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Objective: To investigate the role of prediction microvascular invasion (mVI) in

hepatocellular carcinoma (HCC) by 18F-FDG PET image texture analysis and

hybrid criteria combining PET/CT and multi-parameter MRI.

Materials and methods: Ninety-seven patients with HCC who received the

examinations of MRI and 18F-FDG PET/CT were retrospectively included in this

study and were randomized into training and testing cohorts. The lesion image

texture features of 18F-FDG PET were extracted using MaZda software. The

optimal predictive texture features of mVI were selected, and the classification

procedure was conducted. The predictive performance of mVI by radiomics

classier in training and testing cohorts was respectively recorded. Next, the

hybrid model was developed by integrating the 18F-FDG PET image texture,

metabolic parameters, and MRI parameters to predict mVI through logistic

regression. Furthermore, the diagnostic performance of each time was

recorded.

Results: The 18F-FDG PET image radiomics classier showed good predicted

performance in both training and testing cohorts to discriminate HCC with/

without mVI, with an AUC of 0.917 (95% CI: 0.824–0.970) and 0.771 (95% CI:

0.578, 0.905). The hybrid model, which combines radiomics classier, SUVmax,

ADC, hypovascular arterial phase enhancement pattern on contrast-enhanced

MRI, and non-smooth tumor margin, also yielded better predictive

performance with an AUC of 0.996 (95% CI: 0.939, 1.000) and 0.953 (95%

CI: 0.883, 1.000). The differences in AUCs between radiomics classier and

hybrid classier were significant in both training and testing cohorts (DeLong test,

both p < 0.05).
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Conclusion: The radiomics classier based on 18F-FDG PET image texture and

the hybrid classier incorporating 18F-FDG PET/CT and MRI yielded good

predictive performance, which might provide a precise prediction of HCC

mVI preoperatively.

KEYWORDS

hepatocellular carcinoma, microvascular invasion, fluorine-18 fluorodeoxyglucose-
positron emission tomography (18F-FDG-PET), magnetic resonance imaging, texture
feature

1 Introduction

Hepatocellular carcinoma (HCC) is one of the most common

liver malignancies and one of the leading causes of cancer death

in the world (Sung et al., 2021). The main cause of unsatisfactory

HCC prognosis is that it is difficult to detect at the early stage

because of poor symptoms. The primary curative treatment

modality of HCC is partial hepatectomy. However, upon

detection, most HCC patients are unsuitable for hepatectomy

because of the underlying liver cirrhosis and hepatic dysfunction.

Even though HCC patients receive curative surgical resection,

there is still a relatively high recurrence rate, even in HCC

patients receiving liver transplantation, as high as 15%–30%

(Hoffman and Mehta, 2021; Tampaki et al., 2021). Therefore,

early diagnosis and accurate prediction of postoperative HCC

recurrence are important. Some established factors such as tumor

grade, stage, size, liver function, and treatment acted as predictors

of postoperative HCC recurrence (Ochiai et al., 2012).

Vascular invasion of HCC representing invasive tumor

behavior is a significant predictor of poor outcomes (Jonas

et al., 2001). Macrovascular invasion (MVI) could be readily

detected by contrast-enhanced CT/MR imaging before surgical

resection (Teefey et al., 2003). However, as a histologic finding,

microvascular invasion (mVI) is usually visible only on

microscopy by histopathology of the surgical specimen, which

is difficult to diagnose before surgical resection. Therefore, it is

essential to detect clinical predictors to suggest the presence of

mVI preoperatively.

Previous research has reported that the status of mVI can be

predicted by key imaging and laboratory tests. Several previous

studies have reported that tumor margin, capsule, and

peritumoral enhancement on CT/MRI scans were significantly

associated with mVI (Nishie et al., 2008; Witjes et al., 2012).

However, contradictory results were also reported in some

studies (Kim et al., 2009; Chou et al., 2014). In clinical

practice, developing a reliable preoperative predictor for mVI

is still necessary. As a functional molecular imaging modality,

fluorine-18 fluorodeoxyglucose (18F-FDG) positron emission

tomography (PET)/computed tomography (CT) is useful for

evaluating HCC differentiation grade by estimating the

glucose metabolism of tumor cells (Cho et al., 2017). Recently,

several studies have reported the role of 18F-FDG PET/CT in

defining mVI in patients with HCC. However, there is no

consistent conclusion, and the current results showed a wide

range of sensitivity, specificity, and accuracy for preoperatively

detecting mVI, which indicated that the current PET/CT

technique is insufficient alone for establishing a risk factor for

mVI (Kornberg et al., 2009; Lee et al., 2009; Lin et al., 2017; Kim

and Kim, 2021). Recently, Li et al. conducted radiomics analysis

on 18F-FDG PET/CT to preoperatively predict mVI and

prognosis in patients with very early and early stages of HCC,

which is the importance of precise treatment of patients (Li et al.,

2021).

In this retrospective study, we aimed to verify the

comprehensive value of 18F-FDG-PET/CT in the prediction of

mVI by quantitative uptake measurement and image texture

analysis. We also focus on the role of the hybrid model of

incorporating 18F-FDG-PET/CT and multi-parameter MRI.

We hypothesized if 18F-FDG-PET/CT findings predict mVI

and, more importantly, the added value, if any, of PET/CT for

the hybrid model in the prediction of mVI.

2 Materials and methods

2.1 Patients

This retrospective study was conducted in accordance with

the Declaration of Helsinki proposed in 1975 and revised in

2000 and was approved by the Ethics Committee of the universal

medical imaging center, Shanghai University (SHQJ-2019-05).

The consecutive HCC patients were confirmed by histopathology

after partial hepatectomy from January 2018 to April 2021. The

inclusion criteria were as follows: (Sung et al., 2021)

age >18 years; (Hoffman and Mehta, 2021) primary HCC

confirmed by pathology of surgical specimens; (Tampaki

et al., 2021) multi-parameter MR images containing

conventional unenhanced MR imaging (including T1WI and

T2WI), dynamic contrast-enhanced T1WI (including the arterial

phase imaging, portal venous phase imaging, and delayed phase

imaging), and diffusion-weighted imaging (DWI) (with b-value

of 0 and 800 s/mm2); (Ochiai et al., 2012) PET/CT and multi-

parameter MRI examination approximately within 4 weeks

before surgery; and (Jonas et al., 2001) no history of

preoperative anti-cancer treatment. The exclusion criteria of

this study were as follows: (Sung et al., 2021) preoperative
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images showing macrovascular invasion; (Hoffman and Mehta,

2021) HCC patients who underwent any anti-cancer treatment

before partial hepatectomy; (Tampaki et al., 2021) those with

time intervals of PET/CT, MRI, and surgery more than 4 weeks;

(Ochiai et al., 2012) those with no pathology slides available for

review; and (Jonas et al., 2001) images with artifacts affecting

evaluation.

The patients enrolled in this study were randomly divided

into two cohorts (training and testing) with a ratio of 7:3 using

computer-generated random numbers.

