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ABSTRACT
Aging-related degeneration of pancreatic islet cells contributes to impaired glucose tolerance and diabetes.
Endocrine cells age heterogeneously, complicating the efforts to unravel the molecular drivers underlying
endocrine aging. To overcome these obstacles, we undertook single-cell RNA sequencing of pancreatic islet
cells obtained from young and aged non-diabetic cynomolgus monkeys. Despite sex differences and
increased transcriptional variations, aged β-cells showed increased unfolded protein response (UPR) along
with the accumulation of protein aggregates. We observed transcriptomic dysregulation of UPR
components linked to canonical ATF6 and IRE1 signaling pathways, comprising adaptive UPR during
pancreatic aging. Notably, we found aging-related β-cell-specific upregulation of HSP90B1, an
endoplasmic reticulum-located chaperone, impeded high glucose-induced insulin secretion. Our work
decodes aging-associated transcriptomic changes that underlie pancreatic islet functional decay at
single-cell resolution and indicates that targeting UPR components may prevent loss of proteostasis,
suggesting an avenue to delaying β-cell aging and preventing aging-related diabetes.
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INTRODUCTION
Pancreatic islet cells are vital regulators of glucose
metabolism and their decay during aging leads to
decreased glucose tolerance and even diabetes [1].
Mounting pieces of evidence suggest that aging can
cause increased islet mass, impaired islet turnover
and increased transcriptional noise in mammalian
pancreatic islets [2]. Senescent cells accumulate in
pancreatic isletswith age, aswell as in type 2 diabetes
(T2D) [3]. Conversely, clearance of senescent islet
cells improves pancreatic endocrine function and re-
stores glucose homeostasis [4], strongly supporting
a link between aging, functional failure of islet cells
and diabetes. Therefore, a better understanding of
molecular changes in aged islet cells may help pre-
serve or regenerate endocrine function, opening up
new therapeutic opportunities to inhibit theprogres-
sion of diabetes in the context of aging.

Endocrine cells are spherically clustered into
the islets of Langerhans, and constitute only
about 1%–4% of total pancreas mass [5]. Pan-
creatic islets consist of four major endocrine
cell types: glucagon-producing α-cells, insulin-
producing β-cells, somatostatin-producing δ-cells
and polypeptide-producing PP-cells [5,6]. These
cells interact with each other and regulate glucose
homeostasis in a multi-hormonal manner [7]. The
cellular composition and topological structure of
islets vary across different mammalian species [5].
Human islet biology is still poorly understood due
to the limitations in sample availability and ethical
concerns. Non-human primates (NHPs) such as
cynomolgusmonkeys are similar to humans in terms
of pancreatic structure and diabetes susceptibility,
providing comparative models to study primate
islet aging. Indeed, the spontaneous occurrence
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of aging-related insulin resistance and diabetes, as
seen in diabetes patients, is observed in monkeys
[8]. Thus, obtaining and analyzing islets isolated
from cynomolgus monkeys will enable a better
understanding of the mechanism underlying the
etiology of aging-related diabetes.

One obstacle that impedes a deeper understand-
ing of islet biology is the high variability between
islet cells. Endocrine cells are highly heterogeneous
in properties, including hormone secretion and glu-
cose responsiveness [9,10]. Heterogeneity is also
observed in the expression of agingmarkers between
and within islets in the same pancreas upon aging.
Thus, conventional analysis of a whole islet or sorted
cell populationsmaymask subtle changeswithin cer-
tain cell populations that drive functional hetero-
geneity [11]. Recent advances in single-cell RNA se-
quencing (scRNA-seq) have allowed the collection
of transcriptomic data from individual endocrine
cells and profiling of cell-type-specific changes dur-
ing the emergence of metabolic diseases. Using the
approach, scRNA-seq studies of human pancreas
have been reported, supporting increased transcrip-
tional noise and loss of cell identity during aging
[11–13].However, the criticalmolecular drivers un-
derlying islet cell functional decline during aging
amid transcriptional heterogeneity remain unclear.
Identifying the cell typeparticularly vulnerable to ag-
ing and uncovering themolecular changes occurring
duringpancreatic islet cell aging are critical to thede-
velopment of accurate interventions against aging-
related diseases
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[14,15].
To address this gap, we assembled a pancre-

