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Abstract

Background: Multi-genome comparative analysis has yielded important insights into the
molecular details of gene regulation. We have developed EvoPrinter, a web-accessed genomics tool
that provides a single uninterrupted view of conserved sequences as they appear in a species of
interest. An EvoPrint reveals with near base-pair resolution those sequences that are essential for
gene function.

Results: We describe here EvoPrinterHD, a 2"d-generation comparative genomics tool that
automatically generates from a single input sequence an enhanced view of sequence conservation
between evolutionarily distant species. Currently available for 5 nematode, 3 mosquito, 12
Drosophila, 20 vertebrate, |7 Staphylococcus and 20 enteric bacteria genomes, EvoPrinterHD employs
a modified BLAT algorithm [enhanced-BLAT (eBLAT)], which detects up to 75% more conserved
bases than identified by the BLAT alignments used in the earlier EvoPrinter program. The new
program also identifies conserved sequences within rearranged DNA, highlights repetitive DNA,
and detects sequencing gaps. EvoPrinterHD currently holds over | 12 billion bp of indexed genomes
in memory and has the flexibility of selecting a subset of genomes for analysis. An EvoDifferences
profile is also generated to portray conserved sequences that are uniquely lost in any one of the
orthologs. Finally, EvoPrinterHD incorporates options that allow for (1) re-initiation of the analysis
using a different genome's aligning region as the reference DNA to detect species-specific changes
in less-conserved regions, (2) rapid extraction and curation of conserved sequences, and (3) for
bacteria, identifies unique or uniquely shared sequences present in subsets of genomes.

Conclusion: EvoPrinterHD is a fast, high-resolution comparative genomics tool that automatically
generates an uninterrupted species-centric view of sequence conservation and enables the
discovery of conserved sequences within rearranged DNA. When combined with cis-Decoder, a
program that discovers sequence elements shared among tissue specific enhancers, EvoPrinterHD
facilitates the analysis of conserved sequences that are essential for coordinate gene regulation.
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Background

Comparative analysis of orthologous DNA has revealed
that many cis-regulatory enhancers contain multi-species
conserved sequences (MCSs) that are essential for their
transcriptional regulation (reviewed by [1-4]). We have
previously described EvoPrinter and cis-Decoder, both
web-accessed tools for discovering and comparing con-
served sequences that are shared among three or more
orthologs [4,5]. Generated from superimposition of mul-
tiple pair-wise BLAT alignments [6], an EvoPrint provides
an ordered uninterrupted representation of conserved
sequences as they exist in the genome of interest. When
multiple species are included in the analysis, near base-
pair resolution of conserved sequences required for gene
function can be achieved. For example, when 12 Dro-
sophila species, representing ~200 million years of cumu-
lative evolutionary divergence, are included in the
EvoPrint process, one can identify sequences that are
essential for cis-regulatory function (both enhancers and
minimal promoters), conserved protein encoding
sequences, and micro-RNA binding sites. EvoPrinterHD is
a second-generation alignment tool that automates the
comparative analysis to rapidly identify a significantly
higher percentage of conserved sequences shared among
evolutionarily distant orthologs even if they exist within
rearranged DNA. In contrast to most comparative multi-
sequence alignment tools (reviewed by [7]), which dis-
play columns of sequences that contain gaps to optimize
alignments, the species-centric EvoPrint is a single uninter-
rupted sequence and thus displays more bases in a single
view than is possible with conventional alignments. In
addition, the uninterrupted readout allows for the rapid
extraction and automated curation of conserved DNA
from the genome of interest.

At the core of the original multi-genome EvoPrinter align-
ment algorithms is the BLAT algorithm [6] for pairwise
alignments. Although BLAT alignments generate uninter-
rupted representations of the aligning regions, one draw-
back of BLAT when performing alignments of
evolutionarily distant DNAs, as initially noted by Kent [6],
is that short regions of homology that span the non-over-
lapping 11-mers go undetected. We developed eBLAT to
overcome the inability of BLAT to detect these short
blocks of homology. To accomplish this, each genome is
indexed three independent ways, each staggered differ-
ently; additionally, the alignment parameters have been
adjusted to enhance the detection of short blocks of
sequence conservation. By performing three independent
alignments using the staggered indices with the optimized
alignment parameters and then superimposing the result-
ing alignments to show all aligning sequences, the overall
detection of conserved sequences has been improved by
as much as 75% when evolutionary distant orthologous
sequences are aligned.

http://www.biomedcentral.com/1471-2164/9/106

In addition to the automated alignments for bacteria,
nematode, mosquito, Drosophila, and vertebrate genomes,
and the higher eBLAT resolution, EvoPrinterHD includes
algorithms that search the intra-genomic aligning regions
for rearrangements, duplications and sequencing gaps.
EvoPrints generated with composite eBLATSs highlight con-
served sequences within the reference DNA irrespective of
genomic rearrangements within one or more of the align-
ing regions. Four additional programs have been added:
(1) an EvoDifferences profile, portraying in a single view
the conserved sequences that are detected in all but one of
the species included in the EvoPrint; (2) input reference
DNA exchange, allowing for detection of species-specific
changes in the less-conserved DNA flanking MCSs; (3)
automated extraction and curation of conserved sequence
blocks (CSBs), facilitating their comparative analysis [4],
and (4) for bacteria, an EvoUnique print that highlights
unique or uniquely shared sequences among subsets of
genomes. Due in part to its speed and flexibility of
genome selection, EvoPrinterHD interfaces well with other
web-accessed tools. The time required to undertake a
comparative genome analysis of sequences that contain
putative cis-regulatory enhancers is significantly reduced.
For example, a 12 Drosophila EvoPrint analysis and cura-
tion of CSBs within a 2 Kb genomic region that contains a
cluster of transcription factor DNA-binding sites (discov-
ered using the FlyEnhancer genome motif search tool [8])
requires less than 30 seconds. Once CSBs are discovered,
subsequent analysis via cis-Decoder algorithms enable the
generation of conserved sequence tag libraries that further
facilitate enhancer comparative studies.