2.2 18F-FDG PET/CT acquisition and image
analysis

2.2.1 18F-FDG PET/CT acquisition
This study examined all 18F-FDG PET/CT acquisitions with

the SIEMENS Biograph mCT Flow PET/CT system (Siemens

Medical Solutions United States, Inc.). After at least 6 h of fasting,

the patient was intravenously administered a standard dose

(3.7 MBq/kg) of 18F-FDG, followed by image acquisition

60 min later, from the thigh to the head. Whole-body non-

contrast enhancement CT scanning protocols were as follows:

120 kVp, 30–170 mAs adjusted to the patient’s body weight and

with a section width of 3 mm and collimation of 0.75 mm. An

emission scan was performed in a three-dimensional (3D) mode

with an acquisition time of 1.7 min per bed position. PET images

were reconstructed by a 2-iteration, 21-ordered-subset

expectation maximization algorithm using CT images for

attenuation correction.

2.2.2 18F-FDG PET metabolic and volumetric
parameters

Standardized uptake values (SUV) were calculated by the

region-of-interest (ROI) technique. In order to calculate

SUVmax and SUVmean, manually defined circular ROI was

drawn on attenuation-corrected emission images selected for the

largest axial image of the HCC lesion. On the PET image, an

ellipse iso-contour was drawn covering the lesion, and the

volume of interest (VOI) in 3D, that is, metabolic tumor

volume (MTV), was obtained semi-automatedly with an iso-

contour SUV value threshold of 2.5 (Kim et al., 2017). Total

lesion glycolysis (TLG) was calculated by multiplying the selected

PET volume by the average SUV within that volume: TLG =

MTV × (average SUV). If the lesion had a low uptake of 18F-FDG,

the VOI was calculated on CT images and was then copied to

PET to obtain the VOI on PET. Contrast-enhanced MRI was

sometimes used to help delineate lesions.

The parameters of HCC 18F-FDGmetabolic avidity SUVmax,

SUVmean, the ratio of the maximum standardized uptake value

of tumor to the average standardized uptake value of normal liver

(TLRmax), and the average tumor-to-normal liver standardized

uptake value ratio (TLRmean) were calculated and recorded.

2.2.3 Texture analysis on axial 18F-FDG PET
images
2.2.3.1 Data standardization

Before texture analysis of the 18F-FDG PET image, the data

standardization procession to minimize the influence of image

contrast and brightness variations was performed by adopting a

method of normalizing the intensities of greyscale images into

the range of mean value ± three standard deviations (SD) (μ −

3SD, μ + 3SD).

2.2.3.2 18F-FDG PET image texture analysis

Texture feature extraction and selection were performed with

the MaZda software package (version 4.6, available at http://

www.eletel.p.lodz.pl/mazda/) (Szczypinski et al., 2009). The

largest axial 18F-FDG PET image of each HCC lesion was

selected for image texture analysis. The ROI was manually

circumscribed over the entire HCC lesion possibly on each

selected image by an experienced radiologist (Figure 1).

MaZda software allows the computation of almost 300 texture

features based on the image histogram, co-occurrence matrix

(COM), run-length matrix, absolute gradient, auto-regressive

model, and wavelet transforms (WAV) (Pinker et al., 2018).

These texture features (Supplementary Table S1) were extracted

from each ROI.

In order to achieve the highest differentiation power of HCC

with or without mVI, avoid the problem of dimensionality, and

reduce the bias, the image texture feature selection was

performed by a feature selection algorithm combining Fisher’s

coefficient (Fisher), classification error probability combined

with the average correlation coefficients (PA), and mutual

information (MI) on module B11. Then, 30 texture features

with the highest discriminative power were selected. In the

training cohort, the classification procedures were conducted

using principal component analysis (PCA), linear discriminant

analysis (LDA), and non-linear discriminant analysis (NDA) on

module B11 of the MaZda software package, and the sensitivity,

specificity, positive predictive value, negative predictive value,

and accuracy of diagnosis were calculated. The best classification

procedure was selected as the radiomic classifier with the highest

accuracy. In the testing cohort, the optimal 30 texture features

were selected according to the result of the training cohort, and

the predictive performance of the radiomic classifier for

differentiation of the status of mVI of HCC was calculated.

2.3 MRI technique and image analysis

All MRI examinations were performed with a 3.0-T MRI

scanner (Magnetom Aera, Siemens Healthcare, Erlangen,

Germany; or Ingenia, Philips Healthcare, Best, the Netherlands).

The imaging protocol was as follows: axial fast spin echo T2WIwith

fat saturation using a navigator-triggered technique, DWI using a

single-shot echoplanar imaging pulse sequence with b-values of
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0 and 800 s/mm2. The apparent diffusion coefficient (ADC) of the

HCC lesion was measured on the ADC map by the ROI drawn by

two radiologists circumscribing the entire lesion on the largest axial

image in consensus. T1WI images were obtained before and after

administration of gadolinium injection solution, with a dose of

0.1 mmol per kilogram of body weight and an injection rate of 2 ml/

sec. The arterial phase (AP) images were acquired approximately

25 s after contrast material injection. The portal venous phase

(PVP) images were acquired approximately 55–65 s after the

start of contrast material administration, and delayed phase

(DP) images were acquired 90–100 s after contrast material

injection. All parameters for the MRI sequences are summarized

in Supplementary Table S2.

2.3.1 Image analysis
MR images were retrospectively analyzed on a workstation or

a picture archiving and communication system (PACS). Two

clinically experienced radiologists evaluated the MR images in

consensus to obtain reliable results. Both readers were blinded to

the status of mVI.

The two radiologists qualitatively made the following: 1)

classified the arterial phase enhancement patterns on dynamic

contrast-enhanced MRI into three patterns: hypervascular HCC,

isovascular HCC, and hypovascular HCC; (Hoffman and Mehta,

2021) determined the presence or absence of intratumoral artery;

2) classified the patterns of tumor margin into two patterns:

smooth margin or non-smooth margin; and 3) determined HCC

with or without peritumoral enhancement on the AP images.

Qualitative findings on dynamic contrast-enhanced MR

imaging were defined as follows: 1) hypervascular HCC:

homogeneously hypervascular, hypervascular with slit-like

hypovascular foci, or multifocal hypovascular foci, with a

peripheral hypovascular area (Figure 2); 2) hypovascular

HCC: with a nodular- or irregular-shaped hypointense

portion at an inner area, with irregular rim-like enhancement,

with a peripheral hypervascular area, discontinuous rim, or

crescent-like, with linear or spot-like hypervascular foci, or

completely hypovascular HCC (Figure 2) (Rhee et al., 2021);

3) intratumoral artery: the blood vessels within the tumor in AP

images (Figure 2) (Segal et al., 2007); 4) a smooth margin defined

as a nodular-shaped tumor without extranodular extension or

infiltrative, non-smooth margins defined as a nodule with

extranodular extension or an infiltrative margin (Figure 3)

(Nakashima et al., 2003; Segal et al., 2007); and 5)

FIGURE 1
Flowchart of texture features (TF) extraction. (A) The 18F-FDG PET image of the maximum axial section of hepatocellular carcinoma (HCC) was
chosen. (B) The region of interest (ROI) of the tumor was drawn in red on MaZda. (C) The gray level histogram (GLH), gray level co-occurrence
matrices (GLCM), gray level run lengthmatrices (GLRLM), histogram of oriented gradient (HOG), wavelet transformation (WT), and the autoregressive
model (ARM) of tumor were calculated, respectively. (D) A combination of feature selection algorithms, including Fisher’s coefficient (Fisher),
classification error probability combined with the average correlation coefficients (PA), and mutual information (MI), was used to determine
30 texture features with the highest discriminative power for differentiation HCC with or without between mVI.