atic islet aging atlas for non-diabetic cynomolgus
monkeys at single-cell resolution, and identified en-
docrine α-, β-, δ- and PP-cells. Cell-type-specific ef-
fects of aging on gene expression signatures were
analyzed, supporting increased cell-to-cell transcrip-
tional noise in α-cells and β-cells during aging.
Despite the existence of gender dimorphism and
transcriptional noise, the unfolded protein response
(UPR) emerged as a major pathway affected by
aging specifically in β-cells. The analysis revealed
escalated expression of UPR genes in canonical ac-
tivating transcription factor 6 (ATF6) and inositol-
requiring enzyme 1 (IRE1) signaling pathways,
consistent with increased aggresomal signals in pan-
creatic islets of old individuals. HSP90B1, an endo-
plasmic reticulum (ER) chaperone, was one of the
most upregulated genes and was increased specif-
ically in aged β-cells. Upon glucose exposure, ex-
ogenous expression of HSP90B1 in pancreatic islet
cells resulted in compromised insulin secretion, sug-
gesting that UPR proteins play a crucial role in the
regulation of insulin secretion and glucose sensing.
Our study provides a foundational resource of an

NHP pancreatic islet aging atlas, identifies loss of
proteostasis as a primary hallmark of β-cell aging,
and therefore provides new intervention targets for
aging-related pancreatic diseases.

RESULTS
Single-cell RNA sequencing of
pancreatic islets from non-human
primates
We selected eight young (4–6 years old) and eight
old (18–21 years old) healthy cynomolgus mon-
keys, analogous to approximately 20- and 70-year-
old humans, respectively (Supplementary Fig. S1A).
To evaluate pancreatic function in hormone secre-
tion and glucose control, wemeasured fasting blood
glucose, insulin, c-peptide and glucagon levels in
different animal groups, which showed no obvi-
ous differences between young and old individuals
(Supplementary Fig. S1B and C). Glucose toler-
ance was weakened in old monkeys, but not statis-
tically significant (Supplementary Fig. S1B). Addi-
tionally, an examination of classic features of islet
senescence of rodents, including increased islet vol-
ume and enlarged islet size, revealed no statistical
difference between young and old monkeys (Sup-
plementary Fig. S1D) [1,10,16]. Altogether, we did
not detect apparent differences in pancreatic islet
structure or secretory function between young and
old monkeys, allowing us to monitor the molecular
effect of aging in advance of the appearance of dia-
betic phenotypes.

To analyze the cell populations and molecular
characteristics of aged primate pancreatic islets, we
performed scRNA-seq of islets from cynomolgus
monkeys using a modified single-cell tagged reverse
transcription (STRT) protocol (Fig. 1A) [17]. Af-
ter critical cell quality control and filtering, a to-
tal of 5 575 single cells were retained in the down-
stream analyses, and expression of 4 389 genes
on average was detected in each cell (Supplemen-
tary Figs S1A and S2A; Supplementary Table 1).
Unsupervised clustering analysis separated different
cell types into distinct clusters with the absence of
individual heterogeneity (Fig. 1B; Supplementary
Fig. S2B; Supplementary Table 1). All major cell
types were identified, based on specific cell marker
expression, including GCG (α-cell), INS (β-cell),
SST (δ-cell) and PPY (PP-cell) (Fig. 1B).The num-
ber of cell-type-specific genes found in β-cells sur-
passes that of other cell types, indicative of their
highly specialized function (Fig. 1C and D; Sup-
plementary Fig. S2C; Supplementary Table 1). A
plethora of known β-cell markers were found, in-
cluding IAPP encoding Islet Amyloid Polypeptide,
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Figure 1. Single-cell transcriptomic atlas of pancreatic islet aging in cynomolgus monkeys. (A) Workflow showing the procedure of scRNA-seq of
monkey pancreatic islets. (B) t-SNE plot showing pancreatic islet cell types (left) and expression levels of classical marker genes for each cell type
(right). The corresponding cell type is denoted in circles. (C) Bar charts showing the expression levels of representative genes in different cell types.
All expression levels are measured with the same scale. Data are shown as mean ± SEM. (D) Heatmap showing the row scaled expression levels
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Figure 1. (Continued). of cell-type-specific marker genes for each cell type. Representative genes are shown on the left and novel marker genes are
underlined. Color bars at the top of the heatmap indicate monkey individuals. The numbers of cell-type-specific marker genes are shown in the left bar.
(E) Top, immunohistochemistry staining of INS, ERO1B and TMEM132B in consecutive pancreatic biopsies. Bottom, immunofluorescent staining of INS
and ERO1B in pancreatic biopsies. Scale bar, 100 μm. (F) Dot plot showing top-ranked KEGG pathways enriched in different cell types. Pathways are
ranked based on the normalized enrichment score (NES) within each cell type, and the nominal P value < 0.05 and false discovery rate (FDR) (q value)
< 0.25. Colors indicate different cell types and size indicates −log10(FDR). (G) t-SNE plots showing expression levels of key transcriptional factors for
each cell type. The corresponding cell type is denoted in circles.

