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Cell-based mathematical models have previously been developed to simulate the immune
system in response to pathogens. Mathematical modeling papers which study the human
immune response to pathogens have predicted concentrations of a variety of cells,
including activated and resting macrophages, plasma cells, and antibodies. This study
aims to create a comprehensive mathematical model that can predict cytokine levels in
response to a gram-positive bacterium, S. aureus by coupling previous models. To
accomplish this, the cytokines Tumor Necrosis Factor Alpha (TNF-a), Interleukin 6 (IL-6),
Interleukin 8 (IL-8), and Interleukin 10 (IL-10) are included to quantify the relationship
between cytokine release from macrophages and the concentration of the pathogen, S.
aureus, ex vivo. Partial differential equations (PDEs) are used to model cellular response
and ordinary differential equations (ODEs) are used to model cytokine response, and
interactions between both components produce a more robust and more complete
systems-level understanding of immune activation. In the coupled cellular and cytokine
model outlined in this paper, a low concentration of S. aureus is used to stimulate the
measured cellular response and cytokine expression. Results show that our cellular
activation and cytokine expression model characterizing septic conditions can predict ex
vivo mechanisms in response to gram-negative and gram-positive bacteria. Our
simulations provide new insights into how the human immune system responds to
infections from different pathogens. Novel applications of these insights help in the
development of more powerful tools and protocols in infection biology.

Keywords: cytokines, mathematical modeling, immune response, immune system, Staphycoccus aureus, cytokine
response, cell activation
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1 INTRODUCTION

The human immune system consists of the innate and adaptive
immune response. Innate immunity comprises multiple lines of
defense beginning with skin, saliva, and various secretions, and
ending with non-specific leukocytes, while adaptive immunity
refers to a long-term specific response initiated to eliminate a
specific pathogen (Kim et al., 2007; Mirzaei et al., 2020). The
immune system leukocytes are usually in the form of neutrophils,
macrophages, eosinophils, or natural killer cells. Their primary
function is to perform phagocytosis of pathogens and cell debris
through engulfment and chemical degradation (Badwey and
Karnovsky, 1980). If the innate immune system is insufficient
in eliminating the pathogen, it activates the adaptive immune
system, which is primarily composed of B cells and T cells,
known for their specificity in function (Zhang and An, 2007). B
cells produce and recruit antibodies that tag antigens on infected
cells for T cells to subsequently destroy (Winer et al., 2011). In
addition, both B and T cells play a role in the production of
cytokines, which are small signaling proteins released by
leukocytes that facilitate communication between immune cells.

One such signaling protein is TNF-a, which is instrumental
to the acute phase reaction during an inflammatory response. In
response to sepsis, TNF-a, a regulator of immune cells, functions
by upregulating other cytokines, including IL-1 and IL-6
(Feuerstein et al., 1994). IL-6 is involved in inflammation
and homeostatic processes, but though it is primarily a
proinflammatory cytokine, it can also act as an anti-
inflammatory cytokine through its inhibitory effects on TNF-a.
During inflammation and the delay in apoptosis of T cells, IL-6 is
critical for the recruitment of T cells and the production of B and
T cells (Fournier and Philpott, 2005). Similarly, IL-8 is also
involved in the recruitment of T cells, as well as basophils and
neutrophils (Holmes et al., 1991). IL-8 has been shown to be
induced by TNF-a and inhibited by IL-10 (Yao et al., 1996;
Osawa et al., 2002) which is an anti-inflammatory cytokine
critical in the regulation of immune responses (de Waal
Malefyt et al., 1991). In particular, IL-10 limits the production
of the proinflammatory cytokines such as IL-6, while
downregulating the expression of TNF-a, T helper type 1
cytokines, and major histocompatibility complex class 2
molecules (Iyer and Cheng, 2012; Ip et al., 2017). Additionally,
IL-10 acts as an immuno-regulator by maintaining homeostasis
and preventing host damage during infection (Fournier and
Philpott, 2005; Ip et al., 2017).

On a fundamental level, the innate immune system is able to
recognize and respond to a wide range of triggers. To do so, it has
evolved to include pattern recognition receptors (PRRs) that are
able to recognize pathogen-associated molecular patterns
(PAMPS) (Chandler and Ernst, 2017). PAMPS are features
in microbes that are vital, common, and most importantly,
conserved. Present in nearly all bacterial cell walls,
peptidoglycan (PepG) is essential for maintaining cell structure
and shape (Hergott et al., 2016). PepG protects cells from bursting
due to turgor or in response to environmental stressors. The lipid
components of cell membranes also contain distinguishing
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
markers that are recognizable and stimulatory. Lipoteichoic acid
(LTA), a hallmark of gram-positive bacteria, consists of a
glycolipid covalently bound to a hydrophilic glycerophosphate
polymer. The glycolipid component localizes in the lipid bilayer of
cell membranes. Both PepG and LTA are recognized by the innate
immune system and can trigger the systemic release of cytokines
(Hergott et al., 2016). When injected into rats during an in vivo
study, PepG and LTA acted in conjunction to trigger the release of
TNF-a (De Kimpe et al., 1995).

A primary designation in the classification of gram-negative
bacteria is the presence of lipopolysaccharide (LPS), instead of
LTA, as part of the outer cell membrane. LPS, also known as
endotoxin, is one of the most potent immunostimulants
(Alexander and Rietschel, 2001) and consists of a glycan
polymer, oligosaccharide core, and membrane-anchor lipid
(Alexander and Rietschel, 2001; Cavaillon, 2018). Physiological
recognition of the lipid component by the immune system causes
pro-inflammatory cytokine activity (Alexander and Rietschel,
2001; Liu et al., 2018; Monguió-Tortajada et al., 2018; Tawfik
et al., 2020). Endotoxin is the main driver of pro- and anti-
inflammatory cytokine activation in gram-negative bacterial
infections (Feezor et al., 2003; Tawfik et al., 2020). Endotoxin-
induced inflammatory conditions cause similar levels of cytokine
expression as those found in septic conditions due to a gram-
positive bacteria such as S. aureus, one of the most common
bacteria found on the surface of human skin (Foster, 2004;
Tawfik et al., 2020). S. aureus, characterized by its thick, PepG
layer and LTA layer, is known to stimulate the immune system
through the release of toxins into the bloodstream (Feezor et al.,
2003; McNicholas et al., 2014). LTA and PepG are the primary
sources of activation of cytokines in response to gram-positive
bacterial infections (Feuerstein et al., 1994; De Kimpe et al., 1995;
Lowings et al., 2009; Cole et al., 2014) whose levels can be
predicted using mathematical models.