Frontiers in Physiology frontiersin.org04

Shi et al. 10.3389/fphys.2022.928969

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.928969


peritumoural enhancement on AP images: defined as a patchy

hyperintense area adjacent to the tumor with broad contact to the

tumor border on the AP images, presenting isointense to liver

parenchyma on the DP images (Figure 2) (Kim et al., 2009).

2.4 Intra-observer and inter-observer
agreement

The reproducibility of the intra-observer and inter-observer

agreement for texture analysis was measured using 20 randomly

chosen samples drawn from axial 18F-FDG PET images and ADC

map by two radiologists blinded from patients’ characteristics. To

evaluate intra-observer reproducibility, the first radiologist

delineated an ROI twice within 2 weeks following the same

procedure. Meanwhile, the second radiologist also

independently delineated the ROI once following the same

procedure. Then, the inter-observer agreement was assessed by

comparing the results with the texture features extracted calculated

from the first ROI delineation by the first radiologist. The intraclass

correlation coefficient (ICC) was used to evaluate the intra-

observer and inter-observer agreements. An

ICC >0.75 indicated satisfactory agreement.

2.5 Microvascular invasion evaluation by
histopathology

All surgical specimens and the status of mVI were reviewed

and evaluated by an experienced pathologist in liver pathology.

mVI was defined as the presence of a tumor in a portal vein,

hepatic vein, or a large capsular vessel of the surrounding hepatic

tissue lined by the endothelium that was visible only on

microscopy (Roayaie et al., 2009; Xu et al., 2019). We

categorized the HCC patients with mVI as the mVI-positive

(mVI+) group and the HCC patients without mVI as the mVI

negative (mVI−) group.

2.6 Statistical analysis

Inter-reader agreement was expressed by Cohen’s kappa

coefficient. A kappa statistic of 0.8–1.0, 0.6–0.79, 0.40–0.59,

0.2–0.39, and 0–0.19 was considered excellent, good,

moderate, fair, and poor agreement, respectively.

For categorical variables, the differences between the mVI (−)

and mVI (+) groups were analyzed by the Chi-squared test or

Fisher’s exact test. For continuous variables with a normal

distribution, an independent-samples t-test was used to test

the significant difference of the mVI (−) and mVI (+) groups;

for continuous variables with a skewed distribution, a non-

parametric Mann–Whitney U test was used. A two-tailed

p-value less than 0.05 was considered that the difference was

statistically significant. SPSS software (SPSS version 24.0; SPSS

Inc., Chicago, IL, United States) was used to perform statistical

analysis. The predictive value of each factor for mVI was

determined by analysis of the area under the ROC curve

(AUC). The differences in AUCs were compared by the

DeLong test (DeLong et al., 1988) performed using MedCalc

software (version 20.023). The calibration of the hybrid model

FIGURE 2
The patterns of arterial phase enhancement of hepatocellular carcinoma on contrast-enhanced MRI. (A) Homogeneously hypervascular HCC.
(B) Hypervascular HCC with slit-like hypovascular foci. (C) With multifocal hypovascular foci. (D) Hypervascular HCC with the peripheral
hypovascular area. (E) Completely isovascular HCC. (F) HCC with a nodular or irregular-shaped hypovascular portion at the inner area. (G)
Hypovascular HCC with irregular rim-like enhancement. (H) Hypovascular HCC with the peripheral hypervascular area, discontinuous rim or
crescent-like, and the presence of peritumoral enhancement seen in the arterial phase. (I) Hypovascular HCC with linear or spot-like hypervascular
foci. (J) the presence of an intratumoral artery.
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was performed by comparing the predicted and actual

probability of mVI by the Hosmer–Lemeshow test.

3 Results

For the intra-observer and inter-observer agreement,

radiomics features achieved satisfactory consistency. There

was no radiomics feature to be eliminated. The mean ICC was

0.956 (range, 0.892 to 1, p < 0.001) in the intra-observer

agreement and the mean ICC was 0.915 (range, 0.751 to

0.999, p < 0.001) in the inter-observer agreement.

In this study, the study flowchart for predicting mVI based

on texture features, metabolic and volumetric parameters, and

multi-parameter MRI is shown in Figure 4. A total of 97 patients’

clinical characteristics are presented in Table 1.

Of the 97 patients with HCC, 58.8% (57/97) had tumors with

mVI and 41.2% (40/97) without mVI. In the training cohort,

mVI (+) was presented in 55.9% (38/68) of tumors, similar to

65.5% (19/29) seen in the testing cohort (p > 0.05). There were

also no significant differences in other baseline clinical features

between the training and testing groups (all p > 0.05, Table 1),

which indicated that the distribution of baseline clinical-

pathologic characteristics in the training and testing group

was balanced.

In the pooled cohorts, the values of SUVmax, SUVmean,

TLRmax, TLRmean, and ADC of HCC with mVI (n = 57) were

higher than HCC without mVI (n = 40) (all p < 0.05). There

was no significant difference in MTV, TLG, and ADC/

ADC_liver between HCC with and without mVI (Table 2;

Figures 5, 6).

ROC curve analysis showed that the cutoff values of

SUVmax, SUVmean, TLRmax, TLRmean, and ADC for

predicting HCC with mVI were 5.65, 3.79, 2.53, 1.92, and

1,171.5, respectively, with the largest Youden indexes but

moderate diagnostic efficacy (all AUC < 0.70) (Table 3). In all

quantitative metabolic parameters, the predictor with the highest

diagnostic efficacy is SUVmax with the largest AUC (0.698, 95%

CI: 0.593 to 0.803, p = 0.001), providing sensitivity and specificity

of 59.6% and 80.0% at a cutoff value of 5.65 (Table 4;

Supplementary Figure S1).

On dynamic contrast-enhanced MRI review of pooled all

cohorts, the HCCs with mVI were significantly associated with

enhancement patterns on AP imaging and tumor margin (all p <
0.05; Table 2). Most HCCs with mVI (44/57, 77.2%)

demonstrated hypovascular lesions (Figure 5). The HCCs with

mVI (28/57, 49.1%) manifest as having more frequency of non-

smooth tumor margin than the HCCs without mVI (11/

40, 27.5%).

Based on the above results, we selected the quantitative

parameters of SUVmax and ADC, as well as the qualitative

parameters of the hypovascular enhancement pattern on AP

MR imaging and non-smooth tumor margin for subsequent

analysis.

3.1 Training cohort

Based on the feature selection algorithm combining Fisher,

PA, and MI coefficients in features modeling, 30 optimal features

are selected and listed in Supplementary Table S3.

