost. Our calculations are based on the
assumption that infection rates are known, but predicting these
rates is challenging in a fast-moving pandemic. However, given
that frequent testing naturally suppresses the mean and variance
of infection rates, we show that our results are very robust to
uncertainty and misprediction. Finally, we note that efficiency
further increases given natural sampling pools (e.g., workplaces,
classrooms) that induce correlated risk via local transmission. We
conclude that frequent pooled testing using natural groupings is
a cost-effective way to provide consistent testing of a population
to suppress infection risk in a pandemic.

pooled testing | COVID-19 | surveillance testing

The COVID-19 pandemic has generated a health and eco-
nomic crisis not seen in more than a century. Opening busi-

nesses and schools is necessary to regain economic activity, but
the potential public health costs are dramatic. One policy to
circumvent this stark trade-off is to open the economy, while im-
plementing surveillance testing that can quickly identify infected
individuals—particularly those without symptoms—and prevent
them from spreading the disease. Unfortunately, testing at this
scale appears infeasible given the cost and capacity constraints.
This paper makes a simple but essential point about these costs:
When using pooling testing, frequent testing of correlated sam-
ples makes testing dramatically more efficient (and therefore
less costly) than understood both by existing research and policy
makers.

In pooled testing (1), multiple samples are combined and
tested together using one test, and the entire pool is cleared
given a negative test result. Pooling is an old concept, and a
large literature has emerged on optimal strategies (1–10); more
recently, others have discussed how it might be used to increase
COVID-19 test efficiency (11, 12). However, all of these papers
focus on one-time testing of a set of samples with known and
independent infection risk, which matches common use cases
such as screening donated blood for infectious diseases (13–18).
These environmental assumptions are violated when dealing with
a novel pandemic with rapid spread. In this case, people need
to be tested multiple times, testing pools are likely formed from
populations with correlated infection risk, and risk levels at any
time are very uncertain. How do these changes impact testing
strategy?

We start with the well-known observation that pooled test-
ing is more efficient when the infection probability is lower,
because the likelihood of a negative pooled test is increased.

This observation has been used to conclude that pooled testing is
not cost-effective for “high-risk” populations, such as health care
workers or for people in areas experiencing an outbreak. While
this statement is true for one-off testing, it does not hold when
the population is tested repeatedly. As an extreme example, if
a person in a high-risk area was just tested and determined to
be negative, their probability of infection when tested an hour
later is extremely low, simply because there is not much time
to be infected between the tests. In other words, the infection
probability at the time of testing depends both on the flow rate
of infection and the timing of testing.

We quantify the impact of testing frequency on infection prob-
ability and its consequent impact on pooled-testing efficiency.
For example, we show that, given reasonable levels of indepen-
dent risk, testing twice as often cuts the infection probability at
the time of testing by (about) half, which lowers the expected
number of tests at each testing round to about 70% of the original
number. The savings are akin to a “quantity discount” of 30% in
the cost of testing. Therefore, rather than requiring 2 times the
number of tests, doubling the frequency only increases costs by a
factor of 1.4. More generally, we demonstrate that testing more
frequently requires fewer tests than might be naively expected:
Increasing frequency by x times only uses about

√
x as many tests,

implying a quantity discount of (1− 1/
√
x ).

The benefits to frequency are even greater when the disease
spreads within the testing population. In this case, testing more
frequently has an additional benefit: By quickly removing in-
fected individuals, infection spread is contained, future infection
probabilities are lowered, and testing efficiency rises further. We
analytically quantify this additional benefit as a function of the
exponential-like growth path of the disease. We show that, in
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this case—somewhat paradoxically—the quantity discount can
be so great that more frequent testing can actually reduce the
total number of tests. For example, if the disease dynamics are
such that doubling the testing frequency reduces the infection
probability at the time of testing by more than fourfold, then
doubling the frequency will require fewer tests in expectation.

In our simple model, we assume that infection probabilities
are known when constructing optimal pool sizes and efficiency
statistics. However, the prediction of infections in a fast-changing
pandemic is an extremely difficult inference problem (see, e.g.,
ref. 19). Given this issue, it is appropriate to worry that uncer-
tainty and potential misprediction will make pool size choices
challenging, reduce pooled testing efficiency, and render our
conclusions void. For example, testing data from Massachusetts
in the fall of 2020 shows high average testing positivity rates (7%)
that vary widely across time and space (SD of 6%) in potentially
unpredictable ways. (These data are publicly available at
https://www.mass.gov/info-details/covid-19-response-reporting.)
Using one-off pooled testing given this population—which has
an extremely high positivity rate partially due to self-selection
of people who desire a test—will be very inefficient given the
high rates and the potential for misoptimization. However, as
discussed above, frequent testing of a consistent population
reduces the mean and variance of infection probabilities at
the time of testing because there is little time between testing
for mean- and variance-inducing spread to occur, and the
selection issue is removed. For example, as noted in ref. 20, the
town of Wellesley, MA, employed weekly testing of consistent
subpopulations in the fall of 2020, and the average positivity
rates stayed low (0.3%) and didn’t vary considerably (SD of
0.3%). When positivity rates have low mean and variance, we
show that the efficiency of pooled testing is strongly robust to
reasonably miscalibrated estimations and constant pool sizes,
such that pooled testing remains very attractive. Finally, we note
that better estimation of the positivity distribution is also helped
by frequent testing, which naturally produces a constant stream
of recent test result data from the relevant population.