Results and Discussion

The following is a description of the sequential steps and
accompanying algorithms used by EvoPrinterHD to iden-
tify conserved sequences shared among multiple
genomes. Instructions and a tutorial for optimizing its use
can be accessed at the EvoPrinterHD web site [9].

Genome Indexing

In addition to the original non-overlapping 11-mer
genomic index of BLAT [6], EvoPrinterHD indexes each
genome into a second set of non-overlapping 11-mers,
offset by four base pairs from the initial indexing, and into
a third set of non-overlapping 9-mers. The resulting stag-
gered indexing increases the likelihood that homologous
regions missed by any one of the individual indices will
be identified. The use of multiple genome indices and
optimization of the alignment phase parameters (see
below) is the basis of the enhanced detection of conserved
sequences between evolutionarily distant orthologous
DNA:s.

EvoPrinterHD currently holds in memory three independ-

ent indices of each of 37 bacteria, 3 mosquito, 5 nema-
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tode, 12 Drosophila and 20 vertebrate genomes,
representing ~112 billion bp in total memory.

Modification of BLAT search and alignment parameters

The alignment sensitivity of EvoPrinterHD for the discov-
ering short blocks of conserved sequence homology
between evolutionary distant orthologs was increased by
optimizing the Genomic Finding (gf) client program
parameters of the original BLAT algorithm [6]. The search
and alignment parameters were adjusted by: (1) optimiz-
ing the stringency factor for low homology alignments by
increasing it from 0.0005 to 0.001, (2) reducing the initial
expansion gap between adjacent hits from a setting of four
to three, (3) reducing the additional expansion gap pen-
alty from three to one, (4) maximizing the allowable gaps
and inserts from 12 to 16, and (5) changing the value of
allowable codon gap parameter from two to three to opti-
mize for codon polymorphisms in open reading frames.

Detecting conserved sequences with EvoPrinterHD
algorithms

To maximize the identification of short CSBs between
evolutionary divergent orthologs, EvoPrinterHD generates
3 different input reference DNA vs. test genome BLAT
alignments to the same aligning region using the three
indices described above. As an output of the client pro-
gram, EvoPrinterHD then generates a superimposed com-
posite of the 3 different alignments. The algorithm does
this by first creating an array of nucleotide strings of each
of the 3 input reference DNA BLAT alignment sequences
and then loops through the strings one base at a time, out-
putting a capital letter when at least one of the 3 readouts
has an aligning base at that position, thereby generating a
composite readout that displays all conserved bases. The
program also generates BLAT readouts of the test genome
aligning region and both are stored in memory for later
analysis, EvoPrint generation and for exchange of input
reference DNA, accomplished by selecting one of the
aligning region sequences as the new reference sequence
to reinitiate the analysis. The algorithm also generates
eBLATs for the second and third highest score aligning
regions for each of the selected genomes.

The mosquito, nematode, Drosophila and Staphylococcus
EvoPrinterHD algorithms automatically generate, respec-
tively, 27, 45, 108 and 153 pairwise BLAT alignments,
assembles 9, 15, 36, and 51 eBLAT readouts, and then
superimposes the individual pairwise eBLAT alignments
(3 per genome) to generate a color-coded composite-
eBLAT (ceBLAT) for each aligning region. The vertebrate
EvoPrinterHD and enteric bacteria EvoPrinterHD both gen-
erate up to 180 pairwise BLAT alignments assembling 60
eBLAT readouts and 20 ceBLATs. To reduce alignment
times, EvoPrinterHD algorithms currently employ two Dell
PowerEdge (2.8 GHz/64 GB RAM; 6950 series) dual quad-
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core processor servers operating in parallel with the Red-
Hat Enterprise Linux 5 operating system and the Network
File System to simultaneously query multiple indexed
genomes.

To assess the efficacy of eBLAT alignments in comparison
to the original BLAT, we compared the pairwise alignment
scores (the total number of aligning bases in the input
DNA) of ¢eBLAT to those obtained with BLAT, using 10 dif-
ferent intergenic regions from the Drosophila melanogaster
genome (Figure 1). The genomic fragments (1.3 to 4.7 kb
in length -totaling 27.7 kb) were selected because they
each had been previously shown to contain cis-regulatory
transcriptional enhancers. They include DNA flanking the
following genes: gooseberry-neuro [10], snail [11], hunch-
back [12], slit (enhancer 2.6 RV) [13], string (enhancer 5.8)
[14], atonal [15], Sex combs reduced (enhancer 3.0 RR)
[16], Toll (enhancer 6.5 RL/LR) [13] and Par domain pro-
tein 1 (1stintron enhancer) [17]. Nine of these regions are
described in RedFly, the regulatory element database for
Drosophila [18], while the tenth, the nerfin-1 neuroblast
enhancer was identified by A. Kuzin in the Odenwald lab-
oratory (personal communication). In addition, twelve
genome EvoPrint analysis of each of the ten intragenic
regions revealed that each region contained highly con-
served sequences that were shared by all Drosophilids
(data not shown). As demonstrated in Figure 1, the pair-
wise eBLAT alignment exhibited only a modest increase in
the identification of shared sequences between closely
related species over the conventional BLAT alignment;
however, eBLAT identified significantly more conserved
sequences when the D. melanogaster genomic fragments
were aligned to the more evolutionarily distant orthologs.
The increased identification of shared sequences varied
from a 7.5% increase for D. simulans (evolutionary diver-
gent time from D. melanogaster is ~2 My) to 74.8% for D.
grimshawi (separated from D. melanogaster for ~40 My).
The same enhanced discovery of sequence conservation
was also observed when evolutionarily distant nematode
or vertebrate species were compared. For example, eBLAT
alignments between C. elegans and C. briggsae or human
and Xenopus orthologous DNAs both identified greater
than 70% more shared sequences when compared to orig-
inal BLAT alignments (data not shown).