which is another hormone secreted fromβ-cells, and
SLC2A2 (also known as GLUT2) responsible for
glucose uptake in β-cells (Fig. 1C and D; Supple-
mentary Fig. S2C and D) [18]. In addition, ERO1B,
a gene that encodes endoplasmic reticulum oxidore-
ductase 1 beta [19], and TMEM132B [20], which
functions in cellular adhesion, were identified and
experimentally verified as novel markers for β-cells
(Fig. 1C–E). We also identified several novel cell-
type-specific genes for α-cells (e.g. TSPAN12 and
ARRDC4), δ-cells (e.g. ANK3, EHF and CSGALN-
ACT1) and PP-cells (e.g. UGT2B20) (Fig. 1C and
D; Supplementary Fig. S2D). GeneOntology (GO)
analysis indicated that these cell-type-specific mark-
ers were related to the unique metabolic function of
these cells (Supplementary Fig. S2C). Furthermore,
gene set enrichment analysis (GSEA) based on Ky-
oto Encyclopedia of Genes and Genomes (KEGG)
pathways showed that compared to non-β-cells, β-
cells preferentially expressed genes involved in terms
related to T2D, the onset of type 1 diabetes and
aldosterone regulated sodium reabsorption, all of
which matched the function of β-cells in pancre-
atic islets (Fig. 1F; Supplementary Table 1). In ad-
dition, PROCR+ cells were recently characterized to
be pancreatic islet progenitors in adult mice [21].
We found that a small proportion of endocrine cells
expressed this marker in the monkey pancreases
(Supplementary Fig. S2E and F).

Among the cell-type-specific markers, we iden-
tified several key transcriptional factors that might
play important roles in cell-type-specific gene reg-
ulatory processes, including IRX2 and FEV in α-
cells; NKX6–1, MAFA and RXRG in β-cells; and
HHEX in δ-cells (Fig. 1G). Many of these transcrip-
tional regulators play a critical role in cell fate de-
terminationduring endocrinedevelopment or trans-
differentiation between different islet cell identi-
ties [22,23]. Furthermore, dysregulation of these
marker genes and transcriptional factors is linked
to the onset of diabetes, with many of these genes
already recognized as diabetes-causing genes (Sup-
plementary Fig. S2G and H). Altogether, we un-
covered cell-type-specific transcriptional signatures
with novelmarker genes that reflected the functional
characteristics of each cell type in pancreatic islets.

Aging markers and transcriptional noise
inducers identified by scRNA-seq of aged
pancreatic islets
Next, we asked whether aging altered cell identity
or cell-type distribution in pancreatic islets.The hor-
monal expression pattern and transcriptional sig-
natures of marker genes in each cell type were
undisturbed in the aged islets, indicating that cell
identity itself was not changed during aging (Fig. 2A
and B).Moreover, sequencing data and immunoflu-
orescence staining indicated no differences in the
proportions of islet cell types presented during aging
(Fig. 2C; Supplementary Fig. S3A–D).

To evaluate the senescent state of islets from old
monkeys, we examined the expression of the senes-
cence markers CDKN1A (p21CIP1) and CDKN2A
(p16INK4A) in different islet cell types [10,24,25].
Consistent with the previous study [13], increased
CDKN1A and CDKN2A expression were revealed
in aged α-cells or β-cells (Fig. 2D). Furthermore,
more aging-related genes collected in the GenAge
dataset and genes involved in senescence-associated
secretory phenotype (SASP) were also dysregulated
in aged endocrine cells, especially in α-cells and
β-cells (Fig. 2E) [26]. These results implied that
islets in agedmonkeys were enrichedwith senescent
endocrine cells and thatα-cells andβ-cells appeared
more vulnerable to aging compared to other pancre-
atic islet cell types.