We note one final efficiency benefit associated with the most
natural implementation of frequent testing. When frequently
testing a consistent subpopulation (such as those living or work-
ing together), it is likely that the infection spreads within the
subpopulation. This correlation increases the benefits of pooled
testing even in a static testing environment (a finding concur-
rently noted in ref. 21). Intuitively, an increased correlation in a
pool with fixed individual risk lowers the likelihood of a positive
pooled test result, which increases efficiency.

Throughout the paper, we consider a very stylized environment
with a number of simplifications to present transparent results.
While removing these constraints further complicates the prob-
lem and raises a number of important logistical questions, we do
not believe that their inclusion changes our main insights. For
example, our simple model assumes that a person who becomes
infected will test positive indefinitely, whereas, in reality, they will
potentially recover at some point. This does not impact our re-
sults when the time between tests is less than the recovery period,
but it lowers the relative cost of pooled testing when frequency is
low, because the prevalence is lower due to recoveries. However,
our main qualitative conclusion—testing more frequently leads
to fewer tests for each testing period—still holds in this case.

Another important simplification is that we model a test with
perfect sensitivity. [As noted in ref. 22, test specificity of standard
protocols such as PCR appears to be very close to one. However,
if specificity is a concern, the past literature (9, 23) has clear
methods to optimize in the case of imperfect tests.] There are
multiple ways in which pooled testing interacts with test sensitiv-
ity. First, there is a natural negative impact: Combining samples
can potentially dilute the viral load below the limit of detection
of the test. However, this implies that the false negatives will

occur when the viral load is very low and the person is less likely
to be infectious.* Second, this dilution concern is counteracted,
when testing frequently, by the large increase in overall sensitivity
coming from running a larger number of tests.† Third, as noted
in ref. 22, false negatives may result from poor-quality samples.
However, frequency again has benefits: By testing the same
population repeatedly, subjects become better experienced with
proper sampling protocols, and those who provide poor samples
can be identified and corrected.

Finally, we largely abstract away various practical implemen-
tation costs and constraints. First, we assume that every test,
whether individual or pooled, has the same cost. However,
pooled testing necessitates a more complicated setup in the
laboratory, requiring more space and trained personnel (or a
robotic setup) to correctly mix the samples together. While these
costs are relatively moderate if spread over a long period of
time, a laboratory might be reluctant to change their operations
when the duration of the pandemic is very unclear. Second, we
assume that there is no time delay between testing and receiving
the test result. In reality, it takes time to transport samples to
the laboratory and test them, and pooled testing takes more
time than individual testing because it potentially requires an
additional retesting step. Fortunately, the difference in these
delays can be minimized when using the common “hold-out”
method: Only a portion of each individual sample is used to
construct the pooled sample, such that the remaining portions of
the individual samples can be immediately individually tested if
the pooled sample tests positive. However, even if the difference
is minimized, any delay still impacts our analysis. In particular,
by assuming no delay, increasing the testing frequency minimizes
the likelihood of undiscovered new infections in the time between
tests, such that the infection probability at the time of testing can
be kept arbitrarily low. But, when there is a delay in receiving
test results, it is not possible to stop infection and spread during
the delay period even if testing is continuous. Therefore, it might
be simply impossible to lower the infection probability below
the ∼5% threshold at which the cost benefit of pooled testing
is considered clear. In this extreme case, we do not recommend
pooled testing. However, if the risk and spread are so extreme
that 5% of a group is expected to be newly infected every few
days even with very frequent testing, an alternative policy relying
on isolation seems far more likely.

Although we see this paper as noting a general insight of the
relationship between pooled testing and testing frequency, it is
useful to discuss the particular historical context in which the pa-
per was written. The first paper draft of the paper was completed
in June 2020, during the first wave of the COVID-19 pandemic.
At that point, testing supply was low and prices were high because
laboratories were building up testing capacity in a relatively strict
regulatory environment. By early 2021, multiple organizations—
such as Mirimus, Ginkgo, and the Broad—were offering frequent
pooled testing at much cheaper prices than individual testing, and
multiple organizations with correlated risk—such as employers,
cities, and school districts—were employing these tests. For ex-
ample, in February 2021, Massachusetts implemented a policy of
providing universal weekly pooled testing for all K-12 students

*Furthermore, empirically, the sensitivity loss of pooled testing given reasonable pool
sizes has been shown to be negligible in other domains (24, 25) and, more recently,
shown to be similarly low for COVID-19 in pool sizes of 32 and 48 (26, 27), although the
results of ref. 28 show lower specificity (81%) for pools of 50.