Another measure of eBLAT efficacy in identifying evolu-
tionary conservation is to compare the detection of con-
served sequences when eBLAT vs. BLAT alignments are
used to generate an EvoPrint. To demonstrate the
increased alignment sensitivity of eBLAT over BLAT in the
EvoPrint analysis, the Drosophila melanogaster Kriippel cen-
tral domain enhancer [19] was EvoPrinted using 11 of the
Drosophila species (Figure 2A). The original EvoPrinter
(which uses the BLAT algorithm) detected a total of 169
conserved bases compared with 254 conserved bases
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Figure |

Increased identification of conserved DNA in evolutionary distant orthologs via enhanced-BLAT pairwise align-
ments. Shown are the total number of aligning bases in pairwise BLAT and pairwise enhanced-BLAT alignments from 10 differ-
ent Drosophila melanogaster genomic regions that contain conserved sequence blocks (1.3 to 4.7 kb; 27.7 kb in total) aligned to
the orthologous DNAs from D. melanogaster, D. simulans, D. sechellia, D. yakuba, D. erecta, D. ananassae, D. pseudoobscura, D. vir-
ilis, D. mojavensis or D. grimshawi. The average percent increase in the number of eBLAT aligning bases vs. BLAT alignments is

also shown. The approximate evolutionary separation/divergence time (in million years) between D. melanogaster and the other

Drosophilids is indicated in brackets.

identified with an eBLAT generated EvoPrint - a 50%
increase in alignment recognition. In addition, the EvoD-
ifferences profile identified additional bases (shown in
color) that are conserved in all but one of the genomes
used to generate the EvoPrint (Figure 2B and see below).

We also compared EvoPrinterHD-generated EvoPrints to
multi-genome alignments obtained from the UCSC com-
parative genome bioinformatics alignment program
[20,21]. The alignment resolution of EvoPrinterHD is
equivalent to the multi-species UCSC alignments in

detecting CSBs. The two alignment programs detect the
same conserved sequences with 93% to 95% correspond-
ence in five different enhancers compared (Figure 2C; and
data not shown).

EvoPrinterHD repeat finder

One prominent feature of all bacteria and metazoan
genomes is that they harbor diverse populations of repet-
itive elements that range in copy number from single
duplications to thousands of transposable elements dis-
persed throughout the genome. Given that many of these
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Figure 2

EvoPrints generated with eBLAT alignments reveal additional conserved sequences when compared to the
original method. A) Shown is a composite EvoPrint of the Drosophila melanogaster Kriippel central domain (CD2) enhancer
region generated by superimposing an EvoPrint generated from eBLAT alignments and a second prepared from BLAT align-
ments. Pairwise alignments between D. melanogaster and D. sechellia, D. simulans, D. erecta, D. yakuba, D. ananassae, D. pseudoob-
scura, D. persimilis, D. virilis, D. willistoni, D. mojavensis and D. grimshawi were used to generate both EvoPrints. Conserved
sequences identified by both procedures are shown as uppercase black nucleotides and yellow highlighted nucleotides repre-
sent the additional sequences recognized by EvoPrinterHD. The boxed region contains the cis-regulatory DNA required for
enhancer function as determined by Hoch et al. [9]. B) An EvoDifferences profile identifies those DNA sequences that are
shared by all but one of the species included in the analysis. As in the EvoPrint, black uppercase letters indicate sequences
shared by all species and colored uppercase letters, which denote individual species, represent sequences that were not
detected by the eBLAT alignment for just one of the genomes included in the EvoPrint analysis (D. erecta, dark-red; D. yakuba,
teal; D. pseudoobscura, light-blue; D. persimilis, brown; D. ananassae, pink; D. virilis, orange; D. willistoni, blue; D. mojavensis, green;
or D. grimshawi, red). The underline indicates the region of the EvoDifferences profile that is compared with the alignments
obtained from the UCSC genome browser (shown in panel C). C) Comparison of the EvoDifferences profile with the UCSC
genome alignments. Shown is the underlined sequence in panel (B) aligned to the corresponding alignments obtained at the
Drosophila UCSC comparative genome bioinformatics web site.
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repeats contain highly conserved sequences that may
interfere with alignments between evolutionary distant
orthologs, it is important to first identify the repetitive
sequence(s) within the reference genome before compar-
ative analysis is considered. To accomplish this, the Evo-
PrinterHD repeat finder algorithm superimposes the first,
second and third highest scoring eBLAT alignments of the
input DNA to its own genome and then color-codes the
readout to identify single or multiple repeat sequences
within the input reference DNA (Figure 3). Sequences that
have one additional copy in the reference genome are
noted with blue-colored uppercase bases while those that
are present three or more times are highlighted with red-
colored bases. The algorithm also reveals if one of the
multiple repeat sequences is more homologous to the
repeat present in the input DNA by highlighting single
repeat sequences that flank the core multi-repeat element
(Figure 3). By underlining repeat sequences in the EvoPrint
and EvoDifference readouts potential 'false positive' align-
ments that have their origin in repetitive elements are
highlighted.