Compared to PCA (47.1%, 32/68) and LDA (19.1%, 13/68),

NDA had the lowest misclassification rate with 7.4% (5/68) for all

these three classification procedures by MaZda software (p <
0.01). The NDA classification with an AUC of 0.917 (95% CI:

0.824–0.970) showed a sensitivity of 100%, a specificity of 83.3%,

a positive predictive value of 88.4%, a negative predictive value of

100%, and an accuracy of 92.6% (Table 4).

FIGURE 3
The patterns of hepatocellular carcinoma tumor margin. (A) Smooth tumor margin and intact tumor capsule. (B) Tumor with a non-smooth
margin.
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Combining radiomics classification results based on the

texture of the 18F-FDG-PET image, SUVmax, ADC, and the

qualitative parameters of the hypovascular arterial phase

enhancement pattern and non-smooth tumor margin, the

hybrid model regression equation was as follows:

Logit (P) = −2.077 + 0.203 × SUVmax + 2.825 × ADC −

4.717 × Radiomics − 0.041 × non-smooth − 0.664 × hypo-

vascular.

P is the probability of HCC with mVI. For p ≥ 0.5, the lesion

was expected to be HCC with mVI, whereas the other lesions

were categorized as HCC without mVI.

The hybrid model with an AUC of 0.996 (95% CI: 0.939,

1.000; p < 0.001) yielded a sensitivity of 94.7%, a specificity of

100%, a positive predictive value of 100%, a negative predictive

value of 93.8%, and an accuracy of 97.1% (Table 4). The

difference in AUC between the radiomics classification model

and the hybrid model was significant (p = 0.017). The calibration

of the hybrid model was performed by comparing the predicted

and actual probability of mVI by the Hosmer–Lemeshow test

(p > 0.05). (Supplementary Figure S2A) The difference between

the predicted and actual probabilities of mVI showed no

statistical significance.

3.2 Testing cohort

We selected 30 texture features that were consistent with the

training cohort. By using the neural network NDA classifier test

included in module B11, the misclassification rate for HCC with

versus without mVI was 20.7% (6/29). The sensitivity, specificity,

positive predictive, negative predictive, and accuracy values were

84.2%, 70.0%, 84.2%, 70.0%, and 79.3%, respectively, with an

AUC of 0.771 (95% CI: 0.578, 0.905) (Table 4).

In the testing cohort, the hybrid criteria yielded an AUC of

0.953 (95% CI: 0.883, 1.000; p < 0.001), a sensitivity of 95.0%, a

specificity of 70%, a positive predictive value of 86.4%, a

negative predictive value of 87.5%, and an accuracy of

86.7% (Table 4).

The performances of the radiomics and hybrid models to

predict HCC with mVI were also good in the testing cohort,

indicating their robustness. The difference in AUC between

radiomics criteria and hybrid criteria was also significant (p =

0.013), indicating that the hybrid model incorporated 18F-FDG

PET/CT and MRI yielded better predictive performance. The

calibration of the hybrid model was performed by comparing the

predicted and actual probability of mVI by the

Hosmer–Lemeshow test (p > 0.05) (Supplementary

Figure S2B). The difference between the predicted and actual

probability of mVI showed no statistical significance.

4 Discussion

To our knowledge, this study has produced the first texture-

based radiomics model of 18F FDG PET and a hybrid model that

incorporated texture features of 18F-FDG PET, quantitative

metabolic parameters, and quantitative and qualitative MRI

parameters for predicting the status of mVI in HCC. We

found that the radiomics model based on the texture of
18F-FDG PET had a good diagnostic performance with an

FIGURE 4
Study flowchart for predictingmVI by analyzing PET texture features and the hybridmodel incorporated 18F FDG PET/CT andMRI in training and
testing set.
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AUC of 0.917 (95% CI: 0.836–0.998) and 0.771 (95% CI:

0.578 TO 0.966) in the training and testing cohorts,

respectively. Furthermore, hybrid criteria combining 18F-FDG

PET and MRI could significantly increase diagnostic

performance more than the radiomics model (p < 0.05) and

yield an AUC of 0.996 (95% CI: 0.939, 1.000; p < 0.001) and 0.953

(95% CI: 0.883, 1.000) in the training and testing cohorts,

respectively. Accordingly, our results may increase the

accuracy of preoperative detection of the HCC with or

without mVI. It is useful for planning the most appropriate

treatment strategy and improving the prognosis of patients

with HCC.

Despite progressions in diagnostic and therapeutic

modalities, the prognosis of the patient with HCC is still to

be improved due to the recurrence rate after treatment

remaining high (Mlynarsky et al., 2015). The high

heterogeneity of the HCC may have resulted in a varied

prognosis (Lu et al., 2016; Lin et al., 2017). As a

pathological feature, mVI reflects the invasiveness of the

tumor, which usually appears in aggressive HCC while not

in low-grade HCC. The patient with HCC presenting mVI has

a shorter disease-free survival (DFS) due to a higher risk of

tumor recurrence (Miyata et al., 2006). Therefore, mVI is an

important prognostic factor of HCC and plays an important

role in planning a personalized therapeutic strategy (Erstad

and Tanabe, 2019; Xu et al., 2019). It is necessary to detect

clinical predictors to suggest the presence of mVI

preoperatively in order to establish a personalized

therapeutic strategy.

Several previous studies have shown that various imaging

modalities, including ultrasound, CT, especially contrast-

enhanced CT, 18F-FDG PET/CT, and MRI, have the potential

to detect HCC with mVI (Lin et al., 2017; Hyun et al., 2018; Hu

et al., 2019; Li et al., 2021; Meng et al., 2021). These studies showed

that various imaging modalities might have a comparable

predictive performance for mVI, whether the morphologic

features, metabolic activity features, radiomics analysis, or

combination are used. However, it is still unclear which

modality is better and unable to completely meet clinical needs

to establish risk factor for mVI only by one modality. In this study,

we first extracted texture features from ROI in an 18F-FDG PET

image and selected 30 optimal texture features in our study.

Meanwhile, the NDA classification procedure and the neural

network classifier on module B11 of the MaZda software

TABLE 1 Clinical characteristics of patients with HCC in the training and testing cohort.

Training cohort (n = 68) Testing cohort (n = 29) p-value***

mVI+ (n =
38) n
(%) or
median (IQR)

mVI− (n =
30) n
(%) or
median (IQR)

p-value* mVI+ (n =
19) n
(%) or
median (IQR)

mVI− (10)
n (%)
or median
(IQR)

p-value**

Sex 0.452 0.414 0.519

Male 26 (38.2) 23 (33.8) 11 (37.9) 8 (27.6)

Female 12 (17.6) 7 (10.3) 8 (27.6) 2 (6.9)

Age (years) 55 (36.5, 59.3) 55 (50, 63.3) 0.158 50 (50, 62) 46 (55, 62) 0.628 0.512

HBV infection 0.965 0.450 0.583

Absent 15 (22.1) 12 (17.6) 11 (37.9) 4 (13.8)

Present 23 (33.8) 18 (26.5) 8 (27.6) 6 (20.7)

Child–Pugh 0.973 1.000 0.961

A 29 (42.6) 23 (33.8) 14 (48.3) 7 (24.1)

B 9 (13.2) 7 (10.3) 5 (17.2) 3 (10.3)

Liver cirrhosis 0.833 0.245 0.420

Absent 13 (19.1) 11 (16.2) 8 (27.6) 7 (24.1)

Present 25 (36.8) 19 (27.9) 11 (37.9) 3 (10.3)

AFP (ng/ml) 0.357 0.270 0.932

≤200 16 (23.5) 16 (23.5) 12 (41.4) 4 (13.8)

>200 22 (32.3) 14 (20.6) 7 (24.1) 6 (20.7)

Image tumor size (mm) 42 (18.8, 79.3) 40 (17.5, 69.8) 0.923 64.0 (55.0, 85.0) 67.5 (44.0, 96.3) 0.982 0.888

HCC, hepatocellular carcinoma; HBV, hepatitis B virus; AFP, alpha-fetoprotein; mVI, microvascular invasion; IQR, interquartile range.