To further analyze aging-related perturbations
in the transcriptome, we first measured transcrip-
tional noise in different cell types (see Supplemen-
tary Information for details) [13]. Results indi-
cated increased transcriptional noise in aged α-cells
(two-tailed Student’s t-test P = 1.9 × 10−10) and
β-cells (P = 4.6 × 10−7), but not δ-cells (P = 0.3)
or PP-cells (P = 0.3), compared to young counter-
parts, suggesting a cell-type-specific age-dependent
increase in transcriptional noise (Fig. 2F). To iden-
tify geneswhose transcriptional fluctuationswere ac-
companied with increased transcriptional noise, we
calculated the Pearson’s correlation (Pearson’s cor-
relation coefficient > 0.6 and false discovery rate
[FDR] < 0.05) between gene expression levels and
transcriptional noise in α-cells and β-cells (Fig. 2G;
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Figure 2. Cell identity changes in pancreatic islet cells during aging. (A) Circos plot showing the corresponding relationship of cell types analyzed based
on different datasets. Top semicircle, cell types are analyzed based on all cells. Bottom semicircle, cell types are analyzed based on cells only from
young individuals (left) or cells only from old individuals (right). (B) Violin plots showing expression levels of classical marker genes for each cell type in
young and old individuals. (C) Immunofluorescent staining of knownmarkers INS, GCG, SST for β-cells,α-cells and δ-cells, respectively (left). Pancreatic
islets are circled with dashed lines. Bar chart showing the cell percentages of different cell types in young and old monkeys (right). Scale bar, 50 μm.
n= 7 monkeys per group. Data are shown as mean± SEM. P values are indicated (two-tailed t-test). (D) Bar charts showing the mean gene expression
level of two classic aging markers (CDKN1A and CDKN2A) in each cell type. P values are indicated (two-tailed t-test). Data are shown as mean± SEM.
(E) Heatmaps showing the fold change of upregulated aging-related genes in the GenAge dataset (top) and of SASP genes (bottom). Only the genes
differentially regulated in at least one type of cells between young and old individuals are analyzed. (F) Boxplots showing the transcriptional noise
analysis in each cell type. P values are indicated (two-tailed t-test). (G) Heatmap showing the row scaled expression level of genes with high Pearson’s
correlation coefficients (correlation coefficient > 0.6 and FDR < 0.05) between transcriptional noise and expression levels in β-cells. The heatmap is
separated into two groups, cells collected from young individuals and cells from old individuals, and bins are arranged based on the transcriptional
noise rank in each group. (H) Bar chart showing representative GO terms of genes whose expression correlated with transcriptional noise in β-cells.

Supplementary Fig. S3E). GO enrichment analy-
sis further showed that genes involved in protein
folding (including HSP90B1, PDIA3 and PDIA4),
protein processing and maturation were the dom-
inant genes underlying age-upregulated transcrip-
tional noise in β-cells (Fig. 2H). These analyses
highlighted the importance of protein processing in
controlling cellular heterogeneity during islet aging.

Systemic portrayal of the transcriptomic
landscape of aged α-cells and β-cells
Could we uncover meaningful transcriptomic
changes underlying aged endocrine cells given
the increased transcriptional noise and individual
variation during aging? To answer this question,
we sought to systemically analyze aging-associated
differentially expressed genes (DEGs) between
young and old α-cells and β-cells by performing
the principal component analysis (PCA) to sep-
arate young and old cells into distinct principal
component (PC) dimensions (see Supplementary
Information for details) [27]. For α-cells, along
the PC1 to PC8 axis, transcriptional intervention
from individual variations was gradually excluded,
allowing us to divide α-cells into two prominent
groups of cells corresponding to young and old
individuals (Supplementary Fig. S4A). Young
α-cells were inclined to have high PC9 scores
whereas old α-cells had low PC9 scores, which
were highly consistent across all the individuals
and were therefore not attributable to technical or
batch effects (Fig. 3A; Supplementary Fig. S4A;
Supplementary Table 2). We defined young and
old α-cells by combining information from the
principal component analysis and the aging group
information of every single cell. Finally, we obtained
1443 youngα-cells and 1397 oldα-cells. Oldα-cells
with low PC9 scores showed high expression of 119
genes, and low expression of 60 genes compared to

young α-cells with high PC9 scores. We referred
to these genes as upregulated aging-associated
DEGs and downregulated aging-associated DEGs
in α-cells, respectively (Fig. 3B; Supplementary
Table 2). The same PCA strategy was applied to
β-cells, enabling separation of young (369 cells) and
old (446 cells) β-cells along the PC4 axis (Fig. 3C;
Supplementary Fig. S4A; Supplementary Table 2).
A fraction of aged β-cells with high PC4 scores
displayed 500 upregulated aging-associated DEGs
and 206 downregulated aging-associated DEGs
(Fig. 3D; Supplementary Table 2). Aged δ-cells and
PP-cells were not discriminated by this method,
probably due to the limited number of these two
types of cells. Finally, we sought to identify aging-
associated DEGs by directly comparing all cells
collected from young and old monkeys (Supple-
mentary Table 3; see Supplementary Information
for details). The results showed that the majority of
aging-associated DEGs identified by the additional
analysis overlapped with DEGs obtained through
the PCA strategy (Supplementary Fig. S4B–E).