http://www.biomedcentral.com/1471-2164/9/106

Alignment scorecard

As a prelude to generating an EvoPrint, the inter-genome
comparative program first displays the results of the dif-
ferent alignments in a tabular form referred to here as the
alignment scorecard (Figure 4 and see examples at the
website tutorial [9]). The scorecard shown in Figure 4 was
generated from a cis-regulatory enhancer region associ-
ated with the Drosophila melanogaster fushi tarazu gene (see
below for more details). The alignment score for each spe-
cies' eBLAT alignments shows the total number of aligning
bases in the input reference DNA. The positions of the first
and last aligning bases in the input reference DNA are also
noted, along with the number of sequencing gaps
detected in the aligning regions of the test genomes and
the total number of "Ns" (the presumed number of miss-
ing bases as indicated in the database). Links to the align-
ment readouts for each species are provided on the
scorecard, allowing the user to view the individual refer-
ence DNA and test species alignments. A second link for
each species leads to a color-coded composite eBLAT of all
3 of its alignments that highlights sequence rearrange-
ments and/or duplications in the test species (see below).
The data is arrayed in a descending order of alignment
scores. By default, top scoring genomes with no sequenc-

AGEEETGCGCEGTARATT TGCOGAATTTGCCOGTATTCGCC
AGCACGAAAACTTTCAAAAARATTAGAAATTTTCCG CACACATARRRARATTTACAATATARTTIT GACCARTACAATTGATTTTATC
CCCAARAAATTTAGTIAARAAGRCACARAATTGAGTTAT T CTGATGTTTAAGCAGACALACCACACCGAACTTATTCARARACCAGELATG
TEITAAARATTCAGTAGT TTTGGOGCT CCARAAALCA T TTAAAARAR T CACAGTTITCGUAGTTTGT T TAGTACGGC AAATTTACCG AR
TTGECCGAGCTTGGCARA TTTTGAGAT T TGCCGCACACCGCTE

TITITAARTATGAGTTT AGGAAATCTACAGCAATGTCGCATG T TCCGACCCC TACGAARARCARAT GATTAAA T CARRATTAA AG
TATAAARATOGTAGAARL CAATTTTTT AGTOGACTTC CCGAGATTATGA GTGECAAMA ACTGAGTART TGTCACTTTTTGACAGTARATAR
ARAAARATTTCAARARAT T TTTTTGAAGAGTTTTACTATGATATTCGH G TAATTTTGEAAT CAGAGTTARARAARARCAT CCCCACTGG LG
CTACTCCAGTITAARCTTARATTTCTAR

Figure 3

EvoPrinterHD repeat finder algorithm identifies repetitive elements within the input DNA. The repeat finder algo-
rithm superimposes the three highest scoring eBLAT input reference DNA to reference genome alignments to reveal those
sequences within the input DNA that are repeated within the input DNA itself and/or elsewhere in the reference genome. Sin-
gle-copy repeat sequences, identified just once in the second or third highest scoring eBLATSs but not in both, are highlighted
by blue-colored bases. Multiple (> 3 copies) repeats are highlighted with red-colored bases. Shown is a 1,958 bp genomic frag-
ment that flanks the 3' end of the Caenorhabditis elegans egl-26 gene (+5,290 to +7,248 bp from the start of transcription) that
was initially part of a 20 kb input DNA repeat finder readout. Note, the single copy repeat (blue-colored) sequences that flank
the multi-copy repeat sequences (red-colored) indicate that one of the repeat copies located elsewhere in the reference
genome is more homologous to the input DNA repeat sequence than with its other repeat family members.
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D.melanogaster (Ref Sequence)

Composite eBLAT

570 1 3570 0
158 1866 27720 0O/158
178 1953 2391 15 0/ 178

Selected for EvoPrinting

D.yakuba
Composite eBLAT

2646 46 3570 0 53
167 2200 2385 0 115
147 2200 2375 0 170

 anaignments () 151 ) None

D.mojavensis

Composite eBLAT

589 2558 3526 0
43 1859 1911 O 10
286 1240 1734 0 286/0

) Al alignments () 151 ) None

Figure 4

D.simulans

Composite eBLAT

392 5 3570 0 82
166 2121 2368 18 /38
135 2200 2383 54 T/18

f anaignments () 15t ) Neone

D.ananassae
Composite eBLAT
1884 100 3570 O

79 1866 1848 0 10
132 791

211 0 13270

f anaignments ) 15t ) Nene

D.grimshawi

Composite eBLAT

561 2558 3563 0
660 184 1911 O 10
609 184 1764 0 040

) Al alignments () 15t ) None
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D.sechellia
Composite eBLAT