*The difference in HCC with mVI and without mVI in the training cohort.

**The difference in HCC with mVI and without mVI in the testing cohort.

***The difference in HCC with mVI and without mVI in the pooled cohort.
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package were adopted to construct a radiomics model for

predicting HCC with mVI. Our results showed that the

radiomics model derived from the image texture feature of axial
18F-FDG PET achieved a classification accuracy of 92.6% with an

AUC of 0.917 in the training cohort and 79.3% with an AUC of

0.771 in the testing cohort. However, the traditional imaging

radiologic features or metabolic activity features, such as

quantitative metabolic parameters from PET/CT or quantitative

and qualitative MRI parameters, yielded an accuracy range from

58.8% to 73.5% in the training cohort and 58.6%–72.4% in the

testing cohort. These results showed that the radiomics model may

be much better than the traditional morphologic and metabolic

activity features. A recent study showed that a radiomics

nomogram based on 18F-FDG PET/CT was constructed to

TABLE 2 Radiologic findings of primary HCC in the training and testing cohorts.

Training cohort (n = 68) Testing cohort (n = 29) p-value***

mVI+ (n =
38) n
(%) or
median
(IQR)

mVI− (n =
30) n
(%) or
median
(IQR)

p
value*

mVI+ (n =
19) n
(%) or
median (IQR)

mVI− (10)
n (%)
or median
(IQR)

p-value**

SUVmax 0.056 0.068 0.011

6.2 (3.9, 8.3) 4.0 (2.6, 4.8) 7.8 (4.0, 9.3) 4.5 (2.6, 8.2)

SUVmean 0.022 0.211 0.006

4.2 (2.6, 5.6) 3.0 (2.1, 3.3) 4.7 (2.9, 6.6) 3.4 (2.4, 5.8)

TLRmax 0.006a 0.153 0.001a

3.1 (2.3, 4.7) 2.1 (1.7, 2.5) 4.0 (2.0, 6.4) 2.6 (1.5, 4.7)

TLRmean 0.029a 0.338 0.017a

2.4 (1.4, 3.2) 1.6 (1.3, 1.8) 2.5 (1.5, 4.3) 1.8 (1.5, 3.4)

MTV 0.168 0.737 0.303

33.0 (6.7,141.3) 15.9 (5.8, 104.9) 101.2 (18.5, 180.8) 81.5 (8.3, 241.2)

TLG 0.155a 0.728 0.102

115.0 (22.6,
940.2)

48.1 (13.2, 350.4) 661.3 (70.4,
1,507.2)

255.5 (31.4,
1728.2)

ADC (×10−3 mm2/s) 0.091 0.066 0.014

1.29 (1.07, 1.42) 1.12 (0.94, 1.25) 1.19 (0.87, 1.54) 1.03 (0.83, 1.25)

ADC/ADC_liver 0.365 0.945a 0.650a

0.9 (0.8, 1.3) 1.0 (0.9, 1.2) 1.3 (1.0, 1.7) 1.1 (1.0, 1.8)

Arterial phase enhancement pattern <0.001 0.698 <0.001
Hypervascular 7 (10.3) 19 (27.9) 6 (20.7) 4 (13.8)

Hypovascular 31 (45.6) 11 (16.2) 13 (44.8) 6 (20.7)

Intratumoral artery 1.000 0.372 0.642

Presence 5 (7.4) 4 (5.9) 3 (10.3) 3 (10.3)

Absence 33 (48.5) 26 (38.2) 16 (55.2) 7 (24.1)

Tumor margin 0.053 0.694 0.033

Smooth 22 (32.4) 24 (35.3) 7 (24.1) 5 (17.2)

Non-smooth 16 (23.5) 6 (8.8) 12 (41.4) 5 (17.2)

Peritumoral enhancement in the arterial
phase

0.204 0.449 0.077

Presence 10 (14.7) 5 (7.4) 9 (31.0) 3 (10.3)

Absence 28 (41.2) 25 (36.8) 10 (34.5) 7 (24.1)

HCC, hepatocellular carcinoma; mVI, microvascular invasion; IQR, interquartile range; TLRmax, SUVmax/SUVmen_liver; TLRmean, SUVmean/SUVmen_liver; MTV, metabolic tumor

volume; TLG, total lesion glycolysis; ADC, apparent diffusion coefficient.

*The difference in HCC with mVI and without mVI in the training cohort.

**The difference in HCC with mVI and without mVI in the testing cohort.

***The difference in HCC with mVI and without mVI in the pooled cohort.
aNon-parametric Mann–Whitney U test.
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predict the mVI status in patients with very-early- and early-stage

HCC with an AUC of 0.891 (95% CI: 0.799–0.984) in the training

cohort and an AUC of 0.692 (95% CI: 0.497–0.887) in the testing

cohort, which also showed that the radiomics model had a strong

predictive power in detecting HCC with mVI (Li et al., 2021).

Of course, there are still several remaining significant

challenges for radiomics in detecting HCC with mVI, such as

replicability, standardization of images and data, and ethical

and regulatory considerations (Forghani et al., 2019). In our

study, we adopted a method of normalizing image intensities

in the range of mean gray-level value ± three standard

deviations (SD) to minimize the influence of contrast and

brightness variation. In the testing cohort, our radiomics

criteria yielded a classification accuracy of 79.3% with an

FIGURE 5
A 70-year-old hepatocellular carcinoma in liver segment VII woman with microvascular invasion, demonstrating Hypovascular enhancement
pattern, high metabolic of SUVmax 9.2, MTV 134.2 cm3, TLG 915.2, TLR 4.5, and ADC of 0.86 × 10−3 mm2/s. Contrast-enhanced MR in arterial phase
image (A), diffusion-weightedMR image (B), ADCmap (C), and 18F-FDGPET (D) (MTV,metabolic tumor volume; TLG, total lesion glycolysis; TLR, ratio
of tumor-to-liver SUV; ADC, apparent diffusion coefficient).

FIGURE 6
A 56-year-old hepatocellular carcinoma in liver segment VII man without microvascular invasion, demonstrating hypervascular enhancement
pattern, lowmetabolic of SUVmax 3.5, MTV 72.2 cm3, TLG 196.5, TLR 1.9, and ADC value of 1.1 × 10−3 mm2/s. Contrast-enhancedMR in arterial phase
image (A), diffusion-weightedMR image (B), ADCmap (C), and 18F-FDGPET (D) (MTV,metabolic tumor volume; TLG, total lesion glycolysis; TLR, ratio
of tumor-to-liver SUV; ADC, apparent diffusion coefficient).