When we compared aging-associated DEGs
between α-cells and β-cells, four times more DEGs
were identified inβ-cells (706DEGs) than inα-cells
(179DEGs), and only a small fraction of them over-
lapped (45 and 21 common upregulated and down-
regulated DEGs, respectively) (Fig. 3E). We also
noticed that genes that encode secretory proteins
or cytokines such as SPP1, APOD and SERPINA1
were among the upregulated aging-associated
DEGs in both aged α-cells and β-cells, suggest-
ing that paracrine interactions may be disrupted
during islet aging. Of note, these genes encoding
secretion proteins (e.g. APOD and SERPINA1)
were also reported to be increased in aged human
serum (Supplementary Fig. S5A) [28], and may
therefore be useful as clinical aging markers to help
diagnose the extent of islet aging. We then analyzed
transcriptional drift with age for each cell type.
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Figure 3. Transcriptomic characteristics in aged α-cells and β-cells. (A) PCA plots showing the distribution of α-cells colored by age groups (left) and
individuals (right). Bars showing the distribution of α-cells along PC9 dimension at the bottom. (B) Scatter plot for upregulated and downregulated
aging-associated DEGs in aged α-cells. Red and blue points indicate upregulated and downregulated aging-associated DEGs, respectively; gray points
indicate other genes. The numbers of DEGs are shown. (C) PCA plots showing the distribution of β-cells colored by age groups (left) and individuals
(right). Bars showing the distribution of β-cells along PC4 dimension at the bottom. (D) Scatter plot for upregulated and downregulated aging-associated
DEGs in aged β-cells. Red and blue points indicate upregulated and downregulated aging-associated DEGs, respectively; gray points indicate other
genes. The numbers of DEGs are shown. (E) Venn diagrams showing the comparison of aging-associated DEGs in α-cells and β-cells. Upper and lower
panels correspond to upregulated and downregulated aging-associated DEGs, respectively. Representative shared upregulated DEGs are indicated. (F)
Bar charts showing representative GO terms of upregulated or downregulated aging-associated DEGs in aged α- (top) and β-cells (bottom). (G) Dot plot
showing top-ranked GO (Cellular Components) terms of upregulated aging-associated DEGs in β-cells. Dot color indicates the number of genes and
size indicates the GeneRatio corresponding to terms. (H) Dot plots showing the ligand-receptor interaction pattern in different cell-cell pairs. Dot color
indicates the mean expression level in ligand-receptor pairs and dot size indicates the statistical significance. Gray words indicate the ligands (row)
expressed in the corresponding cell type (column), and blue words indicate the receptors (row) expressed in the corresponding cell type (column).

Upregulated aging-associated DEGs in α-cells
were enriched in response to wounding, nega-
tive regulation of cell proliferation and positive
regulation of cell death (Fig. 3F; Supplementary
Table 2). Downregulated aging-associated DEGs of
α-cells were enriched in variousmetabolic processes
linked to fatty acid and prostaglandin metabolism,
and regulation of peptide secretion (Fig. 3F; Supple-
mentary Table 2), implying that the basic metabolic
function of α-cells was compromised during aging.

In aged β-cells, we found decreased expression
of genes linked to secretory granule biogenesis [29],
such as regulated exocytosis, Golgi to plasma mem-
brane transport and peptide biosynthetic process
(Fig. 3F; Supplementary Table 2). Strikingly, up-
regulated aging-associated DEGs in β-cells were en-
riched in ER stress and UPR related pathways, with
repeated appearance of GO terms like ‘response
to ER stress’, ‘protein folding’ and ‘ER to Golgi
vesicle-mediated transport’ (Fig. 3F; Supplementary
Table 2). In addition, analyses by GO (Cellular
Component) also showed that upregulated aging-
associated DEGs in β-cells encode proteins highly
enriched in ER lumen, ER chaperone complex and
Golgi membrane (Fig. 3G). These results under-
scored a loss of proteostasis along with increased
ER stress that activated UPR signaling, which com-
prised amajormolecular change in pancreaticβ-cell
aging.

To further reveal the dynamic reciprocal inter-
actions between islet cell types and their effects on
β-cell function during aging, we built a predicted
cellular network based on the expression pattern of
potential ligand-receptor pairs in different cell types
(Supplementary Fig. S5B) [30,31]. The computer-
ized network revealed that cell-cell communications
weremore enhanced inold islets than in young islets,
especially the interaction between α-cell-expressed
ligandTTR and its receptor DDR1 (Fig. 3H). TTR,
an etiologic agent associated with aggregation of
misfolded proteins and amyloidoses, was highly

expressed in aged α-cells, consistent with that in
islet cells of type 2 diabetic individuals [32]. In ad-
dition, SORL1, a gene associated with amyloido-
genic processing of amyloid-beta precursor protein
(APP) and Alzheimer’s disease risk, was upregu-
lated in aged β-cells [33], along with its ligand
highly expressed in all four kinds of aged islet cells
(Fig. 3H). These results of cell-cell interactions in
aged islet suggested that the microenvironments in
aged pancreatic islets may contribute to the loss of
proteostasis and activation of UPR in aged β-cells.
Altogether, comprehensive identification of cell-
type-specific transcriptional signature changes in
α-cells and β-cells highlighted the loss of proteosta-
sis as an important molecular event during β-cell
aging.