3168 5 3570 0 48
177 2202 2478 0 148
184 1866 2479 0 6B/12

® a1 aignments () 151 () Nene

D.pseudoobscura
Composite eBLAT
1687 180 3570 0

58 1866 1944 0O {0
109 B41

1466 0 73/38

® a0 aignments () 151 () Nene

D.willisioni

Composite eBLAT

554 2542 3568 0
307 1234 1764 0 10
267 168 634 0 267/0

® a1 Aignments ) 151 ) Nene

D.erecta

Composite eBLAT

2653 4
23

3570 0 93
1866 2374 0 16
168

2157 2376 1 21710

@ anaignments () 15t ) None

D.persimilis

Composite eBLAT

1673 180 3570 O
142 1828 2209 0 10
114 1506 2003 4 43/13

@ anaignments () 15t ) None

D.virilis

Composite eBLAT

537 2558 3526 0
324 1868 1811 0 10
275 1264 1763 0 275/0

® Al alignments () 15t ) None

EvoPrinterHD alignment scorecard. A) Once the eBLAT alignment phase is completed, the algorithm initially displays the
data in a tabular/scorecard form. The total number of aligning bases for each pair-wise alignment (the homology score) is
shown along with the position of the first and last aligning bases within the input reference DNA sequence. The genomes are
arrayed in descending order of alignment score and the 3 highest pairwise alignment scores for each species are shown. The
intra-genomic algorithm compares the second and third scoring alignments of each genome to its highest scoring alignment to
identify potential regions that harbor conserved sequences that have either rearranged and/or duplicated, in addition to identi-
fying sequencing gaps within the aligning regions. The input reference DNA eBLAT readouts and the aligning region BLAT for
each alignment can be accessed by clicking on the species name and links to the Composite eBLATs are also provided. Each
species can be selected or deselected for EvoPrinting and by default, EvoPrinterHD selects the 6 highest scoring species for gen-
erating the initial EvoPrint and EvoDifferences profile readouts. "Ns" represent the number of sequencing gaps detected in each
of the aligning regions. The "R" value (indicative of a putative rearrangement) for the second and third alignments indicates the
number of aligning bases not detected in the first alignment and the "D" value (indicative of a putative duplication) is the
number of aligning bases shared with the first alignment. A link in provided for changing the input reference DNA to the align-
ing region of one of the other species. Shown is the alignment scorecard for a 3,570 bp Drosophila melanogaster sequence that
is located 6 kb upstream of the fushi tarazu gene. As indicated by the "R/D" values for each of the species, the intra-genomic
comparative program has identified potential rearrangements and duplications. The color code reveals |) whether the R or D
value is derived from the second or third alignment and 2) whether a putative rearrangement or duplication has been detected.

ing gaps in their highest scoring alignments are selected
for the initial EvoPrint analysis. After the initial EvoPrint
and EvoDifferences profile is examined, it is recommended
that the lower scoring species be included one at a time to
extend the evolutionary comparison (see below).

Identification of rearranged and duplicated conserved

sequences

Once the initial eBLAT alignments are completed, the Evo-
PrinterHD intra-genomic comparative algorithm automat-
ically determines: (1) the number of aligning bases in the
second and third eBLAT alignments that are not identified
in the first (highest scoring) alignment for each species,
called the "R" value indicating putative rearrangements in
the test species, (2) the number of aligning bases in the
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c ATCGTC.
CAAATTTGG2CAATTCY =2 TGTCAATGACAAAGTTTT AGAAAAATCAATAATTC-GAACGCYTGAATT: CCATTAACAATT CGAACT
TGAAACGTGAAG-Ac2cARAACACIAG AACGA AAATT GGCACATGTGCA.
TGGCGCCTTGCCTtATTTGA
GTGTGT TGTGTGCGATT ACTGACTGAC! TGATC:
ATTATCC-TcCTAACG-TGTCAAGTTATCT ARRA
ATTGTGACAATTT CCTTGACT AGTCAJTTCC=CTAAAAATCGT! TAG=AAAAATA.
TTTCAAGAA GAATACG-GG GATGC
TTTTAGACCGAATT TTGTGT:TCG CATTGTTAAAARA CGAGCALTTTTT
crc CG=CGCAC: TTTTATCGCTTTACSACCIGAGGTC:AATAAAACTTTAT
GCTCGAGTTTC AAA
CCAAc52CGAGCC GGAACTGCTCTA: CATTGTCTTG
GCATTGTTT CCCGG* 2 -CGCCCACG: AACGTC AC
caa GTCGCC GCTCTAATTTARATT. CTyCATTGT AATGTTT-CTAAAAACTGACCTAATTT.

CAAATTTG: =C=ATTCG 2 2TGTCAATG= JARAGTTT

TGAAACG

CGACCTTGGCCATTAATC T CATTCALGT
AARAATCAATAATTC:AACGCyTG-ATT:CCATTAACAATT CGAACT
ARATTCC CACATJTGC

TTGAATTTCTTG:AAACAGTTGTT!

TGTGAA-GATGTGGC - AACATGCAAA:
A

TG=CTG GGGC

G2GCTGT-GyTTATTAAAAG: CATAR
GGCGCTJAA-TTTCGAA

ACT:ATCTTGCCATCAGAAAGT “GAAAAAJTT

TcAGTTCTAGTTT:TTT:=AGAA.
TTYToTEECG
CTCoTTTTCCATTTAAAATGC

ACAAARAATG
TTTTACACCGAA

GCTCGASTT

CCTTSACT

ATTGTT= = AAAA:

GTC=AGTTATCT.
GTCACTT.
GoUARRAAATGG-A
GAGCA:TTTTT:
ACAAA-GTTTT
TTTGGTAGC

ARRAATC ARARATA.