†For example, if pooled testing leads the sensitivity to drop from 99 to 90% on a single
test, sampling x times as frequently will increase overall sensitivity to 1 − (0.10)x if
errors are independent. Even with extreme correlation in the error—suppose the false
negative rate for a pool given a previous false negative for that pool is 50%—pooled
testing 4 to 5 times as frequently will recover the same false positive rate as individual
testing.
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and faculty and staff.‡ And, nationally, the Rockefeller Foun-
dation called for use of frequent pooled testing as an essential
aspect of school reopening (30).§ The authors, based on the main
insights of this paper, supported many of these policy initiatives
and recommendations. Interestingly, the cost of pooled testing
in Massachusetts (between $3 and $10 per student per test) is
almost precisely the predicted amount using pooling in the first
draft of the paper, providing a useful empirical validation of the
model.

The paper proceeds as follows: Pooled Testing reviews one im-
portant finding in the pooled testing literature that efficiency rises
as infection probability falls; Increasing Test Frequency Interaction
discusses the relationship between testing frequency and effi-
ciency; Robustness to Uncertainty demonstrates how correlated
infection leads to larger pool sizes and greater efficiency; and
Conclusions concludes.

Pooled Testing: Benefits Rise as Infection Probability Falls
Background on Pooled Testing. To understand the basic benefits
of pooled testing, consider a simple example: 100 people, each
with an independent likelihood of being positive of 1% and a
test that (perfectly) determines whether a sample is positive.
The conventional approach of testing each person individually
requires 100 tests. Suppose, instead, that the individuals’ samples
are combined into five equally sized pools of 20, and then each
of these combined samples is tested using one test. If any one
of the 20 individuals in a combined sample is positive, everyone
in that pool is individually tested, requiring 20 more tests (21
in total). The probability that this occurs is 1− (1− 0.01)20

≈18%. However, if no one in the pool is positive—which occurs
with probability ∼82%—no more testing is required. Because
the majority of tests require no testing in the second case, the
expected number of tests for this simple pooling method is only
around 23, a significant improvement over the 100 tests required
in the nonpooled method.

The approach is well studied, with a large literature focused on
improving the efficiency of pooled testing. These include using
the optimal pool size (e.g., in this example, the optimal pool
size of 10 would lower the expected number of tests to around
20), placing people into multiple pools (31), and allowing for
multiple stages of pooled testing (2, 8, 23, 32, 33). There are
also methods to deal with complications, such as incorporating
continuous outcomes (34). Any of these modifications can be
incorporated in our pooled testing strategy.

For clarity of exposition, we present results for simple two-
stage “Dorfman” testing—in which every person in a positive
pool is tested individually—to demonstrate that our conclusions
are not driven by highly complex poolings and to make our calcu-
lations transparent, although we advocate for more sophisticated
strategies when feasible. As an example of this transparency,
while the optimal pool size and associated efficiency formulas
under Dorfman testing are complicated, approximations around
infection probability p = 0 are very simple and accurate at the
low probabilities needed for pooled testing. Specifically, given
a relatively low infection probability p, the approximate optimal
pool size is

g∗ ≈ 1

2
+

1√
p
, [1]

‡See, for example, https://covidedtesting.com, which provides a detailed description of
the approach to pooled testing in schools and the experience in Massachusetts. Ref. 29
covers the role the program can play in Massachusetts and as a model for the United
States.

§This report notes that, even with vaccination, testing will continue to be a key policy
lever. In wealthy countries, the potential for low vaccination take-up and much slower
vaccination approval for children suggests that schools and possibly many employers
will continue to need surveillance testing. Furthermore, many low-income countries
will not achieve large-scale vaccination for multiple years.

and a good approximation of the expected number of tests given
a population of n people is

E [tests∗]≈ 2 ·√p · n. [2]

In this paper, we create simple statements about the impact
of increasing frequency that are approximately correct for low p.
Note that this does not imply that our results are only appropriate
for low-risk populations. The amount of infection at the time of
testing depends on the testing frequency. Therefore, for the same
population (even a high-risk population), p will be high when
considering testing every month, but much lower when testing
every day. By focusing on situations in which p is relatively low,
we are not focusing on low-risk populations but rather focusing
on frequencies in which p remains relatively low for the given
population. That is, for a high-risk population, our approxima-
tion formulas will be reasonably accurate when comparing the
benefits of testing once vs. twice a week but less accurate when
comparing the benefits of testing once vs. twice a month. In other
words, our focus on low levels of p is not an assumption about
the population risk level but an assumption that we are only
comparing frequencies in which infection does not spread out of
control in a given population.

How good is the approximation? For the magnitude of in-
fection probabilities we discuss in the paper, such as 2%, 1%,
or 0.1%, the approximation of the optimal pool size is within
0.3%, 0.1%, and 0.01%, respectively, of the true optimal, and
the approximation of the number of tests is within 3.1%, 2.3%,
and 0.7% of the true number. However, given that there are
multiple possible formulas in the literature, it is also useful to
discuss the origin of our formulas. The formula we use for the
pool size is from ref. 35, who uses Taylor expansion to create an
approximation around p = 0 given that pool size is continuous.
However, he also notes that ceiling(

√
1/p) is a better approxi-

mation if pool size is constrained to be an integer. Meanwhile,
ref. 36 notes that the exact solution is either 1, 1 + floor(

√
1/p),

or 2 + floor(
√

1/p), depending on p. Similarly, for expected
tests, the low-order Taylor approximation (also from ref. 35) is
2 · √p · n − p/2 · n . Here, we only use the term 2 · √p · n , as
it creates simpler formulas with little loss of accuracy in the
approximation.