Deciphering changes to the ER stress
network in aged β-cells
To identify critical regulators linked to α-cell
and β-cell aging, we constructed gene regulatory
networks based on aging-associated DEGs (Fig. 4A;
Supplementary Fig. S5C). The regulatory network
identified HSPA5 (BiP) as a major regulator of
upregulated aging-associated DEGs in β-cells
(Fig. 4A). This finding was in agreement with the
prominent upregulation of UPR pathways found in
our GO analysis, as HSPA5 is a well-known central
regulator in response to ER stress. In particular,
ER stress was sensed by three ER transmembrane
signaling proteins, ATF6, protein kinase RNA
(PKR)-like ER kinase (PERK), and IRE1 (Fig. 4B)
[34].We found that components of the ATF6 (two-
tailed Student’s t-test P = 1.6 × 10−5) and IRE1
(P = 5.4 × 10−9) pathways were transcriptionally
upregulated in aged β-cells, compared to young
β-cells (Fig. 4C). These UPR genes included
HSP90B1 and CALR activated by ATF6 pathway,
and PDIA6, PDIA5, DNAJB11, DNAJB9 and
DNAJC3 activated by IRE1-XBP1 pathway that
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Figure 4. Upregulation of UPR genes in aged β-cells. (A) Regulatory networks visualizing potential key transcriptional regulators in upregulated and
downregulated aging-associated DEGs in aged β-cells. Only connections with high weight are retained and node size indicates the number of connec-
tions, and nodes with top-ranked size are highlighted in red (upregulated, left) or blue (downregulated, right). (B) A schematic chart showing three main
branches and corresponding principal components in the UPR pathway. (C) Violin plots showing the expression level of genes corresponding to UPR
pathways in β-cells. P values are indicated (two-tailed t-test). (D) Venn plot showing the comparison of upregulated aging-associated DEGs in β-cells,
ATF6 and XBP1 target genes. (E) Violin plots showing the expression level of genes involved in ERAD pathway, ER chaperones, ER oxidoreductases and
NRF2 pathway in β-cells. P values are indicated (two-tailed t-test). (F) Violin plot showing the expression level of IAPP in β-cells. P value is indicated
(two-tailed t-test). (G) Aggresome staining of pancreatic islets in young and old female monkeys (left). Pancreatic islets are circled with dashed lines.
Bar chart showing the average aggresome signal levels of pancreatic islets in young and old female monkeys (right). Scale bar, 100μm. n= 4 monkeys
for each group. P value is indicated (two-tailed t-test). Data are shown as mean± SEM. (H) Violin plots showing the expression level of DDIT3 (encoding
CHOP), anti-apoptotic and pro-apoptotic genes in β-cells. P values are indicated (two-tailed t-test). (I) TUNEL-staining of young and old pancreases, and
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Figure 4. (Continued). pancreatic islets are circledwith dashed lines. Bar chart showing the percentages of apoptotic cells (TUNEL-positive) in pancreatic
islets of young and old monkeys. Scale bar, 100 μm. n = 7 monkeys for each group. P value is indicated (two-tailed t-test). Data are shown as mean
± SEM. (J) Heatmaps showing the distribution of upregulated or downregulated aging-associated DEGs in α-cells and β-cells that overlap with the
diabetes gene set.

encode ER chaperones and Ca2+-binding (storage)
protein (Supplementary Fig. S5D) [35]. In the
list of ATF6 target genes, ∼13% (31 of 244) were
identified in our scRNA-seq data as upregulated
aging-associated DEGs [36], indicating that ATF6
pathway may have a critical influence on UPR
signaling during β-cell aging (Fig. 4D). Converging
signals from ATF6 and IRE1 triggered transcrip-
tional upregulationof genes encodingER-associated
degradation (ERAD) components, ER chaperones,
oxidoreductases, as well as nuclear factor erythroid
2-related factor 2 (NRF2) pathways members that
enhanced cellular capacity to adapt to ER stress
(Fig. 4E).