Mathematical modeling of complex biological systems holds
the potential for elucidating emergent properties of intricate
biological pathways within the human body (DiLeo et al., 2009;
Möbius and Laan, 2015; Morel et al., 2017; Caudill and Lynch,
2018; Meier-Schellersheim et al., 2019). In particular, immune
system research can benefit from in silico simulations of drug and
pathogen responses, which provide a deeper understanding of
system dynamics that can be applied to design better diagnostic
and treatment protocols (Chow et al., 2005; Eftimie et al., 2016).
In general, in silico experimentation provides an alternative to
tests that are difficult, impractical, expensive, or potentially
unethical to perform in vivo (Winslow et al., 2012; Nijhout
et al., 2015). Additionally, they provide a safer and more cost-
effective platform for clinical drug testing, as potential drug
candidates can be “pre-screened” (Winslow et al., 2012)
Previous simulations successfully modeled activated and
resting macrophages, plasma cells, antibodies, helper T cells,
T-lymphocytes, and B-lymphocytes in response to the pathogen
S. aureus (Quintela et al., 2014; Alvarez et al., 2019). However,
they failed to account for the interactions between the cellular
and cytokine response (Altan-Bonnet and Mukherjee, 2019;
Torres et al., 2019; Du and Yuan, 2020).
November 2021 | Volume 11 | Article 711153
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The mathematical model presented herein, extends previous
studies by taking into account the interconnectivity between
cellular and cytokine responses and captures ex vivo and
potential in vivo dynamics of the immune response (Quintela
et al., 2014; Brady et al., 2016). This study focuses on examining
the immune response to acute stimulation by a pathogen, which
leads to a cascade of cellular signals recruiting leukocytes, or
white blood cells, throughout the body (Hoebe et al., 2004;
Anderson et al., 2019; Xue and Falcon, 2019). The cytokines of
interest include TNF-a, IL-6, IL-8, and IL-10 as they are crucial
in downstream signaling pathways that affect inflammatory and
other responses within the immune system (Khoa et al., 2003).
Additionally, several pharmaceutical agents can influence these
cytokines, including Fosfomycin (FOM) (Michalopoulos et al.,
2011), Clarithromycin (CAM) (PubMedHealth, 2018),
Dexamethasone (DEX), and glucocorticoids (Johnson et al.,
2021). FOM is an antibiotic that disrupts the cell walls of
bacteria, specifically the gram-positive bacteria S. aureus, which
blocks the production of IL-8 and amplifies the synthesis of IL-6
and IL-10 (Morikawa et al., 1996; Lan et al., 2018; Zheng et al.,
2020). CAM is a macrolide antibiotic that diminishes the spread
of bacteria while increasing the production of IL-10 (Morikawa
et al., 1996). DEX is a steroid that hinders the immune system in
the presence of inflammation (Johnson et al., 2021) by reducing
the production of both IL-6 and IL-10 (Morikawa et al., 1996).

The mathematical model representing the basic pathway of
the standard human immune response to S. aureus (Quintela
et al., 2014) was coupled with a mathematical model predicting
the cytokine response to LPS (Wang et al., 2000; Brady et al.,
2016). Although the two models that were coupled represented
responses to different pathogens (gram-positive vs gram-
negative bacteria), in both cases the cytokine concentrations
are calculated as functions of activated macrophages. Thus, the
fundamental interactions between macrophages and cytokines
are similar. Several literature sources exploring the immune
response to PepG, LTA, and S. aureus in conjunction with LPS
suggest that our assumption involving both antigens is
reasonable (Fournier and Philpott, 2005; Zhang and An, 2007).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
S. aureus was chosen because it is an opportunistic pathogen, and
notably is one of the leading causes of life-threatening infections
including sepsis (Kwiecinski and Horswill, 2020).

The following mathematical model is formulated using a
system of ordinary differential equations (ODEs) and partial
differential equations (PDEs) emulating the intricate
relationships among the pathogen, cytokines, and cells within
the human immune system. As described in detail below, PDEs
are used to represent the spatial features of the cellular model,
while ODEs are used to model the cytokine activation dynamics.
This model is used to simulate the cellular and cytokine
activation induced by a low dose of S. aureus. Results show the
proposed cellular-cytokine mathematical model can be used to
predict ex vivo and in vivo experimental data induced by a
given pathogen.
2 METHODS

2.1 Experimental Data
Our coupled mathematical models are validated using data from
two studies. The first measured cytokine concentrations from
whole human blood induced by S. aureus PAMPs in healthy
males and the second measured cytokine expression from
human endothelial cells removed and induced by a low dose of
S. aureus. Experiment descriptions are further referenced
in Table 1.

2.1.1 Human Whole Blood Ex Vivo Response to
S. aureus PAMPs
We first incorporated data from ex vivo studies predicting the
response to S. aureus PAMPs. This study used whole blood data
collected from healthy volunteers (Wang et al., 2000). The PepG
was isolated from S. aureus, purified with hydrofluoric acid, and
stored at -20°C. Venous blood from healthy subjects was
anticoagulated with Na-citrate and analyzed after removal
from incubation in the presence or absence of either 10 mg of
PepG or 100 mg of LTA per ml of blood at the 1, 3, 6, 12, and
TABLE 1 | Experimental data used in the formulation and validation of the mathematical models.

Experiment
Section

Description Reference

2.1.1 Uses whole human blood data collected from healthy volunteers. The PepG was isolated from S. aureus, purified with hydrofluoric acid, and
stored at -20°C. Venous blood from healthy subjects was anticoagulated with Na-citrate and analyzed after removal from incubation in the
presence or absence of either 10 mg of PepG or 100 mg of LTA per ml of blood at the 1, 3, 6, 12, and 24-hour mark. The plasma removed
during those time periods was centrifuged at 7,000 × g for 2 min and stored at -20°C for analyses using the enzyme immunoassay specific
to TNF-a, IL-6, and IL-10.

Wang
et al., 2000

2.1.2 Endothelial cells (EC) from the human umbilical vein were removed and kept in a 5.5% CO2 tissue culture. The ECs were analyzed after
removal from incubation in the presence of 108 CFU of S. aureus per ml at the 1, 3, 6, 12, and 24-hour mark. The ECs were removed from
incubation and centrifuged for 30 min for analysis using enzyme-linked immunosorbent assay (ELISA) to measure IL-8 protein levels in the
infected samples.

Yao et al.,
1996

2.1.3 Each participant was under EKG signal supervision during the entire experiment. The experiment was initiated with an injection of a low
dose (2 ng/kg body weight) of LPS. Blood samples were taken before the LPS injections, then at t=2, 3, 3.5, 4, 5, 6, 7, and 8 hours. The
experimental protocol was repeated twice, and to reduce the risk of tolerance towards the endotoxin, the two days of experimentation were
spaced 4 weeks apart. Following each experimentation day, samples were collected in EDTA tubes (Greiner bio-one, Germany), centrifuged
at 4⁰C at 3500 rpm, then analyzed for cytokine concentrations using ELISA. The data from the participants were then analyzed to
understand the effects of changes in cytokine expression, particularly TNF-a, IL-6, IL-8 and IL-10.

Brady
et al., 2016
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24-hour mark. The plasma removed during those time periods
was centrifuged at 7,000 × g for 2 min and stored at -20°C for
analyses using the enzyme immunoassay specific to TNF-a, IL-6,
and IL-10 (Wang et al., 2000).

2.1.2 Human Endothelial Cells Ex Vivo Response
to S. aureus
In the second study, endothelial cells (EC) from the human
umbilical vein were removed and kept in a 5.5% CO2 tissue
culture. The ECs were analyzed after removal from incubation in
the presence of 108 CFU of S. aureus per ml at the 1, 3, 6, 12, and
24-hour mark. The ECs were removed from incubation and
centrifuged for 30 min for analysis using enzyme-linked
immunosorbent assay (ELISA) to measure IL-8 protein levels
in the infected samples (Yao et al., 1996).

The experimental data were collected to formulate cellular-
cytokine mathematical models. However, the ex vivo
experimental data for each cytokine were measured in different
units. The whole blood experiments for TNF-a, IL-6, and IL-10
were measured in relative concentrations whereas the endothelial
cells from an umbilical vein for IL-8 were measured in ng/ml.
The endotoxin cytokine-based model experiments for all
aforementioned cytokines were measured in pg/ml. As a result,
a conversion factor was implemented to compare the cytokines
both to each other and to the simulation model results. This
conversion factor used a relative unit metric to the peak value of
the 24-hour data. A time-over-time evaluation of the minimum
value was divided by the difference between the maximum and
minimum values of that instance.

relative   concentration

=
min (½cytokine�)t

max (½cytokine�)t −min (½cytokine�)t
(1)

To ensure proper coupling, the cytokine mathematical
expressions were initially derived from cytokine concentrations
in healthy males induced with low doses of LPS.