Infection Probability and Pooled Testing. As noted by many previ-
ous authors, for all the different incarnations of pooled testing,
the benefits of pooled testing rise as the infection probability
falls in the population. Lower probabilities reduce the chance of
a positive pooled test, thereby reducing the likelihood that the
entire pool must be retested individually. This is clear in Eq. 2,
as expected tests 2 ·√p · n drop with infection probabilities. For
example, if the probability drops from 1 to 0.1%, the optimal pool
size rises, and the number of tests falls from around 20 to 6.3.
There is still a large gain if the pool size is fixed: Expected tests
drop from 23 to around 6.9 using a fixed pool size of 20. Similarly,
if the probability rises from 1 to 10%, the expected number of
tests using the optimal pool size rises to around 59 (or 93 given a
fixed pool size of 20).

The full relationship is shown in Fig. 1, which plots the ex-
pected number of tests in a population of n people given different
pool sizes and visually highlights the results based on 1) individual
testing—which always leads to n tests, 2) using pools of 20, and
3) using optimal pooling given two stages. For simplicity, we
construct these figures by assuming that n is large to remove
rounding issues that arise from breaking n people into pools
sizes that are not divisible by n. There are large gains from
pooled testing at many infection probabilities, although they are
appreciably larger at lower probabilities. We note that this figure
replicates many similar figures already in the literature going
back to ref. 1.
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Fig. 1. Efficiency of pooled testing rises with infection probability. This
figure plots the expected number of tests (y axis) from pooled testing given
a population of n people as the population infection probability (x axis)
changes. The black flat line shows the number of tests from individual (Ind.)
testing (equivalent to a pool size of one), which always requires n tests
regardless of infection probability. The results from using a pool size of
20 is shown in orange, while the blue line represents the number of tests
given the optimal pool size for a given probability. Finally, the green text
notes that benefit from pooled testing is the distance between the black
individual-testing line and those from pooled testing. For example, as noted
in the text, using a pool size of 20 for a probability of 1% leads to 0.23 · n
tests rather than n tests, while the optimal pool size (10) leads to 0.20 · n
tests.

Increasing Test Frequency
Interaction between Frequent Testing and Pooled Testing. Our main
insight is the important complementarity between pooled testing
and testing frequency. Intuitively, the benefits of pooled testing
rise as the infection probability falls, and frequent testing keeps
this probability low at each testing period. Continuing with our
example, suppose that 100 people have a p = 1% independent
chance of being positive over the course of an arbitrary baseline
length of time, such as a month.

The baseline length represents the longest length of time
between tests that we consider in our analysis. The variable p is
then determined by both the fundamental disease characteristics
and the baseline length. For example, p will be lower for a less-
infectious disease and lower if the baseline length is shorter (as
there is less time for infection). In our analysis below, we fix the
disease and baseline length under consideration, and therefore
fix p. Note, then, that time enters our model through the baseline
length, via the variable p. For our later approximation formulas
to be accurate, the baseline length must be short enough that
p remains relatively low (<5%) for the given population. In
other words, our approximations are appropriate when compar-
ing different frequencies as long as all of the frequencies under
consideration keep the expected p under some control.

Returning to our example, suppose that people are instead
tested 10 times a month. Testing individually at this frequency
requires 10 times the number of tests, for 1,000 total tests. It is
therefore natural to think that pooled testing also requires 10
times the number of tests, for more than 200 total tests. However,
this estimation ignores the fact that testing 10 times as frequently
reduces the probability of infection at the point of each test
(conditional on not being positive at the previous test) from 1 to
only around 0.1%.¶ This drop in probability reduces the number

¶Our analysis assumes that background risk is spread uniformly across time. Instead, one
might consider a model in which the risk is changing. In this case, a main question
of interest becomes when to test. That is, when the background risk is constant, it is
appropriate to test at equal intervals because this places an equal amount of infection
risk at each test. However, if the risk is changing, it is appropriate to test at unequal

of expected tests—given pools of 20—to 6.9 at each of the 10
testing points, such that the total number is only 69. That is,
testing people 10 times as frequently only requires slightly more
than 3 times the number of tests. Or, put in a different way, there
is a quantity discount of around 65% by increasing frequency.
The same conclusion holds for optimal pool sizes: The one-time
pool test would require 20 expected tests, while testing 10 times
as frequently requires 6.3 tests at each testing point, for a total of
63. The savings relative to the 1,000 tests using individual testing
are dramatic, with only ∼6% of the total tests required.