ATAARRAA

TTTATCG-TTTA: AATARA-CTTTAT

CCGoTTATGCAAGT - TATGCAAC - ATGGG - TTJCATAA TTTAA AACTGCTCTA CATTGT
ATTGTT CGCCCACG: TCTT-CACAATATT:CACAA AA:CcGJGGATTAG:
GCTCTAATTT:AAT
GCTGTCAAALCoAACACCGACCTTGGCCATTAATCT CATTCALGT
ACAATTCoA G GAAARATCAATAATTC AACGCGTGAATT CCATTAACAATTTGCTT G CGAACT
TGAAACG A T CACATGTGC
ARATGAAATT. TG-CTG CCaGCgCT
G2GCTGTCGGTTATTAAAAG: CATAR
TTGAATTTCTTG: AAACAGTTGTT: s TTGTGAAAGATGTGGCC - GARCATGCAAA Gy aATCCoGECTGGCGCT ARRTTTCGAR
G
GGToAAGGGAT: CGTAAC CATTT
ACTTATCTTGCCATCAGAAAGTGAAAAAJTT T TAACAA
TGTCAAGTTATCT=CGCC
CCTTGACT < CATAARGTCAGTT 'AAAAATC AT ARAAAATARA
ACAAARAATG' TCAGTTCTAGTTT: TTT<>AGARA GGAARAAATGGAA ATAAAAAAA:

TTYTCTETCGEoCAT
CTCoTTTTCCATTTAAAATGC

TTTTAGACCGAA’

ATTGTTARARAAA

TcGAGCATTTTTT

ACAAARGTTTTT. GaATTTATGt - TTTATCGCTTTACIACCH S 2GG AATARAACTTTATT
G T

AggCTGCC TGCTCGAGTT TTTGGTAGC
GCGRAT CAAGG. CCuG TTATGCAAGT TATGCAACG:ATGGG:TT:CATAA' AT TTTAA ARCTGCTCTAJTT =g CATTGT.
ATTGTT CGCCCACGAGCC AGTCA. TCTT-CACAATATTTCACAA AAALC GUGGATTAG:

Figure 5

TGCTCTAATTTAAAT:2CcA

Intra-species ceBLATSs and composite-EvoPrints identify conserved sequences within the input reference DNA
that have rearranged in the aligning regions of other genomes. A) Shown is a D. melanogaster (reference DNA) to D.
virilis ceBLAT alignment that spans a 3,570 bp sequence located upstream of the fushi tarazu gene (-7184 to -3,434 bp from its
transcription start). Black-colored uppercase nucleotides represent aligning bases found only in the highest scoring D. virilis
eBLAT alignment, green-colored bases identify aligning bases that are unique to the second highest scoring alignment and blue-
colored bases are aligning bases unique to the third highest score eBLAT alignment. B) Shown is an EvoPrint of the input D. mel-
anogaster sequence shown in (A) that was generated with ceBLATSs of the D. simulans, D. sechellia, D. yakuba, D. erecta, D. anan-
assae, D. pseudoobscura, D. persimilis, D. virilis, D. mojavensis, D. grimshawi and D. willistoni alignments. C) The accompanying
EvoDifferences profile of the EvoPrint shown in (B). Black uppercase letters are aligning bases shared by all species examined.
Colored uppercase letters, which denote individual species, represent sequences that were not aligned in the ceBLAT for just
one of the genomes included in the analysis (D. simulans, teal; D. sechellia, dark-red; D. yakuba, brown; D. erecta, light-blue; D.
ananassae, orange; D. pseudoobscura, pink; D. virilis, blue; D. mojavensis, green; or D. grimshawi, red).
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second and third alignments that are also aligning in the
highest score alignment, termed the "D" value for putative
duplications, and (3) the number of aligning bases that
are shared by all three alignments, indicating conserved
sequences within putative repetitive elements. For exam-
ple, the alignment scorecard of a D. melanogaster 3,570 bp
input reference sequence, located 6 kb 5' to the fushi tarazu
gene, reveals that 5 of the 11 species included in the anal-
ysis have undergone putative rearrangements in their
aligning regions compared to the reference genome (Fig-
ure 4). The rearrangements within 4 of the 5 genomes (D.
mojavensis, D. grimshawi, D. willistoni and D. virilis) flank
the aligning bases in each of their highest score aligning
regions (noted by the color coded number in the R col-
umn) (Figure 4). ceBLATSs of these 5 species identified that
each contained at least two different MCS rearrangements
relative to the input D. melanogaster reference DNA (Figure
5A and data not shown).

Generating EvoPrints, and EvoDifferences profiles and
EvoUnique Prints

Based on the data provided on the alignment scorecard,
different combinations of ceBLAT alignments can be cho-
sen to generate an EvoPrint. The EvoPrinter algorithm [5]
creates an array of nucleotide strings from each of the
selected alignments and then looks for conservation of
sequence by looping through each of the strings one base
at a time, outputting an uppercase base for only those
input reference DNA nucleotides that are aligned in all of
the different ceBLATs included in the analysis (Figure 5B).
Those DNA bases within the input DNA that are not
shared with all species are represented as lowercase nucle-
otides. The "All Alignments or None" options for each
species allows for rapid changes in the repertoire of spe-
cies alignments used to generate an EvoPrint. As a default
setting, EvoPrinterHD selects ceBLATSs to generate an Evo-
Print; however, the user can select just the highest scoring
alignment to generate an EvoPrint, and doing so elimi-
nates potential false positives that are identified as repeat
sequences. As discussed above, when evolutionarily dis-
tant species are included in the analysis, MCS containing
genomic rearrangements in one or more of the selected
genomes are identified in the second and third eBLAT
alignments. To include the rearranged sequences in the
analysis, ceBLATs are used to generate the EvoPrint. The
use of the intra-species ceBLATS in the EvoPrint procedure,
rather than selecting first, second or third alignments for
generation of the EvoPrint, enhances the ability of EvoPrin-
terHD to identify and display, in a single uninterrupted
sequence, conserved sequences within the input DNA
even though the MCSs reside within genomic rearrange-
ments in one or more of the orthologous DNAs included
in the comparative analysis. Our experience indicates that
highly repetitious sequences do not interfere with the use
of ceBLATS, because the presence and position of repeats

http://www.biomedcentral.com/1471-2164/9/106

varies across the species used to generate the EvoPrint. For
the 20 vertebrate or for the enteric bacteria, genomes can
be added or removed from the initial analysis simply by
returning to the selection page and adding or deselecting
different genomes. Because EvoPrinterHD holds the previ-
ous alignments in memory, the time required to add addi-
tional genomes to the comparative analysis is significantly
reduced.