Consistent with the transcriptomic changes, ag-
gresome accumulated in aged β-cells, along with
increased expression of islet amyloid polypeptide
(IAPP) (log2(fold change) = 0.67, two-tailed Stu-
dent’s t-test P = 3.1 × 10−19) that spontaneously
forms amyloid sheets that would be predicted to
disrupt ER membranes (Fig. 4F and G) [37]. To
analyze the molecular outcomes of accumulated
ER stress and activated UPR, we calculated expres-
sion levels of the pro-apoptotic transcription factor
CHOP encoded by DDIT3, and the Bcl-2 family
(Fig. 4H).Thesepathways herald aUPRswitch from
the adaptive stage, which eliminates affordable ER
stress, to the ‘self-destruct’ stage [38].This later stage
arises in response to chronic or overwhelming stress,
andwasnot activated in agedβ-cells (Fig. 4H).Con-
sistently, TUNEL staining showed that cell apop-
tosis tended to be increased in pancreatic islets, al-
beit not statistically significant (two-tailed Student’s
t-test P = 0.08) (Fig. 4I). Besides, transcriptional
changes in genes associated with onset of islet ag-
ing related diseases, e.g. diabetes, were present in
these aged β-cells (Fig. 4J).Therefore, we may have
captured a moment where early adaptive events
are present in β-cells, making our data valuable for
understanding the etiopathogenesis of diabetes, and
for developing measures to prevent the disease.

Upregulation of HSP90B1 compromises
insulin secretion under glucose
stimulation
To check whether UPR is affected in male and
female aged β-cells, we examined single-cell tran-
scriptomic data comparing β-cells from individuals

(Fig. 5A and B; Supplementary Table 4). Both
female and male β-cells displayed upregulated
ER chaperones during aging, including HSP90B1,
HYOU1 and PDIA4 (Fig. 5C). Male β-cells showed
more upregulated aging-associated DEGs in the
UPR pathway, while female β-cells showed addi-
tional upregulation in purine ribonucleotide and
L-cysteinemetabolic pathways (Fig. 5B).Therefore,
UPR was affected in aged β-cells of both genders,
although female and male β-cells may regulate
different sets of UPR genes.

HSP90B1, also known as GRP94, was one of the
topupregulated aging-associatedDEGs inbothmale
and female β-cells (Fig. 5A and C). Immunostain-
ing analyses confirmed that HSP90B1 protein lev-
els were increased in aged β-cells in both genders
(Fig. 5D). Although HSP90B1 is known as a target
gene activated by ATF6 pathway during ER stress
response, to our knowledge, it has not previously
been linked topancreaticβ-cell aging [39].Weover-
expressed HSP90B1 in an insulin-secreting pancre-
atic β-cell line to estimate the causal effect by in-
creased expression ofHSP90B1 in β-cells (Fig. 6A).
The glucose-stimulated insulin secretion (GSIS)
assay showed that HSP90B1 upregulation led to
decreased insulin secretion after high glucose stimu-
lation (Fig. 6B–D). Taken together,HSP90B1was a
candidate target that could lead to interventions that
normalize insulin secretion.

DISCUSSION
Aging is causally linked to a decline in glucose tol-
erance, even in healthy old subjects [40], but the
mechanism remains largely unclear. In this study,
we provide a comprehensive single-cell transcrip-
tomic map for non-human primate pancreatic islet
cells. First, our database of changes in non-human
primate pancreatic cells uncovers altered molecular
pathways that are specific to different islet cell types
during aging. Second, the loss of proteostasis is iden-
tified as a prominent hallmark of β-cell aging.Third,
the ATF6 and IRE1 branches of the UPR pathway
are upregulated in aged β-cells. Fourth, our data
record a molecular status that adaptive UPR is acti-
vated instead of pro-apoptotic UPR signaling specif-
ically in aged β-cells. Fifth, changes in the ER stress-
related pathways during β-cell aging are conserved
between male and female β-cells during aging.
Sixth, we reveal that HSP90B1 is a potential aging
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Figure 5. Common upregulation of the UPR gene HSP90B1 in aged β-cells of both genders. (A) Venn diagram showing the
comparison of upregulated aging-associated DEGs inβ-cells obtained frommale and femalemonkeys. Representative shared
genes are indicated. (B) Bar charts showing representative GO terms of 469 upregulated aging-associated DEGs specific in
male-derived agedβ-cells (top) and 450 upregulated aging-associated DEGs specific to female-derived (bottom) agedβ-cells.
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effector for β-cells in pancreatic islets of both gen-
ders, and that upregulation in cells impairs glucose-
induced insulin secretion (Fig. 6E).Collectively, this
study provides a valuable resource for discovering
diagnostic biomarkers and therapeutic targets for
aging-related glucose intolerance.