Fig. 2 represents this effect more generally for different levels
of frequency given an infection probability of 1% over the course
of a month. Note that, at a frequency of once a month, the
numbers match those in Fig. 1, which was based on one test given
a probability of 1%. Unlike in Fig. 1, we do not include the results
for individual testing in this graph, as testing individually every
day requires 20 to 30 times more tests than pooled testing, which
renders the graph unreadable. The dashed orange line represents
the naive (and incorrect) calculation for pooled testing by extrap-
olating the cost of testing multiple times by using the number of
tests required for one test. That is, as above, one might naively
think that testing x times using a pool size of 20 in a population of
n would require x · 0.23 · n tests given that testing once requires
0.23 · n tests. Pooled testing is, in fact, much cheaper due to
the reduction in the probability of infection at the time of each
testing—the central contribution of this section. We therefore
denote the savings between the extrapolation line and the actual
requirements of pooled testing as the “frequency benefit.”

The exact level of savings of the frequency benefit changes
in a complicated way depending on the infection probability p
given one test and the frequency x. However, approximations
again provide a useful guide: The probability of a person being
positive at testingP(x ) = 1− x√1− p is well approximated using
the first-order Taylor Series around p = 0 by#

P(x )≈ p

x
. [3]

Plugging this into our previous approximation, the expected
number of tests given the optimal pool size is then well approxi-
mated by

E [tests∗|x ]≈ 2 ·√p ·
√
x · n. [4]

Again, for our purposes, the most important fact is that these
approximations are accurate for low p. For example, given p
of 2%, 1%, or 0.1%, the approximation is within 1%, 0.5%, or
0.02%, of the true number for all x < 100. The approximation for
E [tests∗|x ] even given p = 5% is within 1.3%, 0.6%, and 0.008%
of the true number for x of 5, 10, and 100, respectively.

Intuitively, testing at a frequency of x cuts the probability to
around p

x
by Eq. 3, such that the expected tests at each testing

time is around 2 ·
√

p/x · n , such that testing x times requires
2 ·
√

p/x · x · n total tests, which simplifies to Eq. 4. Therefore,
the expected cost of pooled testing x times as frequently is around√
x when using optimal pool-sized two-stage pooled testing, and

asymptotes to this exact amount as p falls to zero. In other
words, the quantity discount of increased frequency is close to
(1− 1/

√
x ). So, for example, pooled testing using optimally

sized pools every week (about four times a month) costs around√
4 = 2 times the number of tests from pooled testing every

month, implying a quantity discount of 50%. Or, testing every

intervals. For example, if the background risk is exponentially rising, testing should
occur more frequently over time, such that the interval between tests is exponentially
decreasing.

#In general, the first-order Taylor Series approximation of f(x, p) around p = 0 is

f(x, 0) +
∂f(x,p)

∂p |p=0 · (p − 0). In our case, then, 1 − x√1 − p ≈ 1 − x√1 − 0 +

∂(1− x√1−p)
∂p |p=0 · (p − 0) = 0 + 1

x · (1 − 0)
1
x −1 · (p − 0) = p

x .
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Fig. 2. Efficiency of pooled testing rises with frequency. This graph presents
the effect of testing frequency (x axis) on the expected number of tests (y
axis), given infection probability for each individual in the population of 1%
over a month. When the frequency is once a month, the points correspond
to those in Fig. 1given probability of 1%: n for individual testing, 0.23 · n
when using a pool size of 20, and 0.20 · n tests when using the optimal pool
size. The dotted orange line represents the (incorrect) extrapolation that,
if a pool size of 20 leads to 0.23 · n tests when frequency is once a month,
it should equal x · 0.23 · n if frequency is x times a month. In reality, the
expected tests are much lower, due to a quantity discount or “frequency
benefit,” highlighted by the green text. Finally, the blue line highlights tests
given the optimally chosen pool size.

day (around 30 times a month) costs about
√
30≈ 5.5 times the

number of tests, implying a quantity discount of 82%.

Avoiding Exponential Spread through Frequent Testing. The logic
above ignores a major benefit of frequent testing: identifying
infected people earlier and removing them from the population.‖
Beyond the obvious health benefits, removing people from the
testing population earlier stops them from infecting others, which
reduces infection probability, and therefore increases the benefit
of pooled testing. In the previous section, we shut down this
channel by assuming that every person in the testing population
had an independent probability of becoming infected. If the
testing population includes people that interact, such as people
who work or live in the same space, infections will spread at
a higher rate within the testing population once someone is
infected from the outside.

Precisely modeling spread in a given population is challeng-
ing and situation dependent. Our goal is not to make specific
statements about a particular disease in a particular situation
but to provide more general and portable statements about the
efficiency of frequent pooled testing in many situations. To that
end, we consider a very stylized model in which we affix an
exponential multiplier function exp(λ/x ) on P(x ) to capture the
exponential-like growth associated with untamed spread within
the population prior to saturation, such that**

||Ref. 37 notes a similar effect given a fixed budget of individual tests: it is more efficient
to spread testing out over time because infected people are discovered earlier and
removed.