TABLE 3 ROC results of 18F-FDG PET/CT parameters and ADC in predicting HCC with mVI in the pooled cohort.

Characteristic
parameter

Area under
curve

p-values Sensitivity (%) Specificity (%) Cutoff

SUVmax 0.698 (0.593, 0.803) 0.001 59.6 80.0 5.65

SUVmean 0.676 (0.567, 0.786) 0.003 66.7 77.5 3.79

TLRmax 0.693 (0.586, 0.799) 0.001 68.4 70.0 2.53

TLRmean 0.643 (0.531, 0.756) 0.017 64.9 75.0 1.92

ADC(×10−3mm2/s) 0.651 (0.537, 0.765) 0.012 68.4 75.0 1.17

ROC, receiver operating-characteristic curve; HCC, hepatocellular carcinoma; mVI, microvascular invasion; TLRmax, SUVmax/SUVmen_liver; TLRmean, SUVmean/SUVmen_liver;

ADC, apparent diffusion coefficient.
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AUC of 0.771 (95% CI: 0.578–0.905), which was lower than

that classification accuracy of 92.6% with an AUC of 0.917

(95% CI: 0.824–0.970) in the training cohort. This indicated

that the robustness of radiomics was to be improved.

The previous studies have also reported that the quantitative

and qualitative parameters of SUVmax, ADC values,

hypovascular lesion, and non-smooth tumor margin were

associated with mVI status in patients with HCC (Mulé et al.,

2020; Zhang et al., 2020). Therefore, in this study, we constructed

hybrid criteria combining radiomics criteria and quantitative and

qualitative parameters derived from 18F-FDG PET/CT and MRI

to predict the status of mVI in patients with HCC and achieved

better results by significantly increasing AUC, yielded an AUC of

0.996 (95% CI: 0.939 to 1.000; p < 0.001) and 0.953 (95% CI:

0.883–1.000) in the training and testing cohorts, respectively. The

difference in AUC between hybrid criteria and radiomics criteria

showed statistical significance (p-values of 0.0165 and 0.0133 in

the training and testing cohorts, respectively). Our findings

suggest that the utility of the hybrid model combining
18F-FDG PET/CT and MRI may improve the preoperative

prediction of the status of mVI in HCC, compared to the

only utility of the radiomics model based on texture features

of 18F-FDG PET.

There were several limitations in this study. First, this was

a retrospective study with a small sample size, which could

influence the robustness and reproducibility of our

prediction models. The study samples were only divided

into the training and testing cohorts to perform internal

validation in this study. There may be a phenomenon of

overfitting in the data processing for the AUC significant

difference between the radiomics classier training set and the

validation set. Therefore, the current study should need

further validation with data augmentation and cross-

validation in the future. Second, in this study, the HCC
18F-FDG PET image textures were extracted only from the

two-dimensional largest axial image of each HCC, which

may cause loss of the entire tumor heterogeneity

information. Therefore, the 3D structures radiomics of

the tumor need further study in the future. Third, there

was no significant association between the clinical

characteristics and the status of mVI in our study (p >
0.05). It was different from the previous study by Hyun

et al. (2018), which showed that some clinical

characteristics of clinical stage, AST, and AFP were

significant predictors of mVI. The radiological hybrid

model incorporating more clinical, pathological, and

prognosis characteristics and radiomics should be

considered in future studies.

In conclusion, the hybrid radiological model that

incorporates the image texture of the 18F-FDG PET

signature, quantitative metabolic parameter, and quantitative

and qualitative MRI parameters has powerful predictive

performance in predicting the status of mVI preoperatively.

Thus, such models may facilitate planning clinical treatment

and improving survival in selected patients with HCC. Of

course, it is warranted to validate the robustness and

reproducibility of our prediction models by large-scale

multicenter studies in the future.

TABLE 4 Diagnostic performance of hepatocellular carcinoma with microvascular invasion in the training and testing cohorts.

True
positive

False
positive

False
negative

True
negative

Sensitivity Specificity Positive-
predictive
value

Negative-
predictive
value

Accuracy

Training cohort (n = 68)

Radiomics
model

38 5 0 25 100 83.3 88.4 100 92.6%

SUVmax 20 5 18 25 52.6 83.3 80 58.1 66.2

ADC 26 8 12 22 68.4 73.3 76.5 64.7 70.6

Hypovascular 31 11 7 19 81.6 63.3 73.8 73.1 73.5

Non-smooth
margin

16 6 22 24 42.1 80 72.7 52.2 58.8

Hybrid model 36 0 2 30 94.7 100 100 93.8 97.1

Testing cohorts (n = 29)

Radiomics
model

16 3 3 7 84.2 70 84.2 70 79.3

SUVmax 14 3 5 7 73.7 70 82.4 58.3 72.4

ADC 13 6 2 8 86.7 57.1 68.4 80 72.4

Hypovascular 13 6 6 4 68.4 40 68.4 40 58.6

Non-smooth
margin

12 5 7 5 63.2 50 70.6 41.7 58.6

Hybrid model 19 3 1 7 95 70 86.4 87.5 86.7

Frontiers in Physiology frontiersin.org11

Shi et al. 10.3389/fphys.2022.928969

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.928969


Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors without undue reservation.

Ethics statement

The studies involving human participants were reviewed and

approved by the Ethics Committee of the universal medical

imaging center, Shanghai University. Written informed

consent for participation was not required for this study in

accordance with the national legislation and the institutional

requirements.

Author contributions

The literature search, analysis, data explanation, and

manuscript draft were finished by HS, XL, and ZY. XL and

ZY are responsible for the analysis and explanation of the

radiomics imaging features data. YD, JS, WZ, WL, BS, FL,

and XM acquired the clinical information and imaging. HS

and ZY designed the study, explained the data, and made

multiple revisions to the manuscript. All authors contributed

to the article and approved the submitted version.

Funding

This work was supported by the Shanghai Municipal Health

Commission (No. 20194Y0148) and the National Natural

Science Foundation of China (No. 82073293).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations or those of the publisher, the editors, and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fphys.