2.1.3 Human Cytokine levels In Vivo
Response to LPS
Cytokine data were extracted from previous studies, approved by
the Regional Committee on Health Research Ethics (protocol ID
H-3-2012-011) and the Regional Data Monitoring board (ID
j-2007-58-0015, local 30-0766), and reported to clinicaltrials.gov
(NCT01592526) (Brady et al., 2016). The participants were
recruited by means of public advertising in Copenhagen,
Denmark, and were required to meet specific safety protocols
for the study. The study used data from 20 healthy adult males
aged 18-35 years. The inclusion criteria were male, age 18-35,
good general health, body mass index < 30 kg/m2, and written
informed consent to participate in the study. The exclusion
criteria were daily medicine intake, smoking, allergic reaction
to nicotine, and splenectomy.

Each participant was under EKG signal supervision during
the entire experiment. The experiment was initiated with an
injection of a low dose (2 ng/kg body weight) of LPS. Blood
samples were taken before the LPS injections, then at t=2, 3, 3.5,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
4, 5, 6, 7, and 8 hours. The experimental protocol was repeated
twice, and to reduce the risk of tolerance towards the endotoxin,
the two days of experimentation were spaced 4 weeks apart.
Following each experimentation day, samples were collected in
EDTA tubes (Greiner bio-one, Germany), centrifuged at 4⁰C at
3500 rpm, then analyzed for cytokine concentrations using
ELISA (Brady et al., 2016). The data from the participants
were then analyzed to understand the effects of changes in
cytokine expression. This in vivo data measuring the cytokine-
cytokine response was used to test the differential equation
models (Quintela et al., 2014; Brady et al., 2016).
2.2 Mathematical Model
A novel cellular-cytokine mathematical model (shown in
Figure 1) combining the cellular model by Quintela et al. and
the inflammatory cytokine model by Brady et al. is proposed
(Quintela et al., 2014; Brady et al., 2016). The cellular model by
Quintela et al. predicts the activation of the acquired immune
response by activated macrophages acting as antigen presenting
cells to the bacterium S. aureus, present in a portion of lung
tissue. The prediction of resting and activated macrophages is
used as an input to the novel cellular-cytokine model predicting
the cytokine response to a pathogen. The novel cellular-cytokine
model described by a system of partial (PDEs) and ordinary
(ODEs) differential equations is solved over a 24-hour period.
The cellular model is first solved in C++ and then used as input
for the novel cellular-cytokine model, which ODEs are solved in
MATLAB, and predicted states are compared to the
experimental data for cellular and cytokine concentrations in
response to bacterial infection with S. aureus.

As noted in the introduction, numerous research studies have
concluded that the host response to gram-positive and gram-
negative bacteria provides similar activation of pro- and anti-
inflammatory cytokines (Feezor et al., 2003; Fournier and
Philpott, 2005). In an ex vivo study of 52 healthy patients,
Feezor et al. concluded that activation of TNF-⍺, IL-8, and IL-
10 induced by LPS and S. aureus show no significant difference in
cellular activation and cytokine expression. This is further
supported in studies by De Kimpe et al., 1995; Feezor et al.,
2003; Fournier and Philpott, 2005, finding that LTA and PepG
promoting activation of pro-inflammatory, anti-inflammatory,
and chemoattractant properties have similar effects as a host
response to LPS. As a result, the combination of LPS from gram-
negative bacteria and PAMPs from gram-positive bacteria is
reasonable due to their ability to induce similar inflammatory
responses (Fan et al., 2007).

The widespread inflammation and septic shock caused by
gram-positive bacteria, such as S. aureus, is primarily due to the
function of LTA and PepG during an inflammatory response
(Feezor et al., 2003; Moreillon and Majcherczyk, 2003; Fournier
and Philpott, 2005). LTA and PepG work in conjunction to
induce cytokine expression in the host’s innate and adaptive
immune response to S. aureus. Mechanisms of action in the host
including phagocytosis, neutrophil flux, and Sbi protein
activation differ between the wall components and the
pathogen itself, but they elicit similar inflammatory cytokine
November 2021 | Volume 11 | Article 711153
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responses (Feezor et al., 2003; Moreillon and Majcherczyk, 2003;
Fournier and Philpott, 2005). Results from these studies promote
our assumption that the inflammatory response to the gram-
positive bacteria S. aureus, the gram-positive bacteria cell wall
constituents LTA and PepG, and the gram-negative bacteria wall
constituent LPS, induce similar cytokine expression ex vivo
(Feezor et al., 2003; Moreillon and Majcherczyk, 2003;
Fournier and Philpott, 2005) but differ in their mechanism of
action and host recognition.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
These studies serve as a foundation for our coupledmathematical
model combining the cellular PDEs and the cytokine ODEs via a
shared variable, representing the concentration of activated
macrophages averaged over the inflamed tissue.

2.2.1 Cellular Model
The cellular model by Quintela et al. predicts the activation of the
acquired immune response to s. aureus as a function of the
concentrations of bacteria (A), resting (M) and activated
macrophages (M), and antibodies (F) spatially distributed in
1cm3 of lung tissue (x = (x,y,z)) as well as concentrations of
lymphocytes (T,B), plasma cells (p), and antibodies (F) varying in
time at the nearest lymph node. In this study, we assume that the
the activated macrophages act as antigen presenting cells and
migrate to the nearest lymph node where the specific response is
triggered. Specific antibodies then travel to the infection site to
opsonize the antigen. The activated macrophages are modelled
both as spatially interacting with the antigen in the tissue (MA(x,
t)) and at the lymph node (ML

A(t)) interacting with the
lymphocytes with concentrations varying only in time. The
model is formulated using a system of partial and ordinary
differential equations with the following dependent variables:
Spatial variables (pg/mm3):

- S. aureus bacteria (A(x,t))

- Resting Macrophages (MR(x,t))

- Activated Macrophages (MA(x,t))

- Specific Antibodies (F(x,t))

Temporal variables (pg/mm3):

Average Activated Macrophages (ML
A(t))

- T-Lymphocytes (T(t))

- B-Lymphocytes (B(t))

- Plasma cells (P(t))

- Antibodies (FL(t))

The details of the cellular model equations and the coupling
from the tissue and nearest lymph node are available in Quintela
et al. (2014). The novel cellular-cytokine model that is based
both on the macrophage activation part of this cellular model
and on the inflammatory cytokine model by Brady et al, is
described below.

2.2.2 Novel Cellular-Cytokine Model
The cellular and cytokine dynamics are described using ODEs.
We predict concentrations of TNF-a, IL-6, IL-8, and IL-10 as a
function of the resting (MR(t)) and activated macrophages (MA

(t)) considering the average tissue concentration obtained from
the cellular model as initial condition. This model was originally
developed to study the response of cytokines to LPS, but since
LPS and PAMPs induce similar pro- and anti-inflammatory
responses, we couple the cytokine model to the cell-based
model described in Section 2.2.1. This is supported by findings
from Fan et al. who discovered that Gi proteins present in both
gram-negative and gram-positive bacteria contribute to the
A

B

C

FIGURE 1 | A visual representation of the model components. (A) The
simulation created by Quintela et al. representing the relationships between
S. aureus and the different immune response cells were incorporated (Quintela
et al., 2014). (B) A visual representation of the cytokine mathematical model as
outlined by Brady et al. (2016). These relationships were used in the simulation
via the relationships between the cytokines and the active macrophages rather
than the pathogen itself (See Figure 2C). (C) The coupled model represented
in this study. The green and red arrows indicate a positive (up-regulation) and
negative (down-regulation) response, respectively. The various shapes indicate
the parts of the simulation from Quintela et al. while the dark blue boxes
indicate the parts of the simulation from the mathematical equations from
Brady et al. The concentrations of the cytokines are solely dependent on the
macrophage concentration and are not directly affected by the pathogen itself.
November 2021 | Volume 11 | Article 711153
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regulation of several cytokines and chemokines in response to
bacterial stimuli (Fan et al., 2007). In the cytokine model, the
dependent variables include:
Temporal variables:

- Bacteria: A(t)

- Resting Macrophages: MR(t)

- Activated Macrophages: MA(t)

- Tumor Necrosis Factor a (pro-inflammatory): TNF(t)

- Interleukin-6 (pro-inflammatory): : IL6(t)

- Interleukin-8 (pro-inflammatory): : IL8(t)

- Interleukin-10 (anti-inflammatory): IL10(t)

For each cytokine, up-and down-regulation is modeled using
sigmoidal functions given by

HU
Y (X) =

Xh

hh
YX + Xh

or  HD
Y (X) =

hh
YX

hh
YX + Xh

, (2)

where X represents the cytokine inducing up-regulation
(superscript U) or down-regulation (superscript D) of cytokine
Y. The half-maximum value is represented by h. These sigmoidal
functions are incorporated within all the cytokine equations to
describe the relationships between each of the cytokines. Specific
parameter values are given in Table 2.

The cellular portion of the model proposed herein, predicts
concentrations (pg/mm3) of bacteria (A), resting (MR) and
activated macrophages (MA) varying over time.

S. aureus bacterium (A(x, t)) growth rate and rate of decline is
modeled as:

dA
dt = bAA 1 − A

kA

� �
− mAA − lMRMRA − lMAAMA

A(0) = A0,

A(x, 0) = A0,   
dA
dt (·, t)jdW = 0

(3)

where the first term represents the logistic growth of the bacteria,
the constant kA represents the carrying capacity, and bA the
replication rate. The second term gives the natural decay rate of
the bacteria in the absence of any immune system processes
through the natural decay coefficient, mA. The third and fourth
terms describe the phagocytosis of S. aureus through activated
and resting macrophages, with the constants lMA and lMR

representing the rate of decline caused by activated and resting
macrophages, respectively.

Resting MR(t) macrophages response to the pathogen S.
aureus are modeled as:

dMR
dt = mMR 1 − MR

MR _MAX

� �
MR − (gMA + kMTNFH

U
M(TNF)H

D
M(IL10))MRA

MR(0) = MR,

(4)

where the first term in Eq (3) represents the constant influx rate
of the resting macrophage (mMR up to MR MAX and the second
term represents macrophage activation at the rate gMA in
response to the bacteria and activation rate kMTNF considering
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
the influence of the cytokines TNF and IL-10. The initial
condition is given by the average of resting macrophages in the
tissue ( �MR) as an outcome of the cellular model simulation
over 24h.

Activated macrophages MA(t) are modeled as:

dMA
dt = (gMA + kMTNFH

U
M(TNF)H

D
M(IL10))MRA − mMAMA,

MA(0) = MR,
(5)

where the first term in Eq (4) represents macrophage activation
at the rate gMA and kMTNF considering the influence of the
cytokines TNF and IL-10, and the last term represents the
decay rate of the activated (mMA) macrophages. The initial
condition is given by the average of activated macrophages in
the tissue ( �MA) as an outcome of the cellular model simulation
over 24h. The initial concentration of both resting and activated
macrophages are constant (MR0

  and  MA0
) and at the boundary

of the tissue neither the resting or activated macrophage
concentration change.

In response to macrophage activation, the Tumor Necrosis
Factor alpha (TNF-a) dynamics can be modeled as:

dTNF
dt

= kTNFMH
D
TNF(IL6)H

D
TNF(IL10)MA − kTNF(TNF

− qTNF), (6)

where the first term represents the down-regulating interactions
that the cytokines IL-6 and IL-10 have with TNF-⍺ growth (at
rate kTNFM) mediated by the average concentration of activated
macrophages. The second term describes the rate in which TNF-
⍺ naturally decays over time. As noted in the equation, the rate of
change of TNF-a depends on the activated macrophages, which
is predicted from the cellular model. In the cellular model, MA

depends on both x and t. This response is integrated here and
described further in Section 2.2.3.

Interleukin 6 (IL-6) activation is modeled as:

dIL6
dt

= (kIL6M + kIL6TNFH
U
IL6(TNF))H

D
IL6(IL6)H

D
IL6(IL10)MA

− kIL6(IL6 − qIL6), (7)

where the first term represents the interactions between TNF-⍺
(upregulating) and IL-10 (downregulating) affecting IL-6
production at a rate (kIL6TNF), and an IL-6, which also induce
auto-negative feedback. The second term represents the natural
decay (at rate k_IL6) of IL-6 towards a resting level (qIL6).

Interleukin 8 (IL-8) activation is modeled as:

dIL8
dt

= (kIL8M + kIL8TNFH
U
IL8(TNF))H

D
IL8(IL10)MA

− kIL8(IL8 − qIL8), (8)

where the first term represents the interactions between the
opposing effects of TNF-⍺ (upregulating) at a rate (kIL8TNF) and
IL-10 (downregulating) at a rate (kIL8M) stimulating the growth
of IL-8 at a rate proportional to the average concentration of
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TABLE 2 | Parameters, values, and units for the variables in the partial and ordinary differential equations found in the simulation (6, 7).

Parameter Value Unit Reference

kMTNF 8.65 hr-1 Brady et al., 2016
kTNF 200 day–1 Brady et al., 2016
kTNFM 1.5 relative   cytokine   concentration

day · #  of   cells
Brady et al., 2016

k6 4.64 day-1 Brady et al., 2016
k6M 0.01 relative   cytokine   concentration

day · #  of   cells
Brady et al., 2016

k6TNF 0.81 relative   cytokine   concentration
day · #  of   cells

Brady et al., 2016

k8 0.464 day-1 Brady et al., 2016
k8M 0.056 relative   cytokine   concentration

day · #  of   cells
Brady et al., 2016

k8TNF 0.56 relative   cytokine   concentration
day · #  of   cells

Brady et al., 2016

k10 1.1 day-1 Brady et al., 2016
k10M 0.19 relative   cytokine   concentration

day · #  of   cells
Brady et al., 2016

k106 0.0191 relative   cytokine   concentration
day · #  of   cells

Brady et al., 2016

qTNF 0.14 relative concentration Brady et al., 2016
qIL6 0.6 relative concentration Brady et al., 2016
qIL8 0.2 relative concentration Brady et al., 2016
qIL10 0.15 relative concentration Brady et al., 2016
hTNF6 560 relative concentration Brady et al., 2016
hTNF10 17.4 relative concentration Brady et al., 2016
h610 34.8 relative concentration Brady et al., 2016
h66 560 relative concentration Brady et al., 2016
h6TNF 185 relative concentration Brady et al., 2016
h810 17.4 relative concentration Brady et al., 2016
h8TNF 185 relative concentration Brady et al., 2016
h106 560 relative concentration Brady et al., 2016
h106 3.68 dimentionless Brady et al., 2016
h6TNF 2 dimentionless Brady et al., 2016
h66 1 dimentionless Brady et al., 2016
h610 4 dimentionless Brady et al., 2016
h8TNF 3 dimentionless Brady et al., 2016
h810 1.5 dimentionless Brady et al., 2016
hTNF10 3 dimentionless Brady et al., 2016
hTNF6 2 dimentionless Brady et al., 2016
DA 3.7·10-15 mm3

day

Quintela et al., 2014

DMR 4.32·10-2 mm3

day

Quintela et al., 2014

DMA 0.3 mm3

day

Quintela et al., 2014

bA 2.0 day-1 Quintela et al., 2014
kA 50.0 cell

mm3
Quintela et al., 2014

mA 0.1 day–1 Quintela et al., 2014
mMR 0.033 day-1 Quintela et al., 2014
mMA 0.07 day-1 Quintela et al., 2014
gMA 8.3·10-2 mm3

cell · day

Quintela et al., 2014

lMR 5.98·10-3 mm3

cell · day

Quintela et al., 2014

lMA 5.98·10-2 mm3

cell · day

Quintela et al., 2014

lAFMR 1.66·10-3 mm6

cell2 · day

Quintela et al., 2014

lAFMA 7.14·10-2 mm6

cell2 · day

Quintela et al., 2014

aMA 10-3 day-1 Quintela et al., 2014
aMR 4.0 day-1 Quintela et al., 2014
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activated macrophages production, while the second term
represents the natural decay rate of IL-8.