**This formula captures exponential growth in the most simplistic way possible. However,
we believe it is also a good approximation for more complicated models. For example,
the simple model does not apparently capture the fact that people who are infected
later in a time period will cause less spread than those who are infected earlier.
Solving for that more complete model leads to Pspread(x) = p/γ · (eγ/x − 1) for a
different spread parameter γ where λ = Log((eγ − 1)/γ). However, for reasonable
parameters, our simple formula is a very good approximation, particularly for a low γ.
For γ = Log[2] (every person is expected to infect one other person over the baseline
length), our formula is within 0%, 0.31%, 0.18%, and 0.002% of the true formula
for x equal to 0, 5, 10, and 100, respectively, for every p. Even when γ = Log[6], the
percentages are 0%, 2.1%, 1.2%, and 0.1%. Therefore, as in the rest of the paper,
we choose the simpler approximation, as it leads to more transparent and intuitive
conclusions. If the population is saturated with infections, growth will not continue to

Pspread(x )≡ P(x ) · exp(
λ

x
)

≈ p

x
· exp(

λ

x
).

[5]

Intuitively, given λ≥ 0, the multiplier exp(λ/x ) causes the
probability of infection to rise above p

x
, with a stronger impact

as frequency drops and spread continues unchecked. Given no
intragroup spread (λ= 0), Pspread(x ) reverts to P(x ). Just as the
parameter p was chosen above to represent the probability of
outside infection during the chosen baseline length of time given
no testing, λ is calibrated such that p · exp(λ) equals the prob-
ability of infection over that period when including unchecked
intragroup spread. Therefore, for example, when considering a
time period of a month, if outside infection alone is expected
to lead to a 1% infection rate at the end of the month given no
testing, but the inclusion of intragroup spread causes this rate
to rise to 4%, then λ= Ln[4]. Given this addition, Eq. 4 then
changes to

E [tests∗spread |x ]≈ 2 ·√p ·
√
x ·

√
exp(

λ

x
) · n. [6]

Recall that, without spread, Eq. 4 implied that increasing
frequency from 1 to x > 1 doesn’t cost x times as many tests
but rather

√
x times, for a quantity discount of (1− 1/

√
x ). Eq.

6 implies that, given spread, this benefit is increased: Testing x
times now lowers to

√
x ·

√
exp(λ · 1− x/x ) as many tests for

an increased discount of (1− 1/
√
x ·

√
exp(λ · 1− x/x )). This

discount is rising in x (as before) and is also rising in λ.
Somewhat counterintuitively, the quantity discount can be so

great that testing more frequently requires fewer total tests in
expectation. For example, it is (approximately) cheaper to test
twice as frequently if λ≥ Ln[4], which implies the probability of
infection at the time of testing is reduced by more than 4 times
by testing twice as often. Intuitively, if spread is very aggressive,
the efficiency gains from reduced infection probabilities arising
from increasing frequency are so great that they overwhelm the
increasing number of testing times. Note, however, that this “free
lunch” does not necessarily continue if x doubles again from two
to four. For example, when λ= Ln[4], testing 4 times as often
costs 1.2 times as much as testing once or twice.

These effects are shown in Fig. 3 for p = 0.01 and λ= Ln[5].
We plot the expected number of tests (left y axis) and final portion
of the population infected (right y axis) for different testing
frequencies. The number of infections rises in an exponential-like
manner as frequency decreases and the infection is allowed to
spread. The expected number of tests given different frequencies
uses the same colors to represent a pool size of 20 (orange) and
the optimal size (blue). Comparing Figs. 2 and 3 is instructive.
In Fig. 2, we see a consistent increase in the tests required as
the frequency of testing is increased. In Fig. 3, however, the tests
required are relatively flat and even decrease for early frequency
increases.

Optimal Testing Frequency. The main benefit of increasing fre-
quency is reducing the exponential rise in infections. As shown
in Fig. 3, the marginal benefit from reduced infections due to
increasing frequency is high at low frequencies and drops as
frequency rises, eventually to zero. Interestingly, as shown in
Fig. 3, the number of tests can actually fall as frequency rises
when starting at low frequencies. Therefore, for low frequencies,
there is, in fact, no trade-off of raising frequency: It both reduces
infections and reduces tests.

be exponential. Therefore, the baseline testing length under consideration needs to be
short enough such that saturation is not likely to occur between tests.
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Fig. 3. Increased frequency lowers infections with few additional tests
given intrapool spread. This graph presents the effect of testing frequency
(x axis) on the expected number of tests (left y axis) and final portion
of the population that are infected (right y axis) given the model with
intrapopulation spread outlined in Eq. 5 with p = 0.01 and λ = Ln[5]. As
shown in the red dot-dashed line of final infection proportions, increased
frequency reduces the exponential-like spread because infected people are
removed from the population. The number of expected tests required is
shown for pool size 20 in orange, and in blue for the optimal pool size. There
is not much increase (and even an early decrease) in the total number of tests
required because frequency increases lead to increased testing efficiency.