2022.928969/full#supplementary-material

References

Cho, K. J., Choi, N. K., Shin, M. H., and Chong, A. R. (2017). Clinical usefulness of
FDG-PET in patients with hepatocellular carcinoma undergoing surgical resection.
Ann. Hepatobiliary. Pancreat. Surg. 21, 194–198. doi:10.14701/ahbps.2017.21.4.194

Chou, C. T., Chen, R. C., Lin, W. C., Ko, C. J., Chen, C. B., Chen, Y. L., et al.
(2014). Prediction of microvascular invasion of hepatocellular carcinoma:
preoperative CT and histopathologic correlation. AJR. Am. J. Roentgenol. 203,
W253–W259. doi:10.2214/AJR.13.10595

DeLong, E. R., DeLong, D. M., and Clarke-Pearson, D. L. (1988). Comparing the
areas under two or more correlated receiver operating characteristic curves: a
nonparametric approach. Biometrics 44, 837. doi:10.2307/2531595

Erstad, D. J., and Tanabe, K. K. (2019). Prognostic and therapeutic implications of
microvascular invasion in hepatocellular carcinoma. Ann. Surg. Oncol. 26,
1474–1493. doi:10.1245/s10434-019-07227-9

Forghani, R., Savadjiev, P., Chatterjee, A., Muthukrishnan, N., Reinhold, C.,
Forghani, B., et al. (2019). Radiomics and artificial intelligence for biomarker and
prediction model development in oncology. Comput. Struct. Biotechnol. J. 17,
995–1008. doi:10.1016/j.csbj.2019.07.001

Hoffman, D., and Mehta, N. (2021). Recurrence of hepatocellular carcinoma
following liver transplantation. Expert Rev. Gastroenterol. Hepatol. 15, 91–102.
doi:10.1080/17474124.2021.1823213

Hu, H. T., Wang, Z., Huang, X. W., Chen, S. L., Zheng, X., Ruan, S. M., et al.
(2019). Ultrasound-based radiomics score: a potential biomarker for the prediction
of microvascular invasion in hepatocellular carcinoma. Eur. Radiol. 29, 2890–2901.
doi:10.1007/s00330-018-5797-0

Hyun, S. H., Eo, J. S., Song, B. I., Lee, J. W., Na, S. J., Hong, I. K., et al. (2018).
Preoperative prediction of microvascular invasion of hepatocellular
carcinoma using (18)F-FDG PET/CT: a multicenter retrospective cohort
study. Eur. J. Nucl. Med. Mol. Imaging 45, 720–726. doi:10.1007/s00259-
017-3880-4

Jonas, S., Bechstein, W. O., Steinmuller, T., Herrmann, M., Radke, C., Berg, T.,
et al. (2001). Vascular invasion and histopathologic grading determine outcome

after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology 33,
1080–1086. doi:10.1053/jhep.2001.23561

Kim, H., Park, M. S., Choi, J. Y., Park, Y. N., Kim, M. J., Kim, K. S., et al.
(2009). Can microvessel invasion of hepatocellular carcinoma be predicted
by pre-operative MRI? Eur. Radiol. 19, 1744–1751. doi:10.1007/s00330-
009-1331-8

Kim, K., and Kim, S. J. (2021). Diagnostic test accuracies of F-18 FDG PET/
CT for prediction of microvascular invasion of hepatocellular carcinoma: a
meta-analysis. Clin. Imaging 79, 251–258. doi:10.1016/j.clinimag.2021.
06.015

Kim, Y. I., Kim, Y. J., Paeng, J. C., Cheon, G. J., Lee, D. S., Chung, J. K., et al.
(2017). Prediction of breast cancer recurrence using lymph node metabolic and
volumetric parameters from 18F-FDG PET/CT in operable triple-negative breast
cancer. Eur. J. Nucl. Med. Mol. Imaging 44 (11), 1787–1795. doi:10.1007/s00259-
017-3748-7

Kornberg, A., Freesmeyer, M., Bärthel, E., Jandt, K., Katenkamp, K., Steenbeck, J.,
et al. (2009). 18F-FDG-uptake of hepatocellular carcinoma on PET predicts
microvascular tumor invasion in liver transplant patients. Am. J. Transpl. 9,
592–600. doi:10.1111/j.1600-6143.2008.02516.x

Lee, J. W., Paeng, J. C., Kang, K. W., Kwon, H. W., Suh, K. S., Chung, J. K., et al.
(2009). Prediction of tumor recurrence by 18F-FDG PET in liver transplantation for
hepatocellular carcinoma. J. Nucl. Med. 50, 682–687. doi:10.2967/jnumed.108.
060574

Li, Y., Zhang, Y., Fang, Q., Zhang, X., Hou, P., Wu, H., et al. (2021). Radiomics
analysis of [18F] FDG PET/CT for microvascular invasion and prognosis prediction
in very-early- and early-stage hepatocellular carcinoma. Eur. J. Nucl. Med. Mol.
Imaging 48, 2599–2614. doi:10.1007/s00259-020-05119-9

Lin, C. Y., Liao, C. W., Chu, L. Y., Yen, K. Y., Jeng, L. B., Hsu, C. N., et al. (2017).
Predictive value of 18F-FDG PET/CT for vascular invasion in patients with
hepatocellular carcinoma before liver transplantation. Clin. Nucl. Med. 42, e183.
doi:10.1097/RLU.0000000000001545

Frontiers in Physiology frontiersin.org12

Shi et al. 10.3389/fphys.2022.928969

https://www.frontiersin.org/articles/10.3389/fphys.2022.928969/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2022.928969/full#supplementary-material
https://doi.org/10.14701/ahbps.2017.21.4.194
https://doi.org/10.2214/AJR.13.10595
https://doi.org/10.2307/2531595
https://doi.org/10.1245/s10434-019-07227-9
https://doi.org/10.1016/j.csbj.2019.07.001
https://doi.org/10.1080/17474124.2021.1823213
https://doi.org/10.1007/s00330-018-5797-0
https://doi.org/10.1007/s00259-017-3880-4
https://doi.org/10.1007/s00259-017-3880-4
https://doi.org/10.1053/jhep.2001.23561
https://doi.org/10.1007/s00330-009-1331-8
https://doi.org/10.1007/s00330-009-1331-8
https://doi.org/10.1016/j.clinimag.2021.06.015
https://doi.org/10.1016/j.clinimag.2021.06.015
https://doi.org/10.1007/s00259-017-3748-7
https://doi.org/10.1007/s00259-017-3748-7
https://doi.org/10.1111/j.1600-6143.2008.02516.x
https://doi.org/10.2967/jnumed.108.060574
https://doi.org/10.2967/jnumed.108.060574
https://doi.org/10.1007/s00259-020-05119-9
https://doi.org/10.1097/RLU.0000000000001545
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.928969


Lin, D. C., Mayakonda, A., Dinh, H. Q., Huang, P., Lin, L., Liu, X., et al. (2017).
Genomic and epigenomic heterogeneity of hepatocellular carcinoma. Cancer Res.
77, 2255–2265. doi:10.1158/0008-5472.CAN-16-2822

Lu, L. C., Hsu, C. H., Hsu, C., and Cheng, A. L. (2016). Tumor heterogeneity in
hepatocellular carcinoma: facing the challenges. Liver Cancer 5, 128–138. doi:10.
1159/000367754

Meng, X. P., Wang, Y. C., Zhou, J. Y., Yu, Q., Lu, C. Q., Xia, C., et al. (2021).
Comparison of MRI and CT for the prediction of microvascular invasion in solitary
hepatocellular carcinoma based on a non-radiomics and radiomics method: which
imagingmodality is better? J.Magn. Reson. Imaging. 54, 526–536. doi:10.1002/jmri.27575

Miyata, R., Tanimoto, A., Wakabayashi, G., Shimazu, M., Nakatsuka, S.,
Mukai, M., et al. (2006). Accuracy of preoperative prediction of
microinvasion of portal vein in hepatocellular carcinoma using
superparamagnetic iron oxide-enhanced magnetic resonance imaging and
computed tomography during hepatic angiography. J. Gastroenterol. 41,
987–995. doi:10.1007/s00535-006-1890-2