Interleukin 10 (IL-10) activation is modeled as:

dIL10
dt

= (kIL10M + kIL10IL6H
U
IL10(IL6))MA − kIL10(IL10

− qIL10), (9)

where the first term describes the up-regulation of IL-10 due to
IL-6 (at a rate kIL10IL6) and average concentration of activated
macrophages (at a rate kIL10M), while the second term describes
the natural decay rate of IL-10.

2.2.3 Coupled Model Numerical Solution
We first solve the cellular spatiotemporal model (over a 24-hour
period) predicting the average concentrations of resting and
activated macrophages in response to a low dose of S. aureus
in the tissue. It is assumed that pathogen and macrophage
movements can be represented as diffusion according to Fick’s
Law (Crank, 1975). Therefore, each PDEs include a diffusion
term with a specific diffusivity coefficient (Di, = MR, MA)
estimated by Quintela et al. based on experimental
observations for the pathogen and the cells that are included in
this study. The diffusion term representing the rate of transfer of
cells from one site to another is proportional to their
concentration gradient. For simplicity, it is assumed that the
medium is isotropic and has the same diffusion coefficient for
every direction (Quintela et al., 2014), i.e., we model diffusion via
the term, DiDMj, i =MR,MA and j= R, A denote the diffusion of
the macrophages in the tissue, again D refer to the second order
derivative in space. At the onset of the simulation there aren’t
any activated macrophages in the tissue (MA0 = 0), i.e., the
resting macrophages that are equally distributed over the domain
at concentration MR0. The cellular model is solved in C++ using
the finite differences method.

Following the simulation of the cellular model, we calculate
the average number of resting and activated macrophages by
integrating the resulting concentrations of each over the
discretized 1 cubic cm domain as:

�M(t) =
1
V

Z
W
M   d  W (10)

The average concentrations for resting �MR, and activated �MR,
macrophages are used as initial condition for the novel cellular-
cytokine model. The ODEs ((1) - (8)) are then solved in
MATLAB using the ode45 function.

2.3 Model Parameters
The model parameters include diffusion coefficients and
replication, decay, activation, phagocytic, and migration rates of
bacteria and cellular macrophages from the cellular model, and
cytokine rate constants, source terms, and half-maximum values
exponents from the cytokine model. To simplify the complexity of
the human immune response, the cellular model parameters,
cytokine half-maximum value and Hill function exponent
parameters are held constant. They can be adjusted for model
specifications, including representing in vivo septic conditions.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Diffusion coefficients: Di denotes the diffusion of the particular
bacteria or cell into the tissue. Values from all cellular model
parameters were obtained from literature research (Marchuk,
1997; Sarah and Richard, 2009; Pigozzo et al., 2013).

DA - Bacteria diffusion coefficient

DMR - Resting macrophage diffusion coefficient

DMA - Activated macrophage diffusion coefficient

Replication, decay, activation, and phagocytic rates: The
following parameters denote the different rates of growth and
decay for the bacteria and cells.

bA - Replication rate of the bacteria

kA - Carrying capacity of the bacteria

mA - Natural decay rate of the bacteria

mMR - Natural decay rate of the resting macrophages

mMA - Natural decay rate of the activated macrophages

gMA - Rate in which resting macrophages become active

lMR - Activation of the macrophages

lMA - Destruction rate of the bacteria by activate macrophages

lAF│MR - Destruction rate of opsonized bacteria by resting
macrophages

lAF│MA - Destruction rate of opsonized bacteria by activated
macrophages

Cellular rate of migration: The ai denotes the migration rate
of the macrophages to the site of infection.

aMA - Migration rate of activated macrophages

aMR - Migration rate of resting macrophages

Rate constants: ki denotes cytokine activation or elimination
rates, and kij determines the rate of change in the upregulation
rate of a cytokine secreted from activated macrophages. These
parameters have initial values based on predicted conditions of
our model activated with a low dose of S. aureus.

kMTNF – Activation rate of resting macrophages influenced by
TNF-a

kTNF - Activation rate (per hour) of TNF-a
kTNFM - Upregulation of TNF-a by the activated macrophages

k6 - Activation rate (per hour) of IL-6

k6M - Upregulation of IL-6 by the activated macrophages

k6TNF - Upregulation of IL-6 by TNF-a
k8 - Activation rate (per hour) of IL-8

k8M - Upregulation of IL-8 by the activated macrophages

k8TNF - Upregulation of IL-8 by TNF-a
k10 - Activation rate (per hour) of IL-10

k10M - Upregulation of IL-10 by the activated macrophages

k106 - Upregulation of IL-10 by IL-6

Source parameters: qi represents the base concentration of
each cytokine in the absence of pathogen stimulation. qi are also
used to set initial conditions for each cytokine. These parameters
November 2021 | Volume 11 | Article 711153
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values are established based on initial predicted conditions of the
model in the absence of S. aureus.

qTNF - The concentration of TNF-a in the absence of a pathogen

qIL6 - The concentration of IL-6 in the absence of a pathogen

qIL8 - The concentration of IL-8 in the absence of a pathogen

qIL10 - The concentration of IL-10 in the absence of a pathogen

Half-maximum value: The hi parameters describe the
effector cytokine concentration at which target cytokine
activity would reach half-maximum with units of pg mL-1.
They are included in sigmoidal Hill functions used to model
up- or down-regulation of a specific target cytokine by a specific
effector cytokine.

hTNF6 - Half-maximum value associated with downregulation of
TNF-a by IL-6

hTNF10 - Half-maximum value associated with downregulation of
TNF-a by IL-10

h610 - Half-maximum value associated with downregulation of
IL-6 by IL-10

h66 - Half-maximum value associated with the auto-negative
feedback of IL-6

h6TNF - Half-maximum value associated with upregulation of IL-
6 by TNF-a

h810 - Half-maximum value associated with downregulation of
IL-8 by IL-10

h8TNF - Half-maximum value associated with upregulation of IL-
8 by TNF-a

h106 - Half-maximum value associated with upregulation of IL-
10 by IL-6

Hill function exponent: ℎi represents the steepness of the Hill
functions used to model the up- or down-regulation of
each interaction.

h106 - Hill function exponent associated with upregulation of
IL-10 by IL-6

h6TNF - Hill function exponent associated with upregulation of
IL-6 by TNF-a

h66 - Hill function exponent associated with auto-negative
feedback of IL-6

h610 - Hill function exponent associated with downregulation of
IL-6 by IL-10

h8TNF - Hill function exponent associated with upregulation of
IL-8 by TNF-a

h810 - Hill function exponent associated with downregulation of
IL-8 by IL-10

hTNF10 - Hill function exponent associated with downregulation
of TNF-a by IL-10

hTNF6 - Hill function exponent associated with downregulation
of TNF-a by IL-6

Parameters for half-maximum (hi) and the respective
exponents (hi) are fixed at their nominal values given in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
Table 2, while the rate constants k and source parameters q
are estimated to fit the model to data.