An additional readout, the EvoDifferences profile, is also
displayed along with the EvoPrint; it highlights the unique
differences (conserved sequence losses) that each species
contributes to the comparative analysis (Figures 2B and
5C). The EvoDifferences profile can also be considered a
"relaxed EvoPrint" since bases identified by the different
colors are present in all species except for the single spe-
cies denoted by that color. The apparent absence of a con-
served sequence or base change in a single species could
have several explanations: (1) the difference represents a
unique evolutionary change, (2) it may be the result of a
sequencing error, and/or (3) the sequence is present but
not identified by the ceBLAT due to three or more
genomic rearrangements in the aligning region.

For bacteria, a third readout, the color-coded EvolUnique
print, highlights those bases in the input reference DNA
that are unique (that do not align with any of the other
genomes included in the analysis) and those bases that
align with only a single other or two other genomes
included in the analysis (data not shown).

Parsing and curation of selected conserved sequences

To facilitate the comparative analysis of different con-
served sequences from different enhancers, EvoPrinterHHD
allows for the curation of CSBs by enabling the user to
automatically extract and collate CSBs in both forward
and reverse-complimented orientations (data not
shown). The "extract conserved sequence block" option
(located at the top of each EvoPrint readout) provides for
the automatic extraction, naming and consecutive num-
bering of 6 bp or longer CSBs from selected regions of an
EvoPrint or EvoDifferences profile (see tutorial [9]). In addi-
tion to the annotated list of forward and reverse sequences
the readout shows the selected EvoPrinted region from
which the conserved sequences were extracted. A link is
also provided to the cis-Decoder CSB comparative algo-
rithms [4].

Identifying species-specific changes in less-conserved DNA
EvoPrinterHD allows for the rapid exchange of the input
reference DNA; it draws from memory the genomic
sequence of the highest aligning region of any species
identified in the initial analysis. Once a change in refer-
ence DNA is requested (at the additional alignment
options page [8]), the alignment process is automatically
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reinitiated using the highest scoring aligning region of the
selected genome as the new input reference DNA. Figure 5
highlights the genome-specific variability of less-con-
served sequences between vertebrate MCS regions. Within
the second intron of the human CASZ1 gene [22], a
homolog of the Drosophila castor gene [23,24], two highly
conserved MCSs were identified that are each present once
in most, if not all, vertebrate genomes. Using the human
CASZ1 2ndintron as the input reference DNA and all 20
vertebrate genomes, a relaxed EvoPrint reveals that the
intervening distance between the MCSs in the human
genome is 441 bp (Figure 6A). By exchanging the human
sequence with the highest scoring aligning region from
the zebrafish genome and repeating the analysis, the sep-
aration between the conserved sequence clusters was
found to be 7,502 bp (Figure 6B). Both human and
zebrafish relaxed EvoPrints identified the same conserved
bases in the two MSC clusters with few exceptions, and the
spacing between conserved sequence blocks within the
MCSs remained almost unchanged. Additional reference
DNA swapping revealed that the non-or less-conserved
intervening sequence between these MCSs is quite varia-
ble. For example, in fish the length varied between 1,609
to 7,502 bp and in frogs and chickens the distance was
1,610 and 408 bp, respectively (data not shown).

Conclusion

EvoPrinterHD affords a rapid, convenient way to detect
and curate DNA sequence conservation between related
and evolutionarily distant animals. When multiple
genomes are included in the analysis, the uninterrupted
EvoPrint readout provides a species-centric view of con-
served sequences that are required for gene function. Evo-
PrinterHD advances the EvoPrint method by providing an
automated higher-definition view of sequence conserva-
tion from which the conserved sequence blocks can be
rapidly curated for subsequent analysis. EvoPrinterHD also
identifies genomic regions within one or more of the
selected species that harbor rearrangements of the con-
served DNA, and identifies unique or uniquely shared
DNA sequences within bacterial genomes.

Methods

Genome sequence files and their assembly dates

The following genome sequence files were curated from
the Genome Bioinformatics Group of University of Cali-
fornia, Santa Cruz [25]: Human, March 2006 (hgl8);
Chimpanzee, March 2006 (panTro2); Rhesus, January
2006 (rheMac2); Rat, November 2004 (rn4); Mouse, Feb-
ruary 2006 (mma8); Cat, March 2006 (felCat3); Dog, May
2005 (canFam?2); Horse, January 2007 (equCab1); Cow,
March 2005 (bosTau2); Opossum, January 2006
(monDom4); Chicken, May 2006 (galGal3); Xenopus trop-
icalis, August 2005 (xenTro2); Zebrafish, March 2006
(danRer4); Tetraodon, February 2004 (tetNigl); Fugu,

http://www.biomedcentral.com/1471-2164/9/106

October 2004 (fr2); Stickleback, February 2006
(gasAcul); Medaka, April 2006 (oryLat1); D. melanogaster,
April 2006 (dm3); D. simulans, April 2005 (droSim1); D.
sechellia, October 2005 (droSecl); D. yakuba, November
2005 (droYak2); D. erecta, August 2005 (droErel); D.
ananassae, August 2005 (droAna2); D. pseudoobscura,
November 2005 (dp3); D. persimilis, October 2005
(droPer1); D. virilis, August 2005 (droVir2); D. mojavensis,
August 2005 (droMoj2); D. grimshawi, August 2005
(droGril); C. elegans, January 2007 (ce4); C. brenneri, Jan-
uary 2007 (caePb1); C. briggsae, January 2007 (cb3); C.
remanei, March 2006 (caeRem?2); and P. pacificus, February
2007 (priPac1); The genome sequence files for the Ele-
phant, June 2005; Hedgehog, June 2006 and Armadillo,
June 2005 were downloaded from the Broad Institute
[26].