As testing frequency rises, the number of expected tests will
inevitably rise, leading to a trade-off between marginal benefit
and cost.†† Consequently, at very high frequencies, there is an
increased cost without a large benefit. The optimal frequency lies
between these extremes but depends on the value of reducing
infections versus the cost of tests, which is an issue beyond the
scope of this paper.

Robustness to Uncertainty and Misprediction of Infection
Rates
The above analysis is predicated on the assumption that the
probability of infection at the time of testing is known. However,
infection rates vary wildly over time and space in a pandemic
and are extremely challenging to estimate correctly (see, e.g., ref.
22). Given this, one concern is that our main results and bullish
conclusions about the efficiency of frequent pooled testing will
fall apart given this uncertainty and the potential misprediction
of infection rates. However, as we show in this section, our results
are strongly robust to this concern.

An important benefit of frequent testing—as repeatedly noted
above—is that it suppresses the infection rate at the time of
testing and therefore reduces uncertainty. Using an extreme ex-
ample, if people are tested every hour, the likelihood of observing
any new infections at the time of testing is necessarily very small,
and, if any new infections are observed, they will likely be very
few. That is, by testing frequently, the mean and variance of the
infection rate at the time of testing is kept very small.

A less extreme empirical example is mentioned in the intro-
duction: The town of Wellesley, MA, tested a consistent group
of school staff and students weekly in the fall of 2020. During
this time, the second wave of COVID-19 was ravaging the United
States. Data from Massachusetts as a whole in this period shows
extremely high average weekly testing positivity rates (7%) with
large variation across time (SD of 6%). However, the aver-
age weekly positivity rates in Wellesley stayed low (0.3%) and

††As an extreme example, if testing is so frequent that the infection probability at each
test is effectively zero, then increasing the frequency by one will lead to an additional
test for each pool without meaningfully reducing this probability at each testing period.
This can be seen in Fig. 3 for pool size of 20 where, at a frequency of around biweekly,
the number of expected tests rises close to linearly with a slope of 1

20 = 0.05 · n.

didn’t vary considerably (SD of 0.3%).‡‡ While the Wellesley
testing population was consistently and frequently tested, the
Massachusetts testing population likely consisted of many one-
off tests from people who sought out a test, presumably because
they were exposed or experienced symptoms. As we have noted
throughout the paper, it is therefore not correct to observe high
self-selected positivity rates in the general population and con-
clude that frequent pooled testing on a consistent subpopulation
would be inefficient.

Even though frequent testing reduces the mean and variance
of positivity rates, there is still uncertainty. However, we now
show that this uncertainty has little impact on our conclusions. In
particular, suppose that, rather than being known, the infection
rate is uncertain and drawn from a gamma distribution with mean
μ and SD σ (we chose the gamma distribution as it has the ability
to reasonably match the empirical distribution of positivity rates
for both Wellesley and Massachusetts as a whole). In our previous
analysis, we effectively assumed that the pool designer is aware
of the exact realization of the infection rate and can optimize
pool size accordingly. What if, instead, the designer knows the
distribution but not the specific draw? And what happens if the
designer (mistakenly) believes that the distribution is actually
characterized by μ̂= α · μ and σ̂ = α · σ? Does this uncertainty
or misprediction destroy the efficiency from pooled testing?

Interestingly, reasonable uncertainty and misprediction have
very little impact on efficiency. For example, in the case resem-
bling Wellesley where μ= 0.003 and σ = 0.003, the expected
number of tests given full knowledge of the infection realization
is 0.093 · n . When the designer knows the distribution but is
unaware of the realization, the optimal pool size is 19, and the
resultant expected number of tests only rises to 0.103 · n . That
is, the lack of knowledge only costs 0.01 · n tests in expectation.
Finally, given mistaken beliefs where α equals 0.5, 0.75, 1.5, and
2, tests only rise to 0.109 · n , 0.105 · n , 0.106 · n , and 0.109 ·
n , respectively. That is, mistaken beliefs have little impact on
efficiency. This lack of impact is a result of the robustness of
efficiency to wrongly chosen pool sizes. For example, whereas
the correct beliefs about the distribution lead to an optimal pool
size of 19, mistakenly using pool sizes of 10, 15, 30, and 40 only
increases tests to 0.126 · n , 0.109 · n , 0.113 · n , and 0.130 · n ,
respectively. The main driver of efficiency is not perfect opti-
mization of pool sizes but rather the mean infection rate, which
is suppressed by frequent testing.§§

Finally, we note one additional benefit of frequent testing
with respect to uncertainty. When performing a one-off test on
a random new population, it is very challenging to create an
accurate estimate of the risk distribution. However, performing
frequent testing on a consistent population naturally generates a
byproduct of past positivity realizations for the same population,
which can be used to create a more accurate estimate.¶¶ For
example, a surprisingly high positivity rate one week might shift
beliefs about the next week’s distribution upward, leading to
smaller pool sizes or more frequent testing.

‡‡The use of frequent testing was not randomly assigned to Wellesley. Therefore,
one fear is that Wellesley’s rates are fundamentally low due to specific population
characteristics. While only (nonexistent) random assignment can solve this identification
problem, we do note that Norfolk County—the home of Wellesley—had infection rates
similar to other counties in December 2020, when Massachusetts began publishing
county-by-county statistics.