2.4 Sensitivity Analysis
We have performed a sensitivity analysis to estimate how the
model solution is affected by small perturbations to each model
parameter. The sensitivity index was defined as the ratio

Si =
d J
J
dp
p
, J , p ≠ 0 (11)

where j denotes a model output that depends on a parameter p, d
is a perturbation to the parameter p, and dJ is the resulting
perturbation to the output j. The sensitivity index is a measure of
the percentage of change in the output given a perturbation in
each parameter (Quintela et al., 2014). The value of each
parameter was varied by 10%, while other parameters were
kept fixed at their baseline values.

2.5 Parameter Estimation
Parameters for the cell model are taken from literature, whereas
we estimate rate constants and source parameters for the
cytokine model minimizing the least squared error (j) between
model predictions and data, given by

J = rTr, r = rTNF , rIL6, rIL8, rIL10f g (12)

where rX = {Xm(t1) – X
d(t1), X

m(t2) – X
d(t2),…, Xm(tN) – X

d(tN)}/ffiffiffiffi
N

p
,and X = TNF, IL6, IL8, IL10 Superscript (m) refer to the

model prediction and superscript (d) to the data. Parameter
estimation was done using the MATLAB fminsearch function.

2.6 Statistical Analysis
A regression model was used to compare simulated results to
experimental data. In each regression, simulated relative
concentrations of each cytokine were compared to
experimental concentrations of the same cytokine, induced by
either LTA or PepG.

We assume linear regression of the form,

y = c1 + c2x, (13)

Where c1 represents the y-intercept and c2 represents the slope of
each linear least squares (LLS) regression. This analysis was
completed in MATLAB using the linear least squares package
fitlm and shows the significance of the simulation relative to the
experimental data (Table 3).
3 RESULTS

The results illustrate the model simulation in comparison to
experimental data. Similar to LPS, S. aureus causes an initial
spike in the concentrations of the cytokines. As the bacteria
multiply, cytokine concentrations increase, reaching a plateau at
which the bacterial growth rate equals the immune response rate.
At this stage, the immune response decreases until the response
rate overcomes the growth of the bacteria (Brennan and
Zheng, 2007).
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To test the validity of the model on a macroscale, the model was
used to simulate a response to an infection by S. aureus. As
expected, there were clear indications of the immune system
response. From the start of infection, simulated macrophage and
cytokine concentrations increase in proportion to the activated
macrophages until a maximum concentration is reached at five
hours (Figure 2). Once the bacteria were eliminated by the immune
system response in the simulation, the macrophages and cytokines
started reverting back to their basal values (Figure 3).

The microscale validity of the simulation was tested through
close comparison of the simulation to the studies of ex vivo
stimulation conducted by Wang et al. and Yao et al. (Yao et al.,
1996; Wang et al., 2000; Wang and Deisboeck, 2014). Cytokine
response by LTA and PepG stimulation in whole blood samples
from those studies closely resemble the simulated cytokine
response described herein (Yao et al., 1996; Wang et al., 2000).
The peaks of TNF-a, IL-10, IL-6, and IL-8 coincide between the
model results and ex vivo blood sample data (Yao et al., 1996;
Wang et al., 2000) (Figure 4).

Due to the different magnitudes of cytokine concentrations
in the coupled simulation and blood sample data, a conversion
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
factor to convert concentrations to relative values was
introduced for meaningful comparison (Wang et al., 2000).
Due to the limitations in the whole blood samples, TNF-⍺, IL-6,
IL-8, and IL-10 were studied in response to low concentrations
of PepG and LTA. On the contrary, the coupled simulation
studied the immune response to antigen concentrations at
significantly higher concentrations. Thus, the initial cytokine,
antigen, and macrophage concentrations were modified to
match the experimental conditions for a more accurate
comparison (Figure 5).

Additionally, sensitivity analyses were conducted to validate
the ex vivo experimental data with the simulated results. Each
parameter in the cytokine equations were tested through its real-
time concentration changing fold number, acquired by dividing
the estimated parameters by their initial concentration and
integrated over a 24-hour period (Figures 4, 5). The sensitivity
index of 50 parameters in the model following a 24-hour
simulation was conducted by implementing 10% parameter
variations in each cytokine (Figure 6, 7). The parameters qTNF
and kTNF in the TNF-⍺ equation, qIL8 and k8 in the IL-8 equation,
FIGURE 3 | S. aureus average cell concentration in the tissue with and
without immune response over a 24-hour period.
TABLE 3 | LLS regressions of simulated results for each cytokine vs. experimental data of immune response to LTA and PepG.

Cytokine-
Inducer

Var. Est. value Sth. Err. 95% Con. Int. t-stat p-val. RMSE R2 R2 Adj. F-stat vs. Const. p-val.

TNFa-LTA c1 -11.51 11.85 11.6 -0.97131 0.4339 14.6 0.946 0.919 34.9 0.0275
c2 1.117 0.189 0.185 5.908 0.0275

TNFa-PepG c1 -1.995 11.187 8.95 -0.178 0.867 16 0.875 0.844 28 0.00612
c2 0.969 0.183 0.15 5.291 0.00612

IL6-LTA c1 -10.686 7.094 5.68 -1.506 0.206 10.7 0.955 0.944 85.8 0.000756
c2 1.125 0.121 0.10 9.262 0.000756

IL6-PepG c1 -9.645 6.001 4.80 -1.605 0.184 9.04 0.958 0.948 92.2 0.000657
c2 0.988 0.102 0.08 9.604 0.000657

IL8- PepG/LTA c1 -10.534 6.512 5.71 -1.618 0.204 9.73 0.96 0.947 72.2 0.00342
c2 1.043 0.123 0.11 8.497 0.00342

IL10-LTA c1 -13.236 11.900 9.52 -1.112 0.328 18 0.827 0.784 19.1 0.0120
c2 0.923 0.211 0.17 4.371 0.0120

IL10-PepG c1 -12.852 15.080 12.07 -0.852 0.442 22.8 0.704 0.63 9.52 0.0367
c2 0.825 0.267 0.21 3.086 0.0367
No
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FIGURE 2 | Concentration of activated and resting macrophages over a 24-
hour period.
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qIL6 in the IL-6 equation, and k10M in the IL-10 equation were
determined to be the most sensitive and therefore suitable for use
in fitting the conditions of the experimental data.

To assess the performance of the model, a linear least squares
(LLS) regression on each cytokine was utilized to compare the
simulated results to the LTA- and Pep-G based immune response
studies. The results of the regressions and corresponding
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
regression validation parameters are given in Table 3. An F-test
was performed on each regression to test the fit of the linear
regression model. Each F-test resulted in a p-value significant to
the ⍺ = 0.05 level for all comparisons of simulated and
experimental data for cytokine-inducer interactions except for
the TNF-⍺ and LTA interaction (significant to ⍺ = 0.10 level). This
inconsistency was attributed to an outlier in the experimental
TNF-⍺ LTA data, leading to a regression with a lower coefficient
of determination. Based on the output of the statistical model, the
cellular and cytokine mathematical model formulated under septic
conditions accurately predicts whole human blood ex vivo
conditions. Further development and clinical trial data will allow
for additional cross-validated statistical algorithms to be run by
splitting subjects into training, validation, and test sets for
regressive modeling.