The following bacteria genome sequence files were
curated from the BacMap database of University of
Alberta [27]: Staphylococcus aureus COL; Staphylococcus
aureus MRSA252; Staphylococcus aureus MSSA476, Staphy-
lococcus aureus Mu50; Staphylococcus aureus MW?2; Staphylo-
coccus aureus N315; Staphylococcus aureus subsp. aureus
NCTC 8325; Staphylococcus aureus RF122; Staphylococcus
aureus subsp. aureus USA300; Staphylococcus epidermidis
ATCC 12228; Staphylococcus epidermidis RP62; Staphylococ-
cus haemolyticus JCSC1435; Escherichia coli 536; Escherichia
coli APEC O1; Escherichia coli CFI073; Escherichia coli
O157:H7 EDL933; Escherichia coli K12 MG1655;
Escherichia coli W3110; Escherichia coli O157:H7 Sakai;
Klebsiella pneumoniae MGH 78578; Salmonella enterica
Choleraesuis SC-B67; Salmonella enterica Paratypi A ATCC
9150; Salmonella typhimurium LT2; Salmonella enterica
CT18; Salmonella enterica Ty2; Shigella boydii Sb227; Shig-
ella dysenteriae SA197; Shigella flexneri 2a 2457T; and Shig-
ella flexneri 301. The genome sequence files for
Staphylococcus aureus subsp. aureus JH1, Staphylococcus
aureus subsp. aureus JH9, Staphylococcus aureus Mu3, and
Staphylococcus aureus subsp. aureus str. Newman were
curated from the European Bioinformatics Institute of the
European Molecular Biology Laboratory [28]. The
genome sequence file for Escherichia coli UT189 was taken
from Enteropathogen Resource Integration Center [29],
and genome sequence data for Salmonella bongori was
downloaded from the Sanger Institute Sequencing Centre
[30].

The mosquito genome sequence files for Aedes aegypti,
Anopheles gambiae and Culex pipiens were curated from the
VectorBase database [31].
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CTAATCAACCCCT=TAATTTATGCACAAA AATTTCAC-ACACTTGC-TTGTTAATTTG
AGATGTAATTAAC CGTC:C-A! G CAACTAATTT T GTAA-TTA-C:C CTTTTCATCAAAATTCAGTTACTTTGGCTCCTGTG TGATGCAATTAGGTT
GGGCAAC!C-=AAGTG! T A-TTTCTTTTGT

TTGCTTTTGTC TT=ATTCCCATTTTCC=2CaCcAGGGGCCCaGG-AGAC CAAGGAAC:CAAAAT! TTAA' TTAATCATTCAGGCTTT CoAGCTAATC

CACA CC! =GAGAATTCCCHAGATGC-GC =T CTGC Tt ACC: ATTAC! CLGuoAG TTTATATG- TTTT! CAT
CTTTATATAATTAC

CTAATCAACCCCTTA A-AAA TAATTTCAC ACACTTGC-TTGTTAATTTG

AGATGTAATTAAC CGTC:C-A-G CAACTAATTT TGC-GTAA-TTA*C CCG CTTTTCATCAAAATTCAGTTACTTTGGCTCCTGTG TGATGCAATTAGGTT

GGGCAAC-C==AAGTG TcALTTTCTTTTGT:

TTGCTTTTGTC:Ca L TTATTCCCATTTTCCa9CyCaAGGGGCCC-GG2AGACGAGTTACCAAGGAAC-CAAAAT TTA
ATTAGTGTAT ! TTAATCATTCAGGCTTT ' C-AGCTAATCCAC CCc 2GAGAATTCCC-AGATGC-GC' T CTGC! T ACCATTTATTGTTGAGTCTATTATAATTACTGTTAG
CAGGTGGGG  C: G JAG TTTA:TATGTTTT ATCTTTATATAATTAC

Figure 6

Genome-specific flexibility in less-conserved sequences revealed by exchanging input reference DNAs. By swap-
ping the input reference DNA for one of the aligning regions in another genome and reinitiating the EvoPrint analysis, one can
identify species-specific changes in the spacing between conserved sequences. A) EvoPrint analysis of the human CASZI gene
identified two highly conserved MCSs within its second intron that are separated by 441 bp. Shown is a relaxed EvoPrint that
was generated with ceBLAT alignments of the human sequence to: chimpanzee, rhesus, mouse, rat, dog, cat, horse, cow,
hedgehog, elephant, armadillo, opossum, chicken, X. tropicalis, Fugu, Tetraodon, Medaka, stickleback, and zebrafish genomes.
Uppercase black-colored bases are present in all orthologs or found in all but one of the aligning regions. B) Shown is a relaxed
EvoPrint obtained when the human input reference sequence, used to generate the EvoPrint shown in (A), is exchanged for the
highest scoring aligning region in the zebrafish genome. The zebrafish CASZ| relaxed EvoPrint reveals that the intervening
genomic region between the two highly conserved MCSs in the zebrafish orthologue is 7,06 | bp longer than that found in the
human genome.
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