Single-cell RNA-seq analysis allows the study
of cell heterogeneity, and identification of cell

states and cell-type-specific gene changes during
aging or disease emergence [41]. In the past few
years, several studies have used scRNA-seq to
analyze human pancreatic islets, enabling a better
understanding of islet biology [11–13,42–44].
However, only a few studies have focused on
pancreatic islet aging. For instance, scRNA-seq
analysis of pancreatic cells from eight human donors
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α β
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β

Figure 6. Overexpression of HSP90B1 impaired insulin secretion in β-cell line under high glucose treatment. (A) Schematic
chart showing the workflow of the gene manipulation and GSIS assays. (B) Verification of HSP90B1 overexpression effi-
ciency in pancreatic islet β-cell line by RT-qPCR. n = 4 experimental repeats. P value is indicated (two-tailed t-test). Data
are shown as mean ± SEM. (C) Verification of HSP90B1 overexpression efficiency in pancreatic islet β-cell line by West-
ern blot. β-Actin is used as a loading control. (D) GSIS assay of pancreatic islet β-cell line expressing Luc or HSP90B1.
n= 3 experimental repeats. P values are indicated (two-tailed t-test). Data are shown as mean ± SEM. (E) Schematic chart
showing the accumulation of aggresome and the activation of UPR during β-cell aging.

spanning about six decades suggests transcrip-
tional instability during islet aging, yet with the
detection of only modest age-dependent tran-
scriptional changes that may be related to gender-
related heterogeneity and sampling conditions
surrounding postmortem human pancreatic islet
isolation [13].Byusingmonkeys that are close tohu-

mans as animalmodels, wewere able to control such
experiment parameters in a highly stringent and reli-
able way. Especially when examining heterogeneous
islet cells, we used stringent experimental controls
that were likely essential to identifying meaningful
changes in gene expression signature changes amid
increased aging-related transcriptional noise. To
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our knowledge, this is the first scRNA-seq study that
uncovers a link between UPR pathways and β-cell
aging through in-depth sequencing by using the
modified STRT-seq technology and two mutually
reproducible bioinformatics tools.

Recent evidence suggests that toxic IAPP aggre-
gates and geneticmutations caused by the burden of
excessive protein aggregationmaybe linked toβ-cell
dysfunction and diabetes [45].Utilizing a transgenic
mouse model for monitoring ER stress in pancreas
cells, ER stress is increased in old mice compared to
youngmice [46]. Consistently, our study also found
increased IAPP expression and protein aggregates
in aged β-cells. Loss of proteostasis further aggra-
vates ER stress and triggers UPR signaling [45]. De-
pending on the intensity and duration of ER stress,
UPR signaling is under dynamic control that elicits
adaptive or cell death program [38]. How UPR is
fine-tuned during aging, and whether and to what
extent UPR activation contributes to deteriorating
β-cell function and glucose intolerance, await fur-
ther interrogation of β-cell behavior in the context
of the aged pancreas.Our scRNA-seq profiling of ag-
ing primate islet cells reveals a comprehensive por-
trait of UPR pathways that interweave with one an-
other. In the aged β-cells captured in our study,
pathways driven by ATF6 and IRE1 signaling were
activated, but the PERK branch of UPR signaling, as
well as terminal UPR and apoptotic steps, were not
mobilized. Of note, PERK and its downstream cell
deathpathway are activatedduring type2diabetes in
response to unresolvable ER stress [47]. Therefore,
the upregulation of specific UPR genes may serve as
a hallmark of aged β-cells, similar to those in dis-
eased conditions.Themaintenanceof proteinhome-
ostasis is likely to be a critical step for preventing
β-cell dysfunction during aging.

Finally, one therapeutic avenue suggested by this
study is targeting UPR to prevent glucose intoler-
ance in the pre-diabetic stage. Based on the dissec-
tion of UPR signaling at single-cell level, we identi-
fiedHSP90B1 as one of the most upregulated genes
in aged β-cells of both sexes and of the top tran-
scriptionally heterogeneous genes. HSP90B1 regu-
lates islet development [48], but its role in β-cell
aging has not been reported yet. Supporting the
role of HSP90B1 in aging, it has been documented
to be increased in aged rat hippocampi [49], and
HSP90 inhibitors were selected in a screen as poten-
tial senolytic drugs that intervene in cellular senes-
cence [50].These results, togetherwith our findings,
suggest thatHSP90B1may serve as a hallmark of ag-
ing β-cells, and provide a potential target to modu-
late β-cell function for a better glucose response. As
HSP90B1 is upregulated with other components of

the UPR pathway that have been identified in our
dataset, it will be interesting to test other regimens
to conquer aging-related deterioration of glucose
tolerance by targeting additional UPR components.
In summary, the single-cell transcriptional atlas of
aged pancreatic islets mapped here indicates that
loss of proteostasis is a hallmark of aged β-cells and
that selectively targeting specificUPRpathwaysmay
restore insulin secretion and glucose homeostasis,
perhaps thereby delaying the onset of diabetes.

MATERIALS AND METHODS
Information on materials used to conduct the
research, and all methods used in the analysis are
available in the supplementary information.

SUPPLEMENTARY DATA
Supplementary data are available atNSR online.
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