The linear regression models are given with 95% confidence
intervals with a slope of 1 indicative of a perfect fit between the
simulated concentrations and experimental results. Within one
standard deviation, all of the cytokines fit the model except for
IL-6 induced by LTA. The root mean squared error (RMSE),
coefficient of determination, R2, and the adjusted coefficient of
determination were also calculated to estimate the error
distribution and variability of each regression (Table 3). The
results of the statistical analysis indicate significant model
A B

C D

FIGURE 4 | Comparison of the simulated TNF-⍺ and experimental TNF-⍺ activity in response to the introduction of 10 mg of PepG/mL or 100 mg of LTA/mL of
human blood over the 24-hour period (A). Comparison of the simulated IL-6 and experimental IL-6 activity based on the introduction of 10 mg of PepG/mL or 100
mg of LTA/mL of human blood over a 24-hour period (B). Comparison of the simulated IL-10 and experimental IL-10 activity based on the introduction of 10
microgram of PepG/mL or 100 mg of LTA/mL of human blood over the 24-hour period (C). Comparison of the simulated IL-8 and experimental IL-8 activity based on
the introduction of S. aureus-infected endothelial cells containing 10 mg of PepG/mL and 100 mg of LTA/mL over the 24-hour period (D). All cytokine concentrations
are relative values as discussed in the methods.
FIGURE 5 | Cytokine concentrations over a 24-hour period in response to
stimulations with low dose S. aureus in our model.
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similarities to the ex vivo experimental results and thus validate
the accuracy of the simulation through clinical data.

To further ensure the authenticity of the simulation in a
biological setting, the spatial domains and diffusion within the
24-hour period were measured from the initial injection of the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
antigen in a small portion of tissue. The overall change in the
levels of bacteria, resting macrophages, and activated
macrophages are shown in Figures 8–10. This discretized
domain of the 3-D diffusion model is a hexahedron
representing 10 mm3 of tissue. This initial injection of antigen
was represented in the center of the hexahedral domain of
simulation (between 3 mm and 7 mm over the axes). Initially,
the presence of macrophages is equally distributed over the
tissue. Following their initial interaction with S. aureus or its
cell wall components, the resting macrophages are activated,
resulting in the production of cytokines and chemokines. Acting
as antigen-presenting cells, activated macrophages travel to the
nearest lymph node and present the antigen to lymphocytes,
which initiate the activation and differentiation of T-
lymphocytes and B-lymphocytes into T-helper 2 lymphocytes
and plasma cells, respectively. All images show a cut view of the
volume along the x-axis in order to better visualize both the
initial condition and the concentration and diffusion of bacteria
and macrophages (Figures 8–10).
4 DISCUSSION

In this study, we explored the cellular-cytokine relationships of
TNF-⍺, IL-6, IL-8, and IL-10 in response to S. aureus by utilizing
mathematical modeling to predict cytokine levels in silico, and
clinical literature and statistical analysis to validate the results of
the simulation.
A B

DC

FIGURE 6 | Parameter adjustments of the individual cytokines. A ten-fold increase and decrease in the TNF-⍺ parameters (A), IL-6 parameters (B), IL-8 parameters (C),
and IL-10 parameters (D).
FIGURE 7 | Sensitivity indices denoting the most influential parameters to
each cytokine after 24h simulation. Shown are the first 10 parameters that
influence at least a 10% change in the resulting value of at least one of the
four analyzed variables. Negative sensitivity indexes indicate reduced cytokine
output while the omitted parameters trivially affected cytokine output.
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Cellular-cytokine interaction. The cellular model by Quintela
et al. outlines the relationships between S. aureus (A), activated
macrophages (MA), resting macrophages (MR), and antibodies
(F) while the cytokine model by Brady et al. combines activated
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
and resting macrophages with TNF-⍺, IL-6, IL-8, and IL-10
(Quintela et al., 2014; Brady et al., 2016). This model
seeks to combine these models by the association of
activated macrophages.
A B C

FIGURE 8 | Diffusion of the bacteria at different time periods. Initial condition of bacteria injected only at the center of the domain (A), after 12h of simulation (B), and
after 24h of simulation (C).
A B

C D

FIGURE 9 | Diffusion of the resting macrophages at different time periods. Initial condition of the resting macrophages (A), after 3h of simulation where the values
decrease as a result of change of state from resting to activated (B), after 12h of simulation (C), and after 24h of simulation (D).
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Sensitivity analysis and parameter estimation. This simulation
validates the clinical experimentation from Wang et al. and
Yao et al. (Yao et al., 1996; Wang et al., 2000). To scale the
results of the clinical results, the parameters for each ODE was
analyzed and modified using a min search nonlinear
optimization to yield meaningful comparison.

Model assumptions and limitations. The limitations on the
accuracy and precision of the model are discussed. This simulation
does not account for factors such as neutrophil flux, complement
response, humoral immune response effects, or variation between
individuals, among other factors too complex to mathematically
model and validate using clinical data.

Future studies.While this model seeks to expand the depth of
current immune system models, the model remains incomplete
due to the limitations in mathematical immune system research.
The future expansions of the model open new pathways for new
immune system research and may facilitate large-scale in silico
pharmaceutical testing.

4.1 Cellular-Cytokine Interaction
This model combines the cellular model by Quintela et al. and
the cytokine model by Brady et al. (Quintela et al., 2014; Brady
et al., 2016). The cell model predicts the relationships between
S. aureus (A), activated macrophages (MA), resting macrophages
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
(MR), and antibodies (F), while the cytokine model studies how
changes in activated and resting macrophages impact cytokine
dynamics for TNF-⍺, IL-6, IL-8, and IL-10 (Quintela et al., 2014;
Brady et al., 2016).

To reconcile the difference between the cell model, predicted
as a function of time and space, and the cytokine model, which
only varies with time, the activated macrophages were integrated
into average activated macrophages and implemented into
the cytokine model. In order to ensure both models operate
within the same time frame, the concentrations of the initial
bacteria and activated macrophages reported by Brady et al.
(Brady et al., 2016) were scaled to match those reported in the ex
vivo studies by Wang et al. and Yao et al. (Yao et al., 1996; Wang
et al., 2000). Results of this parameter scaling demonstrated that
we were able to match the model to all data metrics with
statistical significance (pvalues <0.05) (Table 3) (Yao et al.,
1996; Wang et al., 2000).

For future studies, a similar approach can be used to adapt the
model to other experimental settings, e.g. to study the effect of
varying macrophage destruction, flux, and phagocytosis within
specific individuals (Emam et al., 2019). While the current
simulation does not have the ability to accurately predict
individual cytokine response, it has the capacity to model an
average response to S. aureus, and it holds the potential to have
A B

C D

FIGURE 10 | Diffusion of the activated macrophages at different time periods. Initial condition of the resting macrophages (A), after 3h of simulation where the values
increase as a result of change of state from resting to activated (B), after 12h of simulation (C), and after 24h of simulation (D).
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a more profound impact with continued expansion in
future studies.

4.2 Sensitivity Analysis and
Parameter Estimation
Sensitivity analysis is an interpretable and adaptable tool used to
provide insight into computational immunology studies
investigating different components of the immune system to
understand the extent of the spatial-temporal variables and
parameters at play. This procedure has been shown to provide
insight in computational immunology studies investigating
different components of the immune system and their
activation in response to a pathogen (Chen et al., 2019; Faro
et al., 2019).

This coupled simulation is the product of sensitivity analysis
using parameter estimation and model fitting to ex vivo data
from Wang et al. and Yao et al. (Yao et al., 1996; Wang et al.,
2000). Results of this analysis indicated that k8m, which describes
the upregulation of IL-8 by the activated macrophages, as the
most influential parameter and was subsequently modified to
mirror the clinical data. Throughout the analysis, the initial
concentrations of S. aureus and the cytokines were scaled to
yield meaningful comparison.