§§While efficiency losses rise with mean and variance, reasonable robustness to un-
certainty holds more generally. For example, for μ and σ of [0.01,0.01], [0.03,0.03],
and [0.06,0.06], the efficiency costs of lacking knowledge about the realization of
distribution are 0.018 · n, 0.026 · n, and 0.032 · n, respectively, and the efficiency losses
from a mistaken belief of α = 0.5 are 0.026 · n, 0.036 · n, and 0.045 · n, respectively.

¶¶In a previous version of the paper located at https://www.nber.org/papers/w27457, we
discuss how employing machine learning techniques on known data can create more-
accurate estimates and increase testing efficiency.
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Correlated Infection Further Increases Efficiency
When subpopulations are frequently tested, it is natural to pool
individuals with correlated risk, such as people who live or work
together. We very briefly note a result (concurrently noted by ref.
21), that this correlation can even further increase efficiency.

To understand the benefit of correlation given pooled testing,
it is useful to broadly outline the forces that determine the
expected number of tests with simple two-stage testing with a
pool size of g and a large testing population n. In the first
stage, a test will be run for every n/g pool, while, in the second
stage, every n/g pool faces a probability q that at least one
sample will be positive, such that all g people in the pool will
need to be individually tested. Combining and simplifying these
factors leads to a simple formula of the expected number of
tests given a pool size: n · (1/g + q). As noted above, in the case
of infections with independent probability p, q = 1− (1− p)g .
However, as infections become more positively correlated, q falls
for every pool size g > 1. For example, with two people in a
pool whose infections have a correlation r, q can be shown to
be 1− (1− p)2 − r · p · (1− p). That is, when r = 0, we recover
the original formula 1− (1− p)2, while raising r linearly drops
the probability until it is p when r = 1. Intuitively, the pool has a
positive result if either person 1 or person 2 is infected, which—
holding p constant—is less likely when infections are correlated
and therefore more likely to occur simultaneously.

To understand larger pools, we repeatedly simulate each indi-
vidual, drawing an N (0, 1) random variable and assigning them
to be infected if their draw is above a critical value (i.e., 2.326
for a 1% infection rate). To simulate correlation, an individual’s
draw is a convex combination of a shared and individual normally
distributed variable, where the weights are calibrated such that
the pairwise correlation between any two people is r. As an ex-
ample of how q falls with more people and consequently reduces
the number of tests, suppose that p = 1%: When infections are
uncorrelated, q is around 9.6%, 18.2%, 26.0%, and 33.1% given
respective pool sizes 10, 20, 30, and 40, while q respectively drops
to around 3.1%, 3.9%, 4.4%, and 4.8% when every person is
pairwise correlated with r = 0.5. Therefore, the respective ex-
pected number of tests given these pool sizes falls from 0.196 · n ,
0.232 · n , 0.294 · n , and 0.356 · n when uncorrelated to 0.131 ·
n , 0.089 · n , 0.077 · n , and 0.073 · n when r = 0.5. First, note
that the number of expected tests is universally lower at every
pool size given correlation (and the savings are very significant).
Second, note that, while the pool size with the lowest number of

expected tests given these potential pool sizes is 10 when there
is no correlation, larger pool sizes are better given correlation.
This statement is more general: A higher correlation raises the
optimal pool size. The intuition is that the marginal benefit of
higher pool size (reducing the 1

g
first-stage tests) is the same

with or without correlation, but the marginal cost (increasing the
probability of second-stage testing) is reduced with higher corre-
lation, thus leading to a higher optimum. As an example, while
the optimal pool size given p = 1% is 10 given no correlation, the
optimal pool sizes given r of 0, 0.2, 0,4, 0.6, and 0.8 are 11, 22, 44,
107, and 385, respectively.

Conclusions
This paper shows that pooled testing is particularly efficient
when frequently performed on pools with correlated risk (e.g., in
workplaces or schools). Our key insight is that repeated testing
reduces the infection probability at the time of each test and—
since pooled testing is more efficient given lower probabilities—
increases the efficiency of pooled testing. Therefore, contrary to
a commonly stated rule, pooled testing is appropriate and cost
effective even for high-risk populations, as long as the frequency
of testing rises in relation to this risk.## In fact, we are starting
to see frequent pooled testing offered at prices of $3 to $10 per
person per test. Consequently, frequent pooled testing is increas-
ingly being adopted at scale, such as in the state of Massachusetts
where all K-12 students are offered weekly pooled testing. The
cost of testing in those programs validates these estimates and
demonstrates the feasibility of these strategies.
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## However, the initial round that begins the frequent testing is an exception: When
testing starts in a high-risk population, infection probabilities at the time of testing
are likely to be high because there have been no actions taken to contain spread. It is
therefore potentially cost effective to use individual testing for this one initial round
before switching to pooled testing for all following rounds. For these later rounds,
infection probability is kept low because frequent testing is allowing for the constant
removal of infected individuals.
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