Mlynarsky, L., Menachem, Y., and Shibolet, O. (2015). Treatment of
hepatocellular carcinoma: steps forward but still a long way to go. World
J. Hepatol. 7, 566–574. doi:10.4254/wjh.v7.i3.566

Mulé, S., Chalaye, J., Legou, F., Tenenhaus, A., Calderaro, J., Galletto
Pregliasco, A., et al. (2020). Hepatobiliary MR contrast agent uptake as a
predictive biomarker of aggressive features on pathology and reduced
recurrence-free survival in resectable hepatocellular carcinoma: comparison
with dual-tracer 18F-FDG and 18F-fch PET/CT. Eur. Radiol. 30, 5348–5357.
doi:10.1007/s00330-020-06923-5

Nakashima, Y., Nakashima, O., Tanaka, M., Okuda, K., Nakashima, M., Kojiro,
M., et al. (2003). Portal vein invasion and intrahepatic micrometastasis in small
hepatocellular carcinoma by gross type. Hepatol. Res. 26, 142–147. doi:10.1016/
s1386-6346(03)00007-x

Nishie, A., Yoshimitsu, K., Asayama, Y., Irie, H., Tajima, T., Hirakawa, M., et al.
(2008). Radiologic detectability of minute portal venous invasion in hepatocellular
carcinoma. AJR. Am. J. Roentgenol. 190, 81–87. doi:10.2214/AJR.07.2810

Ochiai, T., Ikoma, H., Okamoto, K., Kokuba, Y., Sonoyama, T., Otsuji, E., et al.
(2012). Clinicopathologic features and risk factors for extrahepatic recurrences of
hepatocellular carcinoma after curative resection. World J. Surg. 36, 136–143.
doi:10.1007/s00268-011-1317-y

Pinker, K., Shitano, F., Sala, E., Do, R. K., Young, R. J., Wibmer, A. G., et al. (2018).
Background, current role, and potential applications of radiogenomics. J. Magn.
Reson. Imaging 47, 604–620. doi:10.1002/jmri.25870

Rhee, H., Cho, E. S., Nahm, J. H., Jang, M., Chung, Y. E., Baek, S., et al. (2021).
Gadoxetic acid-enhanced MRI of macrotrabecular-massive hepatocellular
carcinoma and its prognostic implications. J. Hepatol. 74, 109–121. doi:10.1016/
j.jhep.2020.08.013

Roayaie, S., Blume, I. N., Thung, S. N., Park, Y. N., Kim, M. J., Kim, K. S., et al.
(2009). A system of classifying microvascular invasion to predict outcome after
resection in patients with hepatocellular carcinoma. Gastroenterology 137, 850–855.
doi:10.1053/j.gastro.2009.06.003

Segal, E., Sirlin, C. B., Ooi, C., Adler, A. S., Gollub, J., Chen, X., et al. (2007).
Decoding global gene expression programs in liver cancer by noninvasive imaging.
Nat. Biotechnol. 25, 675–680. doi:10.1038/nbt1306

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71, 209–249.
doi:10.3322/caac.21660

Szczypinski, P. M., Strzelecki, M., Materka, A., and Klepaczko, A. (2009).
MaZda–a software package for image texture analysis. Comput. Methods
Programs Biomed. 94, 66–76. doi:10.1016/j.cmpb.2008.08.005

Tampaki, M., Papatheodoridis, G. V., and Cholongitas, E. (2021). Intrahepatic
recurrence of hepatocellular carcinoma after resection: an update. Clin.
J. Gastroenterol. 14, 699–713. doi:10.1007/s12328-021-01394-7

Teefey, S. A., Hildeboldt, C. C., Dehdashti, F., Siegel, B. A., Peters, M.
G., Heiken, J. P., et al. (2003). Detection of primary hepatic malignancy
in liver transplant candidates: prospective comparison of CT, MR
imaging, US, and PET. Radiology 226, 533–542. doi:10.1148/radiol.
2262011980

Witjes, C. D., Willemssen, F. E., Verheij, J., van der Veer, S. J., Hansen, B.
E., Verhoef, C., et al. (2012). Histological differentiation grade and
microvascular invasion of hepatocellular carcinoma predicted by dynamic
contrast-enhanced MRI. J. Magn. Reson. Imaging 36, 641–647. doi:10.1002/
jmri.23681

Xu, X., Zhang, H. L., Liu, Q. P., Sun, S. W., Zhang, J., Zhu, F. P., et al. (2019).
Radiomic analysis of contrast-enhanced CT predicts microvascular invasion
and outcome in hepatocellular carcinoma. J. Hepatol. 70, 1133–1144. doi:10.
1016/j.jhep.2019.02.023

Zhang, L., Yu, X., Wei, W., Pan, X., Lu, L., Xia, J., et al. (2020). Prediction of
HCC microvascular invasion with gadobenate-enhanced MRI: correlation
with pathology. Eur. Radiol. 30, 5327–5336. doi:10.1007/s00330-020-
06895-6

Frontiers in Physiology frontiersin.org13

Shi et al. 10.3389/fphys.2022.928969

https://doi.org/10.1158/0008-5472.CAN-16-2822
https://doi.org/10.1159/000367754
https://doi.org/10.1159/000367754
https://doi.org/10.1002/jmri.27575
https://doi.org/10.1007/s00535-006-1890-2
https://doi.org/10.4254/wjh.v7.i3.566
https://doi.org/10.1007/s00330-020-06923-5
https://doi.org/10.1016/s1386-6346(03)00007-x
https://doi.org/10.1016/s1386-6346(03)00007-x
https://doi.org/10.2214/AJR.07.2810
https://doi.org/10.1007/s00268-011-1317-y
https://doi.org/10.1002/jmri.25870
https://doi.org/10.1016/j.jhep.2020.08.013
https://doi.org/10.1016/j.jhep.2020.08.013
https://doi.org/10.1053/j.gastro.2009.06.003
https://doi.org/10.1038/nbt1306
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.cmpb.2008.08.005
https://doi.org/10.1007/s12328-021-01394-7
https://doi.org/10.1148/radiol.2262011980
https://doi.org/10.1148/radiol.2262011980
https://doi.org/10.1002/jmri.23681
https://doi.org/10.1002/jmri.23681
https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1016/j.jhep.2019.02.023
https://doi.org/10.1007/s00330-020-06895-6
https://doi.org/10.1007/s00330-020-06895-6
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.928969

	Role of preoperative prediction of microvascular invasion in hepatocellular carcinoma based on the texture of FDG PET image ...
	1 Introduction
	2 Materials and methods
	2.1 Patients
	2.2 18F-FDG PET/CT acquisition and image analysis
	2.2.3 Texture analysis on axial 18F-FDG PET images
	2.2.3.1 Data standardization
	2.2.3.2 18F-FDG PET image texture analysis

	2.3 MRI technique and image analysis
	2.3.1 Image analysis

	2.4 Intra-observer and inter-observer agreement
	2.5 Microvascular invasion evaluation by histopathology
	2.6 Statistical analysis

	3 Results
	3.1 Training cohort
	3.2 Testing cohort

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