4.3 Model Assumptions and Limitations
While a comprehensive model would be powerful on a global
scale, the current simulation is limited by the lack of clinically
backed mathematical models of the human immune system.

The reconciliation of utilizing S. aureus (a gram-positive
bacteria), from the cell model, and LPS (a component in gram-
negative bacteria), used in the cytokine model, are discussed
previously. The body’s response to the bacteria may change
based on the damage inflicted by the pathogen including sepsis
and septic shock. From a mathematical and clinical property
standpoint, there are minimal differences in the activation of the
immune system cells and cytokine expression between S. aureus
and LPS, allowing for a simplified mathematical model coupling
(Feezor et al., 2003; Fournier and Philpott, 2005). However,
future studies investigating each PAMP independently would aid
in further confirming or validating our findings, and additionally
may need to incorporate the complementary effects of LTA and
PepG in S. aureus and LPS in gram-negative bacteria to model
the array of pro-inflammatory (TNF-a and IL-6), anti-
inflammatory (IL-10), and neutrophil chemoattractant (IL-8)
responses under septic conditions (De Kimpe et al., 1995;
Fournier and Philpott, 2005).

While the simulation results accurately predict ex vivo data, it
should be noted that several assumptions were needed
throughout the design of the model. The concentrations of S.
aureus, LTA, and PepG are assumed to be proportional at low
doses based on their activation of cytokines in the human
immune response. Furthermore, toll-like receptors (TLRs)
found in the membrane and cytosol of macrophages are the
primary sentinels of PAMPs, and we assume a proportional
relationship between macrophage concentration and PAMP
recognition. Our model considers circulatory immune elements
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 15
and does not consider intercellular or genetic regulatory aspects
of immune response. (De Kimpe et al., 1995; Fournier and
Philpott, 2005; Pigozzo et al., 2013).

Although the self-regulatory cytokine network model can
respond to higher concentrations of S. aureus (6), this
simulation utilized low concentrations of S. aureus similar to
those found in ex vivo experimental conditions. Higher
concentrations of S. aureus cause rapid increases in cytokine
and cellular responses due to tissue damage corresponding to the
endotoxicity of gram-positive bacteria. However, these situations
were omitted due to the low concentrations of S. aureus
simulated in this work and insufficient data to validate
increased concentrations.

The neutrophil flux into the tissue was also omitted from this
simulation due to the lack of clinical experiments and presence of
high variability between subjects (Spaan et al., 2013). S. aureus-
neutrophil interactions are human-specific and may influence
the way this model predicts average cytokine levels. Future
simulations may incorporate the effects of neutrophils in the
IL-8 ordinary differential equation as additional studies and ex
vivo experiments focusing on their interactions emerge (Fournier
and Philpott, 2005).

To simplify the complexity of the bacterial complement
response, this model does not incorporate the relevant
complement proteins. Complement response of the human
body to pathogens such as S. aureus plays a role in the ability
of the human body to activate chemoattractants for phagocytosis
of the bacteria (Fournier and Philpott, 2005; Laarman et al.,
2010). The complement response has variable cytokine effects on
the human immune response based on the extent and type of
inflammatory condition, which further complicates its role in
cytokine production and mediation (Fournier and Philpott,
2005). Moreover, complement, cytokine, and chemokine
responses have overlapping biological effects on the body
under septic conditions, and are therefore omitted from this
model (Charchaflieh et al., 2012).

The effect of S. aureus on the humoral immune response is
another limitation of this study given the insufficient findings of
how that mechanism can be modeled (Smith et al., 2011). The
pathogen is known to suppress the humoral immune response by
means of the protein Sbi and therefore can allow extended
survival of the bacteria (Smith et al., 2011). The effects of the
protein Sbi on the concentration of bacteria inputted in the
system were omitted from this model to solidify the cellular-
cytokine interactions within the cellular model.

Macrophage destruction and flux are used as constants as a
generalization in this model. Although these terms are human-
specific and vary in response to infection by S. aureus, this
model simulates the average response. Moreover, many
components of the human immune response vary across
populations. This complex problem of variability presents a
challenge to mathematical modeling and is not addressed in
this model. Therefore, certain variabilities such as macrophage
destruction and flux were generalized to an average value to
simplify the complexity of a human model. Understanding the
different sources and mechanisms of action allows simulations
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to be used as predictive models to limit the scope of
assumptions. One possible solution to account for patient-
specific variation may be through estimating parameters
individually for each dataset, as discussed in detail in Brady
et al. (2016).

While this simulation can predict the average cytokine
response to S. aureus, it does not account for all of the
individualized variabilities within each immune response. This
model aims to simplify the cytokine dynamic and become a
foundation for future immune system expansion with increased
immune system research. The model remains confined by the
limited number of relevant mathematical immune system
models and the availability of experimental data for validating
more complex models. Continuous in vivo and ex vivo research
into the role of the human immune system in response to a
pathogen will provide additional data for validation and
expansion of this model.

4.4 Future Studies
The human immune system, similarly, to many other body
systems, is adversely affected by the aging process. Studies
have shown age-associated alterations in immune system
mechanisms such as a decreased T cell activation, reduced
neutrophil efficiency, and altered toll-like receptor 1 (TLR1)
expression (Oh et al., 2019) limit the ability of the immune
system to eliminate foreign pathogens by reducing surface
expression and effectivity (Khoa et al., 2003). In particular,
the body’s cytokine and chemokine levels change with
age, leading to chronic inflammation and progression of
other degenerative diseases (Ponnappan and Ponnappan,
2011). This improved model along with other mathematical
models simulating immune system functions may facilitate a
better understanding of inflammatory responses and
mechanisms that lead to the degradation of the human
immune system and may lead to effective solutions towards
preserving the functions of the immune system during the
aging process.

Mathematical and computer models of the complex
relationships within the immune system can open larger
avenues for pharmaceutical and biochemical research that can
be used to combat immune system diseases (Wang and
Deisboeck, 2014). By incorporating both ordinary and partial
differential equations, this simulation is able to provide a more
realistic representation of the complex relationships within the
immune system and, with further expansion, may serve as a
vehicle for drug testing in silico.

While not incorporated into this model, pharmaceutical
drugs such as FOM (Michalopoulos et al., 2011), CAM,
(PubMedHealth, 2018) and DEX (Johnson et al., 2021) may
significantly alter the results of this simulation. FOM inhibits
PepG production in the cell wall of gram-positive bacteria, such
as S. aureus, while also enhancing the production of IL-6 and IL-
10. This may alter the cytokine production rate in this model as
decreased S. aureus production eliminates the need for other
cytokines in the immune response. With FOM, IL-6 and IL-10
production may increase.
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The antibiotic, CAM, down-regulates the production of TNF-
⍺, IL-6, and IL-8, which would lead to a measurable decrease in
cytokine production. This cytokine inhibitor can significantly
affect the simulation results, causing downward shifts of multiple
cytokine values. Lastly, DEX, a steroid that hinders the immune
system in the presence of inflammation, reduces the production
of both IL-6 and IL-10, resulting in reduced TNF-⍺, IL-6, IL-8,
and IL-10 concentrations.

Future expansions of this model may provide a clearer image
of the various interactions within the immune system, facilitate
a better understanding of the mechanisms that lead to the
degradation of the immune system during the aging process,
and may become a vehicle for in silico clinical trials (Swain and
Nikolich-Zugich, 2009). This model is foundational and future
clinical research is encouraged to characterize additional
cytokines and cell behavior to create a more comprehensive
and accurate understanding of the immune system. In
particular, IL-12 is a proinflammatory cytokine that forms a
vital link between the innate and adaptive immune system and
future work would benefit greatly from accurately modeling IL-
12 behavior (Trinchieri, 2003).
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